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Motivation and Overview
String model building often leaves a number of moduli to be “stabilised”, i.e. the
corresponding field in the effective physics must be given a mass.

Maldacena-Nunez: Perturbative effects and fluxes often fall short ⇒ Need
non-perturbative effects.

Branes wrapped on calibrated cycles one can produce such effects. F-theory:
M5-instantons wrapping effective divisors in a Calabi-Yau four-fold
[Donagi-Grassi-Witten ’96] (DGW).

String dualitiy: There should be effects dual to DGW in string-theory and M-theory.
Heterotic: World-sheet instantons [Curio-Lüst ’97, Anderson etal ’15]. M-theory:
Euclidean M2-branes wrapping associative cycles
[Braun-DelZotto-Halverson-Larfors-Morrison-SchaferNameki ’18].

Mathematically interesting: Can lead to interesting mathematical conjectures.

Overview:

Explicit construction of associative in a G2 orbifold.

The weak coupling limit to type IIA and Special Lagrangians.

Mirror symmetry and divisors in type IIB. Lift to F-theory.

Conclusions and Outlook.
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Some Calibrated Geometry

Given (M,Φ), where Φ is some p-form denoting some extra structure associated to M
(e.g. CY , G2, etc where we also insist that dΦ = 0).

Φ is a calibration if for x ∈ M we have Φx = λvolξ where λ ≤ 1 ∀ oriented p-dim
ξ ⊆ TxM.

A p-dimensional sub-manifold N ⊆ M is calibrated w.r.t. Φ if Φ|N = volN . We then
have

Vol(N) =

∫
N
volN =

∫
N

Φ =

∫
Ñ

Φ ≤
∫
Ñ
volÑ = Vol(Ñ) ,

where N and Ñ are in the same homology class.

In this sense, calibrated sub-manifolds are minimal surfaces. BPS conditions ⇒ Can
wrap branes on minimal surfaces.

Examples:

Kähler manifold: Normalised powers of the Kähler form. Calibrated
sub-manifolds are complex submanifolds, e.g. effective divisors.

Calabi-Yau: The real part of a holomorphic volume form. Calibrated
submanifolds are special Lagrangian.

G2: The associative/co-associative three- and four-form. Calibrated
submanifolds are associative and co-associative.

Eirik Eik Svanes, KCL, ICTP Counting Associatives in a G2 Orbifold
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where N and Ñ are in the same homology class.

In this sense, calibrated sub-manifolds are minimal surfaces. BPS conditions ⇒ Can
wrap branes on minimal surfaces.

Examples:

Kähler manifold: Normalised powers of the Kähler form. Calibrated
sub-manifolds are complex submanifolds, e.g. effective divisors.

Calabi-Yau: The real part of a holomorphic volume form. Calibrated
submanifolds are special Lagrangian.

G2: The associative/co-associative three- and four-form. Calibrated
submanifolds are associative and co-associative.

Eirik Eik Svanes, KCL, ICTP Counting Associatives in a G2 Orbifold



Introduction
Associative Cycles

The Type IIA Limit
The Type IIB Limit

F-Theory

G2 Orbifolds and Associative Cycles

Eirik Eik Svanes, KCL, ICTP Counting Associatives in a G2 Orbifold



Introduction
Associative Cycles

The Type IIA Limit
The Type IIB Limit

F-Theory

The G2 Orbifold

Our main objects of interest are G2 orbifolds of the form

M = (X × T 3)
/
Z2 × Z2 ,

where X is a K3 surface with hyper-Kähler structure {ω1, ω2, ω3}. The G2 three-form
Φ is

Φ = dx1 ∧ dx2 ∧ dx3 +
∑
i

ωi ∧ dxi .

To get a non-trivial G2 orbifold, we are looking for a commuting pair of involutions
{α, β} which act by giving the following signs

ω1 ω2 ω3 dx1 dx2 dx3
α + − − + − −
β − − + − − +

.

We associate ω1 with the Kähler form J2 of X , and ω2 + i ω3 with the holomorphic
two-form Ω2. Note that α is a holomorphic involution while β is anti-holomorphic.

