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Low energy limit of heterotic string theory is ten dimensional supergravity coupled to

Yang-Mills gauge theory ⇒ Easy to obtain nice particle physics [Candelas etal ’85, ..].

This talk: Compactifications to four and three dimensions [See talks by Acharya, Gukov]

M10 = M10−d ×Xd ,

where M10−d is external spacetime, and Xd is the internal (compact) geometry.

Supersymmetry: To lowest orderX is a torsion-free (special holonomy) manifold.

Heterotic: Spoiled by α′
-corrections! Harder to understand geometries and moduli space.
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Low energy limit of heterotic string theory is ten dimensional supergravity coupled to

Yang-Mills gauge theory ⇒ Easy to obtain nice particle physics [Candelas etal ’85, ..].

This talk: Compactifications to four and three dimensions [See talks by Acharya, Gukov]

M10 = M10−d ×Xd ,

where M10−d is external spacetime, and Xd is the internal (compact) geometry.

Supersymmetry: To lowest orderX is a torsion-free (special holonomy) manifold.

Heterotic: Spoiled by α′
-corrections! Harder to understand geometries and moduli space.

Why then heterotic?

� Good for Particle Physics: Easy to obtain Standard Model like physics.

� Similar structures often appear in geometries with more fibration structures [See talks

by Salamon, Foscolo, Haskins].

� Natural generalizations of torsion free geometry with bundles, when bundle can

back-react on the base. Mathematically interesting structures arise!

- Local and global constructions, e.g. [Fu-Yau ’06, Andreas-GarciaFernandez ’10,

Halmagyi-Israel-EES ’16, Acharya-EES ’17, etc].

- Investigations into moduli [Becker-Tseng ’05, Anderson-Gray-Sharpe ’14, delaOssa-EES

’14, GarciaFernandez-Rubio-Tipler ’15, delaOssa-Larfors-EES ’17, This Talk!].
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3 Steps in understanding moduli of a stringy geometry:
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3 Steps in understanding moduli of a stringy geometry:

� Step 1: Infinitesimal massless spectrum TM. Identify differential D (D2 = 0).

Tangent space of moduli space then given by cohomology

TM = H
1
D(Q) .

Moduli fields X usually one-forms with values in a bundle Q (or sheaf) naturally
associated to the given moduli problem. [Heterotic: Anderson-Gray-Sharpe ’14,

delaOssa-EES ’14, delaOssa-Larfors-EES ’16].
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3 Steps in understanding moduli of a stringy geometry:

� Step 1: Infinitesimal massless spectrum TM. Identify differential D (D2 = 0).

Tangent space of moduli space then given by cohomology

TM = H
1
D(Q) .

Moduli fields X usually one-forms with values in a bundle Q (or sheaf) naturally
associated to the given moduli problem. [Heterotic: Anderson-Gray-Sharpe ’14,

delaOssa-EES ’14, delaOssa-Larfors-EES ’16].

� Step 2: Understand geometry of M (e.g. Kähler metric [Heterotic: Candelas etal ’15]).

Higher order deformations, smoothness and obstructions (superpotential and Yukawa

couplings). Maurer-Cartan elements,

DX + 1
2
[X ,X ] = 0 ,

and associated differentially graded Lie algebra (or L∞-algebra). [E.g. Tian-Toderov

Lemma ’87, Atiyah Algebroid: Huang ’94, Heterotic: in progress ’17].
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3 Steps in understanding moduli of a stringy geometry:

� Step 1: Infinitesimal massless spectrum TM. Identify differential D (D2 = 0).

Tangent space of moduli space then given by cohomology

TM = H
1
D(Q) .

Moduli fields X usually one-forms with values in a bundle Q (or sheaf) naturally
associated to the given moduli problem. [Heterotic: Anderson-Gray-Sharpe ’14,

delaOssa-EES ’14, delaOssa-Larfors-EES ’16].

� Step 2: Understand geometry of M (e.g. Kähler metric [Heterotic: Candelas etal ’15]).

Higher order deformations, smoothness and obstructions (superpotential and Yukawa

couplings). Maurer-Cartan elements,

DX + 1
2
[X ,X ] = 0 ,

and associated differentially graded Lie algebra (or L∞-algebra). [E.g. Tian-Toderov

Lemma ’87, Atiyah Algebroid: Huang ’94, Heterotic: in progress ’17].

