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Special Lagrangian

▶ Let (X , ω,Ω) be a Kähler manifold with a nowhere vanishing
holomorphic volume form. An n-dimensional submanifold (or
some weaker notion, eg. integral current) is called special
Lagrangian, if

ω|L = 0, Im(e−i θ̂Ω)|L = 0.



Volume minimizer

▶ We assume the metric is Calabi-Yau. Then L is a minimal
submanifold.

▶ In fact, any submanifold in the same homology class satisfies∫
L
Re(e−i θ̂Ω) ≤

∫
L
dvol = Vol(L),

saturated precisely by special Lagrangians.

▶ Thus if a special Lagrangian exists then it is an absolute
volume minimizer.
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Almost calibrated Lagrangians

▶ Recall the Lagrangian angle is defined by

Ω|L = e iθdvolL.

Here θ : L → S1 is assumed to lift to R (graded
Lagrangians).

▶ Special Lagrangians have constant phase angle θ = θ̂.
▶ Almost calibrated means the Lagrangian angle is inside the

interval (−π
2 ,

π
2 ). Thus L is automatically graded.

▶ Quantitative almost calibrated means θ ∈ (−π
2 + ϵ, π2 − ϵ).

It implies an apriori volume bound

Vol(L) ≤ 1
sin ϵ

∫
L
ReΩ.



▶ However, the volume minimizer within a given homology class
needs not be a special Lagrangian (Schoen, Wolfson). ‘Direct
minimization of volume is not good enough.’

▶ The known construction techniques: high symmetry, gluing
style constructions, integrable system (reduce to ODE or
Riemann surface), Cartan-Kähler theory.

▶ Existence question is a major open problem in general.



What is Thomas-Yau conjecture?

▶ Thomas-Yau principle: ‘The existence and uniqueness of
unobstructed special Lagrangian branes should be
governed by a stability condition on the (derived)
Fukaya category.’

▶ Thomas-Yau’s main motivations: mirror analogy with stable
vector bundles.

▶ Their main evidence: uniqueness theorem (further developed
by Joyce-Imagi-Santos, Imagi, Abouzaid-Imagi).



Potential significance of the Thomas-Yau philosophy:
▶ Produce special Lagrangians.
▶ Mirror symmetry beyond homological mirror symmetry.
▶ (Far beyond the current technology) special Lagrangian

enumerative invariants?



Caveats:
▶ The notion of stability is meant to be tentative in

Thomas-Yau’s proposal.
▶ The mirror version of stability is not really meant to be

µ-stability for Hermitian-Yang-Mills connections. A slightly
better mirror candidate is deformed Hermitian-Yang-Mills,
though I expect it is also only approximate.



Joyce’s update

The most significant progress since Thomas-Yau was the update by
Dominic Joyce.
▶ Joyce says there should be a Bridgeland stability condition

on the derived Fukaya category, such that the semistable
objects of given phase θ̂ are represented by Lagrangian branes
with arbitrarily small phase oscillation |θ − θ̂| ≪ 1. (Morally,
represented by special Lagrangian branes, although these may
be too singular).

▶ Joyce says the way to construct this stability condition is to
run Lagrangian mean curvature flow with surgery, and take
the infinite time limit.

▶ Joyce says the role of unobstructed brane structure and the
Fukaya category machinery is to rule out the worst singularities
in the flow.
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Joyce’s picture seems to have rather strong consequences:
▶ The derived Fukaya category is supposedly idempotent closed

automatically.

▶ The subcategory generated by almost calibrated Lagrangians is
supposedly the heart of a bounded t-structure, and in
particular is an abelian category, and generates the entire
DbFuk .

▶ Joyce hopes the Lagrangian mean curvature flow only
encounters finitely many surgeries.
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Question: Can we formulate the Thomas-Yau conjecture in a
version circumventing these strong predictions?



Thomas-Yau conjecture

My attempted interpretation of Thomas-Yau:
▶ All Lagrangian branes involved are almost calibrated and

unobstructed by assumption. They can be immersed (or
perhaps more singular).

▶ We say L is Thomas-Yau semistable if for any exact triangle
of almost calibrated branes

L1 → L → L2 → L1[1],

we have the phase angle inequality

θ̂1 =

∫
L1

Ω ≤ θ̂2 =

∫
L2

Ω.



Thomas-Yau conjecture

Thomas-Yau conjecture: consider the quantitatively almost
calibrated Lagrangians inside a given DbFuk(X ) class, which is
nonempty by assumption. There is a special Lagrangian inside the
geometric measure theoretic closure, if and only if the DbFuk(X )
class is Thomas-Yau semistable.