Eirik Eik Svanes, KCL, ICTP Counting Associatives in a G2 Orbifold
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The Algebraic K3 Surface

We make a choice of involutions α and β which have an explicit algebraic realisation.
Consider a family of elliptic K3 surfaces realized as the complete intersection

y2 = x3 + xw4f4(z) + w6g6(z)

ξ2 = z1z2 ,

where f4 and g6 are homogeneous polynomials in {z1, z2} of indicated degree. We
impose the toric weight system

x y w z1 z2 ξ Sum of degrees W ξ2 = z1z2
2 3 1 0 0 0 6 6 0
2 3 0 1 1 1 8 6 2

The sum of the degrees equals the sum of the equations, so this is indeed a K3.
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The Algebraic Involutions
Go to a point in moduli space where f4 and g6 have real coefficients.

Let us choose the involutions to act algebraically as

α : ξ → −ξ
β : (y , x ,w , z1, z2, ξ)→ (ȳ , x̄ , w̄ , z̄1, z̄2, ξ̄) ,

where indeed α acts holomorphically, while β acts anti-holomorphically. Both
involutions fit in the classification of Nikulin.

α has two tori as it’s fixed point locus ⇒ acts as (10, 8, 0) involution.

In terms of the second homology lattice of X ,

H2(X ,Z) = −E+
8 ⊕−E

−
8 ⊕ U1 ⊕ U2 ⊕ U3 ,

we can insist that (modulo automorphisms)

α x E+
8 E−8 U1 U2 U3

E−8 E+
8 U1 −U2 −U3

.

Eirik Eik Svanes, KCL, ICTP Counting Associatives in a G2 Orbifold
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The Algebraic Involutions
In terms of α, we see that we must choose a hyper-Kähler structure so that

J2 = ω1 ∈
(
U1 ⊕ [E+

8 + E−8 ]
)
⊗ R

Ω2 = ω2 + i ω3 ∈
(
U2 ⊕ U3 ⊕ [E+

8 − E−8 ]
)
⊗ R .

Fixed points of β are determined by our choice of homogeneous polynomials f4 and g6.

Choose f4 and g6 so that β also acts as a representative of the (10, 8, 0) involution,
though now anti-holomorphically:

β x E+
8 E−8 U1 U2 U3

−E−8 −E+
8 −U1 −U2 U3

.

Indeed β acts as Ω2 → −Ω̄2 if we further restrict the hyper-Kähler structure to be

ω2 ∈ U2 ⊗ R

ω3 ∈
(
U3 ⊕ [E+

8 − E−8 ]
)
⊗ R .
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Sections of K3

Let U1 = 〈e1, e1〉. We may identify the class of the zero section of the elliptic fibration
of X with σ0 = e1 − e1 and the class of the fibre with F = e1.

For every lattice element γ+ in E+
8 with γ2

+ = −2n and α(γ+) = γ−, we may now
consider the class

σγ = σ0 + 2nF + γ+ + γ− .

Note that σ2
γ = −2 and F · σγ = 1.

Each such class σγ corresponds to a section Σγ of the elliptic fibration on X :

Modding out by α gives a rational elliptic surface S . S has a holomorphic
section for each element in E8, who’s class is described by the quotient of σγ .

The base of the elliptic fibration on this S is given by [z1 : z2], so that there are
holomorphic functions y(z), x(z),w(z) for every element of E8.

The double cover giving X affects only the base of the elliptic fibration, i.e.
supplies two values of ξ for each [z1 : z2], so that all of these sections lift to
sections of X .

Eirik Eik Svanes, KCL, ICTP Counting Associatives in a G2 Orbifold
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The action of β on Σγ

We want to show that the Σγ ’s are preserved as sub-manifolds under β:

β is anti-holomorphic: Sending every point on Σγ ⊂ S to its complex conjugate:

β : (y(z), x(z),w(z), z1, z2)→ (y(z), x(z),w(z), z̄1, z̄2) .

Preserving Σγ as a sub-manifold is equivalent to

(y(z), x(z),w(z), z̄1, z̄2) = (y(z̄), x(z̄),w(z̄), z̄1, z̄2) ,

as reversing the orientation, z → z̄ ⇒ end up at a different point on Σγ .