� Step 3: Understand quantum cohomology ring. Include higher genus quantum effects.

Construct topological theory of the corresponding structures, in analogy with e.g.

topological A/B-models for CY’s [Witten ’91] and holomorphic Chern-Simons theory

[Donaldson-Thomas ’98]. Compute new invariants for structures, and relate to known

invariants such as Gromov-Witten and Donaldson-Thomas invariants?



The Heterotic SU(3) System

M10 = M4 ×X6

Introduction

SU(3)-geometries

The Strominger-Hull System

Infinitesimal Moduli and

Massless Fields

Higher Order Deformations

and a Heterotic Effective

Theory

G2 -geometries

Coupled Moduli Spaces – 5



The Strominger-Hull System

Introduction

SU(3)-geometries

The Strominger-Hull System

Infinitesimal Moduli and

Massless Fields

Higher Order Deformations

and a Heterotic Effective

Theory

G2 -geometries

Coupled Moduli Spaces – 6

Supersymmetric compactifications of the heterotic string to 4d Minkowski space require

that the internal geometry X be of Strominger-Hull type [Strominger ’86, Hull ’86]:

� The internal geometry admits an SU(3)-structure (X,Ω, ω) satisfying

d(e−2φΩ) = 0 , d

(

e
−2φ

ω ∧ ω
)

= 0 .
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Supersymmetric compactifications of the heterotic string to 4d Minkowski space require

that the internal geometry X be of Strominger-Hull type [Strominger ’86, Hull ’86]:

� The internal geometry admits an SU(3)-structure (X,Ω, ω) satisfying

d(e−2φΩ) = 0 , d

(

e
−2φ

ω ∧ ω
)

= 0 .

� The bundle satisfies the holomorphic and Yang-Mills conditions

F ∧ Ω = 0 , ω ∧ ω ∧ F = 0 .

Unique hermitian solutions ⇔ bundle is poly-stable [Donaldson ’85, Uhlenbeck-Yau ’86,

Li-Yau ’87]. This talk: Assume stable bundle.
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Supersymmetric compactifications of the heterotic string to 4d Minkowski space require

that the internal geometry X be of Strominger-Hull type [Strominger ’86, Hull ’86]:

� The internal geometry admits an SU(3)-structure (X,Ω, ω) satisfying

d(e−2φΩ) = 0 , d

(

e
−2φ

ω ∧ ω
)

= 0 .

� The bundle satisfies the holomorphic and Yang-Mills conditions

F ∧ Ω = 0 , ω ∧ ω ∧ F = 0 .

Unique hermitian solutions ⇔ bundle is poly-stable [Donaldson ’85, Uhlenbeck-Yau ’86,

Li-Yau ’87]. This talk: Assume stable bundle.

� The Neveu-Schwarz field strength H satisfies anomaly cancellation condition

i(∂ − ∂)ω = H = dB + α′

4
ωCS(A) .

Gauge invariance ⇒ Kalb-Ramond field B transforms [Green-Schwarz ’84]

ωCS(A) → ωCS(A) + dω2(A, g) ⇒ B → B − α′

4
ω2(A, g) + dλ ,

where g ∈ Ω0(End(V )), λ ∈ Ω1(X). This is the Green-Schwarz Mechanism.
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Infinitesimal moduli

preserving SUSY conditions
⇔ Massless fields in 4d theory

This talk: AssumeX satisfies ∂∂-lemma (e.g. smooth α′ → 0 Calabi-Yau limit exists).
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Infinitesimal moduli

preserving SUSY conditions
⇔ Massless fields in 4d theory

This talk: AssumeX satisfies ∂∂-lemma (e.g. smooth α′ → 0 Calabi-Yau limit exists).

The infinitesimal moduli space of the Strominger-Hull system is given by [DelaOssa-EES ’14,

Anderson etal ’14, Garcia-Fernandez etal ’15]

TM = H
(0,1)

D
(Q) , Q = T

∗(1,0)
X ⊕ End(V )⊕ T

(1,0)
X

where D is nilpotent by the supersymmetry conditions, and definesQ as a double

extension.
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Infinitesimal moduli

preserving SUSY conditions
⇔ Massless fields in 4d theory

This talk: AssumeX satisfies ∂∂-lemma (e.g. smooth α′ → 0 Calabi-Yau limit exists).

