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Setting
▶ We work in the exact setting. The ambient manifold is a

Stein Calabi-Yau manifold ω =
√
−1∂∂̄ϕ, with a nowhere

vanishing holomorphic volume form Ω.
▶ In particular Hn(X ) has no torsion, and higher homology

vanishes.
▶ Assume the regularity scale of the Calabi-Yau manifold grows

to +∞ asymptotically near infinity.
▶ The Lagrangians are exact, compact, and almost

calibrated.

▶ Recall exactness means

dλ = ω, dfL = λ|L.

Caveat: we do not require fL to take the same value at self
intersections of immersed Lagrangians. There can be teardrop
curves. Quantitatively almost calibrated means

−π

2
+ ϵ ≤ θ ≤ π

2
− ϵ.
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Background 1: Solomon functional

Jake Solomon introduced a functional (up to universal cover issue)
among a fixed Hamiltonian isotopy class of Lagrangians, with the
property that its first variation for the Hamiltonian deformation H is

δS =

∫
L
HIm(e−i θ̂Ω),

where θ̂ = arg
∫
LΩ.

Consequence: critical points are formally special Lagrangians.
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Solomon functional

Question
Can we make sense of this functional for Lagrangians inside a fixed
derived category class?

Answer: suppose L is isomorphic to L0 in DbFuk , so in particular
homologous. We take C so that ∂C = L− L0. Recall L is an exact
Lagrangian with potential fL.

S(L) =
∫
L
fLIm(e−i θ̂Ω)−

∫
L0

fL0 Im(e−i θ̂Ω)−
∫
C
λ ∧ Im(e−i θ̂Ω).

Remark
(Homological property) Changing C by any exact integration
current does not affect the functional.



Solomon functional

Question
Can we make sense of this functional for Lagrangians inside a fixed
derived category class?
Answer: suppose L is isomorphic to L0 in DbFuk , so in particular
homologous. We take C so that ∂C = L− L0. Recall L is an exact
Lagrangian with potential fL.

S(L) =
∫
L
fLIm(e−i θ̂Ω)−

∫
L0

fL0 Im(e−i θ̂Ω)−
∫
C
λ ∧ Im(e−i θ̂Ω).

Remark
(Homological property) Changing C by any exact integration
current does not affect the functional.



Solomon functional

Question
Can we make sense of this functional for Lagrangians inside a fixed
derived category class?
Answer: suppose L is isomorphic to L0 in DbFuk , so in particular
homologous. We take C so that ∂C = L− L0. Recall L is an exact
Lagrangian with potential fL.

S(L) =
∫
L
fLIm(e−i θ̂Ω)−

∫
L0

fL0 Im(e−i θ̂Ω)−
∫
C
λ ∧ Im(e−i θ̂Ω).

Remark
(Homological property) Changing C by any exact integration
current does not affect the functional.



Background: immersed Floer theory

▶ Typical immersed Lagrangian: union of several Lagrangians
(with transverse intersections).

▶ The Floer degrees at intersection points: (different from
Seidel convention!)

µL,L′(p) =
1
π
(

n∑
1

ϕi + θL(p)− θL′(p)),

where

TpL = Rn ⊂ Cn, TpL
′ = (e iϕ1 , . . . e iϕn)Rn.



Immersed Floer

▶ In Floer theory, Lagrangian branes are boundary conditions of
holomorphic curves. The brane structure (grading, local
system, spin structures) is responsible for extracting counts.

▶ In the immersed case, We need to remember some data at self
intersection points, which encode how holo curves cross from
one branch to another, and how these are weighted.
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immersed Floer theory

▶ The self intersection data at degree one self intersection points
are known as ‘bounding cochains’. To make Floer
cohomology well defined, they need to satisfy the
Mauer-Cartan equation (cancellation of obstructions)

m0 +m1(b) +m2(b, b) + . . . = 0 ∈ CF 2
self−intersection(L, L).

Then mb
1 squares to zero, where

mb
1(x) =

∑
m(b, . . . b, x , b, . . .).

▶ Each self intersection has a Novikov exponent fL+(p)− fL−(p).
Bounding cochains involve only self intersections with
non-negative Novikov exponents. This is needed in Floer
theory to bound the energy of holomorphic discs.



Topological energy of holomorphic discs between L, L′:∫
Σ
u∗ω +

∑
corners

f |+− = 0.