If this was not the case:

(y(z), x(z),w(z), z̄1, z̄2) = (y ′(z̄), x ′(z̄),w ′(z̄), z̄1, z̄2) ,

we can reverse orientation again and get a different representative holomorphic
section representing σγ , contradiction.

Eirik Eik Svanes, KCL, ICTP Counting Associatives in a G2 Orbifold
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Associatives in M
We are now ready to define the associatives in the G2 orbifold M. Consider

Cγ = (Σγ × S1
x1

)
/
α× β .

S1
x1

is untouched under α, while Σγ descends to a section of S.

Σγ is preserved as a sub-manifold of S under β, and we can describe Cγ as an S2

sitting over an interval which degenerates at the ends ⇒ β is seen to produce a
three-manifold with the topology of a sphere S3.

As the Σγ are calibrated by the Kähler form ω1 on X , it is easy to show that

Vol(Cγ) =

∫
Cγ

Φ .

Furermore, ∗Φ|Cγ = 0, and all of the Cγ are associatives of M.

Wrapping Euclidean M2 branes ⇒ superpotential in M-theory.
String duality: Should exist de-singularisation of M that preserves the associatives.

Expect de-singularisation to produce an additional E8 lattice worth of associatives
[Curio-Lüst ’97, Braun et al ’18].
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The type IIA Orbifold
Type IIA limit: Size of S1

x3
is sent to zero. Note: α is the type IIA orientifold.

The type IIA Calabi-Yau is a Voisin-Borcea (VB) orbifold

Z∨ = (X∨ × T 2)
/
β ,

which is the Schoen (split bi-cubic) at an orbifold point. Here T 2 has coordinate
z = x2 + i x1, and X∨ is a K3 surface where we have performed the hyper-Kähler
rotation

ωX → Im(Ω
(2,0)
X∨ )

Im(Ω
(2,0)
X )→ −ωX∨

Re(Ω
(2,0)
X )→ Re(Ω

(2,0)
X∨ ) .

The Calabi-Yau structure forms are

ωZ∨ = ωX∨ + vol(T 2)

Ω
(3,0)
Z∨ = Ω

(2,0)
X∨ ∧ dz .

Eirik Eik Svanes, KCL, ICTP Counting Associatives in a G2 Orbifold
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Special Lagrangian’s

The corresponding calibrated cycles within Z∨ are now given by

C∨γ = (Σγ × S1
x1

)
/
β .

It is easy to check that these cycles are special Lagrangian:∫
Cγ

Im(Ω3,0
Z∨ ) =

∫
C∨
γ

(
Re(Ω

(2,0)
X∨ ) ∧ dx1 + Im(Ω

(2,0)
X∨ ) ∧ dx2

)
= 0 ,

in addition to the Lagrangian condition that ωZ∨ |C∨
γ

= 0.

Again, it is expected that the special Lagrangians persist under an appropriate
de-singularisation of Z∨.

In particular, a small resolution of Z∨ introduces a set of divisors orthogonal to
Σγ ∈ H2(Z∨) ∼= H4(Z∨) ⇒ expect Cγ to remain Lagrangian. Furthermore, a small
resolution does not change the complex structure ⇒ expect Cγ to remain special
Lagrangian.
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The String Junction Picture
X∨ is again elliptically fibered, now with the base represented by σ∨0 = e3 − e3 and

fiber F∨ = e3.

β is now a holomorphic involution of X∨, and we can represent β as a rotation of the
base Σ∨0 by 180 degrees. This fixes one elliptic curve at the “north pole” and one at
the “south pole”.

The elliptic fiber degenerates over 24 points in the base.

String junctions between these points generate the remaining U- and E8-lattices.

A string junction of “charge” [p, q] can start and end at a degeneration of type
[p, q]. p and q determine the SL(2,Z) transformation of fibre around locus.

String junctions can be added, subtracted, deformed, etc, according to
Hanany-Witten rules [Hanany-Witten ’96].

We can separate Σ∨0 into an “eastern” and “western” hemisphere, and go to a point

in moduli space where E+
8 lives on the westerns hemisphere, and E−8 on the eastern.