The infinitesimal moduli space of the Strominger-Hull system is given by [DelaOssa-EES ’14,

Anderson etal ’14, Garcia-Fernandez etal ’15]

TM = H
(0,1)

D
(Q) , Q = T

∗(1,0)
X ⊕ End(V )⊕ T

(1,0)
X

where D is nilpotent by the supersymmetry conditions, and definesQ as a double

extension. To disambiguate

H
(0,1)

D
(Q) ∼= H

(0,1)

∂
(T ∗(1,0)

X)⊕ ker(H) ,

where H ∈ Ext1(Q1, T
∗(1,0)X) is given by the anomaly cancellation condition. Q1 is

the Atiyah extension with extension class given by F (the curvature) [Atiyah ’57]

0 → End(V ) → Q1 → T
(1,0)

X → 0 .

We thus have (∂1 = ∂ + F)

ker(H) ⊆ H
(0,1)

∂1
(Q1) ∼= H

(0,1)(End(V ))⊕ ker(F) , ker(F) ⊆ H
(0,1)

∂
(T (1,0)

X) .
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Generic higher deformations of SU(3) system ⇒ complicated L∞-algebra.

Clues from physics: 4d theory is an N = 1 supergravity ⇒ complex field space equipped

with Kähler metric [Candelas etal ’15], and holomorphic superpotentialW [Becker etal ’03,

Cardoso etal ’03, Lukas etal ’05]. A finite holomorphic deformation can be represented as

y = (x, α, µ) ∈ Ω(0,1)(Q) ,

where α ∈ Ω(0,1)(End(V )), x ∈ Ω(0,1)(T ∗(1,0)X/∂-exact), µ ∈ Ω(0,1)(T (1,0)X)|ker(∆).
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Generic higher deformations of SU(3) system ⇒ complicated L∞-algebra.

Clues from physics: 4d theory is an N = 1 supergravity ⇒ complex field space equipped

with Kähler metric [Candelas etal ’15], and holomorphic superpotentialW [Becker etal ’03,

Cardoso etal ’03, Lukas etal ’05]. A finite holomorphic deformation can be represented as

y = (x, α, µ) ∈ Ω(0,1)(Q) ,

where α ∈ Ω(0,1)(End(V )), x ∈ Ω(0,1)(T ∗(1,0)X/∂-exact), µ ∈ Ω(0,1)(T (1,0)X)|ker(∆).

Deform superpotential ⇒ interesting generalisation of holomorphic Chern-Simons theory

[Ashmore-delaOssa-Minasian-StricklandConstable-EES ’17]

∆W =

∫

X

(

〈y,Dy〉+ 1
3
〈y, [y, y]〉

)

∧ Ω ,

Equation of motion reads

Dy + 1
2
[y, y] = ∂a-exact ,

the Maurer-Cartan equation in the heterotic DGLA.
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Generic higher deformations of SU(3) system ⇒ complicated L∞-algebra.

Clues from physics: 4d theory is an N = 1 supergravity ⇒ complex field space equipped

with Kähler metric [Candelas etal ’15], and holomorphic superpotentialW [Becker etal ’03,

Cardoso etal ’03, Lukas etal ’05]. A finite holomorphic deformation can be represented as

y = (x, α, µ) ∈ Ω(0,1)(Q) ,

where α ∈ Ω(0,1)(End(V )), x ∈ Ω(0,1)(T ∗(1,0)X/∂-exact), µ ∈ Ω(0,1)(T (1,0)X)|ker(∆).

Deform superpotential ⇒ interesting generalisation of holomorphic Chern-Simons theory

[Ashmore-delaOssa-Minasian-StricklandConstable-EES ’17]

∆W =

∫

X

(

〈y,Dy〉+ 1
3
〈y, [y, y]〉

)

∧ Ω ,

Equation of motion reads

Dy + 1
2
[y, y] = ∂a-exact ,

the Maurer-Cartan equation in the heterotic DGLA.

Future: Compute correlation functions weighted by ∆W , and define new invariants for

heterotic geometry in spirit of [Donaldson-Thomas ’98, Donaldson-Segal ’09]? Is there a

heterotic version of holomorphic linking [Frenkel-Khesin-Todorov ’97, Thomas ’97]?
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Supersymmetry requires the internal geometry Y to have a G2-structure ϕ ( ψ = ∗ϕ).