There are two types of corners: self intersections on L, L′, and
CF ∗(L, L′), CF ∗(L′, L) corners.

The positivity of Novikov exponent says that the corners at
bounding cochain elements located at the self intersections have
f |+− ≥ 0. This entails that for fixed CF ∗(L, L′),CF ∗(L′, L) corners,
there is a uniform energy bound independent of the number of
bounding cochain insertions. This is a standard condition in Floer
theory to ensure convergence of things like

m0 +m1(b) +m2(b, b) + . . . .
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▶ In the embedded Lagrangian Fukaya category, one usually
introduces cones for closed morphisms (more generally, twisted
complexes) algebraically. Cones give rise to exact triangles.

▶ In immersed Floer theory, cones/twisted complexes are
tautologically represented by immersed Lagrangians with some
bounding cochain elements supported at the intersection
points.

▶ exact triangles L1 → L → L2 can be recast (roughly) as
saying L is isomorphic to an object supported on L1 ∪ L2.
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Immersed Floer theory

▶ Technical caveat: The DbFuk(X ) I am using does not add in
idempotents. All branes are geometric, but we do not know
the idempotent closedness (If Joyce’s picture is right then it is,
but we don’t need it).



Thomas-Yau semistability:
▶ All Lagrangians involved are exact, almost calibrated,

compact, and unobstructed.
▶ An exact triangle L1 → L → L2 → L1[1] is called destabilizing

if
θ̂1 = arg

∫
L1

Ω > θ̂2 = arg

∫
L2

Ω.

▶ Thomas-Yau semistability means there is no destabilizing
exact triangle.

Question
Assume a DbFuk(X ) class has some quantitatively almost
calibrated representative L0, and assume Thomas-Yau semistability,
can we produce a special Lagrangian?
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Caveats:
▶ The derived Fukaya category needs to include immersed

Lagrangians, but we do not know how much more we need to
include also.

▶ The special Lagrangian may have worse singularities than can
be treated by current Floer theory. It would belong to some
geometric measure theoretic closure, and we are hesitant
whether it can be regarded as a representative of the same
DbFuk class.
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Solomon functional

Question
Why do we want Thomas-Yau semistability?
Answer: This is necessary for the Solomon functional to be
bounded below.

Remark
Remember: the Solomon functional depends not just on the
Lagrangian, but also on the potential fL. In the sketch proof below,
we will modify the potential to make the Solomon functional go to
−∞ in the unstable case.
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▶ All Lagrangians are assumed to be quantitatively almost
calibrated.

▶ Suppose we have an exact triangle L1 → L → L2, then L1 ∪ L2
equipped with some bounding cochain, is an immersed
Lagrangian brane in the same DbFuk class as L.

▶ Subtle point: the bounding cochain element in CF 1(L2, L1) is
subject to the positive Novikov exponent requirement.

▶ Fix the underlying L1, L2. We can fix the potential on L1, and
add arbitrarily large positive constant the potential on L2.
(Adding large negative constant would violate Novikov
positivity).
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▶ The effect of adding constant to the potential of L2 is to
change the Solomon functional by

c Im(e−i θ̂

∫
L2

Ω), c ≫ 1.

▶ In the destabilising case,

θ̂2 = arg

∫
L2

Ω < θ̂ = arg

∫
L
Ω,

the Solomon functional becomes very negative.
▶ Conclusion: Thomas-Yau semistability is (essentially) necessary

for the Solomon functional to be bounded from below.



Main themes of today:
▶ Thomas-Yau semistability is also sufficient for the Solomon

functional to be bounded below (assuming the Lagrangians
are sufficiently smooth).

▶ There is a flat norm topology of Lagrangian integral currents,
so that we can prove precompactness in the variational
program, to produce a minimizer of the Solomon functional in
the geometric measure theoretic closure.

▶ Not known: whether the minimizer is actually special
Lagrangian. (Problem: we lack techniques to produce
Lagrangian competitors.)



Intuition about Lagrangian potential:
▶ The immersed Lagrangian may have several connected

components.
▶ On each component the potential fL has a priori bounded

oscillation.
▶ Lagrangian potentials can be far separated between different

components.



A priori estimates

Crucial assumption: quantitative almost calibratedness. Consider L
in the same homology class as L0.
▶ Total volume bound:

Vol(L) ≤ 1
sin ϵ

∫
L
ReΩ ≤ C .