The classes σγ then correspond to irreducible string junctions. We illustrate this for

the example σ1 = σ0 + 2F + E+
1 + E−1 on the next slides. Here E±1 are simple roots,

i.e.
(
E±1

)2
= −2. Note that β(E+

1 ) = −E−1 .
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σ1 = σ0 + 2F + E+
1 + E−

1

l

oo

:
@  -

The black dot represents a fixed point of β.
The dotted lines are branch cuts corresponding to the monodromy change.
The circle and square represent additional unspecified degeneration loci.
We can assume σ0 wraps the [p, q] = [1, 0] circle and F is of type [p, q] = [0, 1]
at the fixed point so that F · σ0 = 1.
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σ1 = σ0 + 2F + E+
1 + E−

1

l

:A string junction undergoes a monodromy when it encircles a degeneration
locus, or equivalently crosses a branch-cut of such a locus.

Moving a string junction crossing a branch cut across the corresponding
degeneration locus produces a junction which begins (counter-clockwise) or ends
(clockwise) at the locus.
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σ1 = σ0 + 2F + E+
1 + E−

1

The final irreducible junction:

l

oo

:
@  -

Note that this junction is inverted under β.
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The Type IIB Limit
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The type IIB Orbifold

Mirror symmetry to type IIB gives another VB orbifold

Z = (X × T 2)
/
γ ,

where γ acts as α on X , and as z → −z on T 2. Another copy of the Schoen.

The Calabi-Yau structure forms are again

ωZ = ωX + vol(T 2)

Ω
(3,0)
Z = Ω

(2,0)
X ∧ dz .

The corresponding calibrated cycles, dual to the type IIA special Lagrangians are
divisors of the form

Sγ = (Σγ × T 2)
/
γ ,

the divisors Sγ are rational elliptic surfaces at an orbifold point. Euclidean D3 baranes
wrapping these divisors give the type IIB superpotential.
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The type IIB Calabi-Yau

The divisors persist away from the orbifold limit. Indeed, we can describe the smooth
Schoen as a double elliptic fibration:

The blue and red dots denote degeneration loci of the corresponding elliptic fibrations.

Fixing a holomorphic section of one elliptic fibration leaves a calibrated divisor Sγ .

Get two E8 lattices worth of calibrated divisors. However, only one of them are
invariant under the type IIB orientifold.

The orbifold limit corresponds to the point in moduli space where the degeneration
loci of Sγ come together at the fixed points of γ on the base.
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The F-Theory Four-Fold

At the The type IIB orientifold action denoted by κ acts as α on the K3 lattice at the
VB orbifold point

κ x E+
8 E−8 U1 U2 U3

E−8 E+
8 U1 −U2 −U3

,

and acts trivially on z. The type IIB orientifold is hence given by

B = (X × T 2)
/
κ× γ = S × P1 ,

where S = X/κ is a rational elliptic surface, and P1 = T 2/γ.

The divisors Sγ reduce to surfaces of the form Σγ × P1.

The F-theory four-fold is an elliptic fibration over B, and the corresponding calibrated
divisors lift to

Dγ = E → Σγ × P1 .

Wrapping these divisors by Euclidean M5 branes produces the non-perturbative
superpotential of DGW.
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Conclusions and Outlook

Conclusions:

We have given an explicit construction of an infinite number of associatives in a
G2 orbifold.

We conjecture that the G2 orbifold can be de-singularised, giving a smooth
geometry with infinitely many associatives parametrised by an E8 lattice.

Euclidean M2 branes wrapping the associatives gives rise to a non-perturbative
superpotential. This has analogs in type IIA in terms of Euclidean D2 branes
wrapping special Lagrangians, in type IIB in terms of Euclidean D3 branes
wrapping calibrated divisors, and in F-theory in terms of Euclidean M5 branes
wrapping calibrated divisors.

Outlook and work in progress:

The we conjecture the existence of calibrated sub-manifolds in type IIA and
M-theory. Can we make any progress towards such a de-singulairisation?

Can we connect the (smooth) geometry and associatives to the corresponding
TCS construction and associatives conjectured by [Braun etal ’18]?
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Thank you for your attention!
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