Torsion classes (decomposed into irreducible representations of G2)

dϕ = τ1ψ + 3 τ7 ∧ ϕ+ ∗τ27

dψ = 4 τ7 ∧ ψ + ∗τ14 .

Note that dϕ = dψ = 0 ⇔ ∇LCϕ = 0 (G2 holonomy).
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Supersymmetry requires the internal geometry Y to have a G2-structure ϕ ( ψ = ∗ϕ).

Torsion classes (decomposed into irreducible representations of G2)

dϕ = τ1ψ + 3 τ7 ∧ ϕ+ ∗τ27

dψ = 4 τ7 ∧ ψ + ∗τ14 .

Note that dϕ = dψ = 0 ⇔ ∇LCϕ = 0 (G2 holonomy).

Supersymmetry requires [Papadopoulos etal ’05, Lukas etal ’10, Lüst et at ’12, ..],

H = H(τi) = −τ27 +
1
6
τ1ϕ− τ7yψ , τ14 = 0

F ∧ ψ = 0 .

Note, this is an integrable G2-structure ⇒ can define differential complex

[Reyes-Carrion ’93, Fernandez etal ’98]

0 → Ω0
1

ď
−→ Ω1

7
ď
−→ Ω2

7
ď
−→ Ω3

1 → 0 .

ď = π ◦ d, where π is the appropriate G2 projection. Note the close analogy with the

Dolbeault complex.

The complexes generalize to bundle-valued ones whenever F is an instanton, and they

are elliptic [Reyes-Carrion ’93].
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O(α′0) Heterotic system reduces to a G2-holonomy manifold with an instanton bundle.

Infinitesimal geometric moduli counted by:

[∆t n
m

dx
n] ∈ H

1
ď∇

(TY ) ∼= H1
ď∇

(TY ) ,

with ď∇ the Levi-Civita connection, and H1
ď∇

(TY ) denotes harmonic forms.
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O(α′0) Heterotic system reduces to a G2-holonomy manifold with an instanton bundle.

Infinitesimal geometric moduli counted by:

[∆t n
m

dx
n] ∈ H

1
ď∇

(TY ) ∼= H1
ď∇

(TY ) ,

with ď∇ the Levi-Civita connection, and H1
ď∇

(TY ) denotes harmonic forms.

Harmonic forms decompose as

H1
ď∇

(TY ) = H
1 (s)

ď∇

(TY )⊕H
1 (a)

ď∇

(TY ) ,

where the symmetric/anti-symmetric representations correspond to metric moduli [Joyce

’94] and B-field moduli [deBoer etal ’08]

H
1 (s)

ď∇

(TY ) ∼= H
3(Y ) , H

1 (a)

ď∇

(TY ) ∼= H
2(Y ) .
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O(α′0) Heterotic system reduces to a G2-holonomy manifold with an instanton bundle.

Infinitesimal geometric moduli counted by:

[∆t n
m

dx
n] ∈ H

1
ď∇

(TY ) ∼= H1
ď∇

(TY ) ,

with ď∇ the Levi-Civita connection, and H1
ď∇

(TY ) denotes harmonic forms.

Harmonic forms decompose as

H1
ď∇

(TY ) = H
1 (s)

ď∇

(TY )⊕H
1 (a)

ď∇

(TY ) ,

where the symmetric/anti-symmetric representations correspond to metric moduli [Joyce

’94] and B-field moduli [deBoer etal ’08]

H
1 (s)

ď∇

(TY ) ∼= H
3(Y ) , H

1 (a)

ď∇

(TY ) ∼= H
2(Y ) .

An infinitesimal deformation of the instanton condition gives

ďA∂tA = π7 (Fmndx
m ∧∆n) = F̌(∆t) .

F̌ defines Q1 = End(V )⊕ TY as an extension (analogy with Atiyah map), and

TM1 = H
1
ďA

(End(V ))⊕ ker(F̌) = H
1
ď1
(Q1) , ker(F̌) ⊆ H

1
ď∇

(TY ) ,

as expected. Here ď1 = ď∇ + F̌ .
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Including α′
effects, the heterotic G2 system naturally gives rise to a differential

Ď =

(

ďA F̌

F̌ ďθ

)

: Ω̌p

(

End(V )
TY

)

→ Ω̌p+1

(

End(V )
TY

)

,

where the map F̌ : Ω̌p(End(V )) → Ω̌p+1(TY ) is given by

F̌(α)m = α′

4
π [ tr (gmn

Fnqdx
q ∧ α)] ,

and π denotes the appropriate projection. The connection dθ has conncetion symbols

θmn
p = Γnm

p = ΓLC
nm

p
+ 1

2
Hnm

p(τi) .