▶ Volume lower bound for both extrinsic and intrinsic balls: if
P ∈ L, then for r up to the regularity scale of the ambient
manifold,

Vol(B(r) ∩ L) ≥ C−1rn.

(main ingredient: Neves’s application of isoperimetric
theorem+ quantitative almost calibratedness+coarea formula).



A priori estimates

▶ Consequence: no escape to infinity (otherwise L contains a
large ball whose volume is too large).

▶ Any connected component has a lower bound on its volume.
Consequently, the number of connected components is
bounded.

▶ The total volume bound shows only finitely many possibilities
can appear for the homology classes of connected
components of L.
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A priori estimates

▶ The intrinsic distance diameter of any connected
component is bounded. (Otherwise you can inscribe many
disjoint intrinsic balls, which takes up too much volume).

▶ The potential fL oscillates by a bounded amount on each
connected component. (Because dfL = λ|L is bounded.)



▶ Now decompose L according to the range of the potential fL.
We have L = L1 ∪ L2 ∪ . . . LN , such that the range of fL is
connected on each Li , and

sup
Li

fLi < inf
Li+1

fLi+1 .

▶ Novikov positivity requirement implies L is of twisted
complex form. In other words, as a Lagrangian brane L fits into

0 = E0 → E1 → E2 → . . . EN = L,

with exact triangles

Ei−1 → Ei → Li → Ei−1[1].



Solomon functional bounded below

An elementary functional built from period integrals:

S̄ =
N−1∑

1

(sup
Li

fL − sup
Li+1

fL)Im(e−i θ̂

∫
Ei
Ω).

▶ Can show an a priori bound |S − S̄| ≤ C . (The difference
between Solomon functional and the elementary
functional is bounded).

▶ Assuming Thomas-Yau semistability, then

Im(e−i θ̂

∫
Ei
Ω) ≤ 0.

Thus S̄ ≥ 0, so the Solomon functional is bounded from
below.



Geometric measure theory

Main tools in geometric measure theory:
▶ Federer-Fleming compactness under mass bound.
▶ Allard compactness under mass bound+ total variation bound.
▶ Almgren regularity.



Geometric measure theory

▶ We can make weak sense of the Lagrangian potential fL ∈ L∞:
for any test (n − 1)-form χ:∫

L
λ ∧ χ = −

∫
L
fLdχ.

▶ Assuming quantitative almost calibratedness, we have uniform
mass bound, so the underlying Lagrangian integral currents
converge up to subsequence in the flat norm.

▶ Can show: if in a sequence fL is uniformly bounded in L∞,
then the exact Lagrangian condition passes to the limit, and
the Solomon functional is continuous under convergence.



Minimizer

▶ Assuming Thomas-Yau semistability, then we can first modify
the Lagrangian potential in the minimizing sequence, subject
to the Novikov positivity requirement, so that fL becomes
uniformly bounded.

▶ Consequence: the Solomon functional has a minimizer in
the flat norm closure of the quantitatively almost calibrated
Lagrangian branes in the fixed DbFuk class.



Question
Is the minimizer actually special Lagrangian?

▶ Answer: If you know any small Hamiltonian deformations of L
remains within the class of quantitatively almost calibrated
Lagrangians (‘enough competitors’), then from the first
variation formula ∫

L
HIme−i θ̂Ω = 0,

you can conclude it is special Lagrangian.
▶ Problem: small perturbations may no longer satisfy

|θ| ≤ π
2 − ϵ. Do you have any idea?
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Alternative heuristic justification:
▶ Observe the Solomon functional is monotone decreasing in

time for almost calibrated Lagrangians. If it is constant, then
the Lagrangian should be special.

▶ Suppose the LMCF can be extended to suitable Lagrangian
integral currents (or by using some approximation arguments),
then one expects the minimizer of the Solomon functional to
be special Lagrangian.



Question
Can we assign any reasonable brane structure on the (likely
singular) special Lagrangian current?
More precisely,

Question
Is there a suitable notion of distance on the brane structures, such
that every sequence of suitably smooth Lagrangians converging to
the special Lagrangian current, has a Cauchy subsequence?

Question
Do bordism currents have good convergence behaviour under the
weak convergence of Lagrangians?
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