For integrable G2-structures Γ is the unique metric connection with totally anti-symmetric

torsion preserving the G2 structure.
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Including α′
effects, the heterotic G2 system naturally gives rise to a differential

Ď =

(

ďA F̌

F̌ ďθ

)

: Ω̌p

(

End(V )
TY

)

→ Ω̌p+1

(

End(V )
TY

)

,

where the map F̌ : Ω̌p(End(V )) → Ω̌p+1(TY ) is given by

F̌(α)m = α′

4
π [ tr (gmn

Fnqdx
q ∧ α)] ,

and π denotes the appropriate projection. The connection dθ has conncetion symbols

θmn
p = Γnm

p = ΓLC
nm

p
+ 1

2
Hnm

p(τi) .

For integrable G2-structures Γ is the unique metric connection with totally anti-symmetric

torsion preserving the G2 structure. We have the following theorem:

Theorem [delaOssa-Larfors-EES ’17] : Given a G2 structure with a bundle (Y,ϕ,A), we can

construct the operator Ď. This operator is nilpotent if and only if (Y, ϕ,A) satisfies the

heterotic G2 system. Furthermore, the infinitesimal moduli of the heterotic G2 system is

TM = H
1
Ď
(Q1) .

Note: To show [Ď2 = 0 ⇒ heterotic G2 system] requires the α′
expansion.
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Including α′
effects, the heterotic G2 system naturally gives rise to a differential

Ď =

(

ďA F̌

F̌ ďθ

)

: Ω̌p

(

End(V )
TY

)

→ Ω̌p+1

(

End(V )
TY

)

,

where the map F̌ : Ω̌p(End(V )) → Ω̌p+1(TY ) is given by

F̌(α)m = α′

4
π [ tr (gmn

Fnqdx
q ∧ α)] ,

and π denotes the appropriate projection. The connection dθ has conncetion symbols

θmn
p = Γnm

p = ΓLC
nm

p
+ 1

2
Hnm

p(τi) .

For integrable G2-structures Γ is the unique metric connection with totally anti-symmetric

torsion preserving the G2 structure. We have the following theorem:

Theorem [delaOssa-Larfors-EES ’17] : Given a G2 structure with a bundle (Y,ϕ,A), we can

construct the operator Ď. This operator is nilpotent if and only if (Y, ϕ,A) satisfies the

heterotic G2 system. Furthermore, the infinitesimal moduli of the heterotic G2 system is

TM = H
1
Ď
(Q1) .

Note: To show [Ď2 = 0 ⇒ heterotic G2 system] requires the α′
expansion.

Cor.: Strominger-Hull system ⇔ A particular Holomorphic Yang-Mills connection on Q.
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Heterotic geometries give nice generalizations of torsion-free geometries when bundles

are included, but the moduli problem is hard.

For the future:

� ComputeH1
Ď
(Q1) in explicit examples? Hard even for G2-holonomy (no clear

algebraic methods). Perhaps make progress for instantons on twisted connected sums

[SaEarp-Walpuski ’11, ’13], or homogeneous geometries for torsional examples?

� Further investigation into higher order deformations and obstructions of the heterotic

SU(3) andG2 systems. What is the L∞-algebra of theG2 system, and what are the

integrable deformations?

� Understand the geometric properties of the G2 structure moduli space. No known

natural complex structure or Kähler structure, in contrast to the SU(3) system

[Candelas etal ’15], and M-theory compactifications on G2 manifolds [Gukov ’99, Hitchin

’00, Beasley-Witten ’02, Acharya-Gukov ’04, Karigiannis-Leung ’07].

� Quantum corrections: Is there a quasi-topological action governing the heterotic G2

system? Compute invariants for heterotic geometries such as generalisations of

Gromov-Witten and Donaldson-Thomas invariants?

� What is the significance of ∆W in terms of heterotic M-theory duality? Can ∆W say

something about the M-theory superpotential or vice versa?



Thank you!
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Thank you for your attention!
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