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Weak SYZ conjecture

(Weak SYZ conjecture) Prove for a suitable class of Calabi-Yau
manifolds near the large complex structure limit that a special
Lagrangian T n-fibration exists in the generic region.

I SYZ is physically motivated, and admits many interpretations.
The strong version asserts that the SLag fibration exists
globally; this would be much harder or perhaps false (cf.
Joyce). Some people adopt much softer viewpoints (algebraic,
symplectic, topological, mirror symmetry).
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Weak SYZ conjecture

I ‘Large complex structure limit’ means a polarized algebraic
family of n-dim CY manifolds X → S \ {0} over a punctured
algebraic curve, whose ‘essential skeleton’ has dimension n.
There are small variations on the definitions. For instance, it is
common to require the family to have a semistable snc model
X → S , as we will do.

I The essential skeleton can be viewed as a simplicial subset of
the dual complex of any snc model of the degenerating family.
It is an important birational invariant independent of the snc
models, and you can discover it yourself if you try to compute
CY volume integrals. (More on this later).

I ‘Generic’ should at least mean a subset of large percentage of
the measure. (Notice on a CY manifold there is a canonical
measure up to scale). This talk is orthogonal to some of my
previous talks about the metric model for the nongeneric
regions in the 3-fold case.
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Weak SYZ conjecture: precursors

I HyperKähler case and Abelian variety fibrations (cf. Tosatti et
al., Gross-Wilson). These are closely related to SYZ but not
polarized.

I Nonarchimedean pluripotential theory developed by Boucksom
et al. This has strong analogy with Kähler geometry, eg. there
is a notion for psh functions, MA measure, and an analogue of
the CY theorem. The technical foundations are however very
different: this NA story is built on birational geometry,
intersection theory, vanishing theorems etc, rather than
analysis of differential operators. For instance, the NA MA
equation is a priori not even a PDE, although conjecturally it
should be equivalent to a real MA equation.
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Weak SYZ conjecture

My previous work on the Fermat family:

Xs = {Z0Z1 . . .Zn+1 + e−s
n+1∑
0

Zn+2
i = 0}, s � 1.

The result was that weak SYZ conjecture holds in this special case,
for some subsequence of large enough s. The essential tool is
complex pluripotential theory. No NA geometry was used in that
work, and instead there was some combinatorial argument
exploiting the discrete symmetry.



Weak SYZ conjecture: main theorem

More recently I showed

Theorem
Given a polarised algebraic degeneration of Calabi-Yau manifolds,
near the large complex structure limit, then assuming some
conjecture in NA geometry, the weak SYZ conjecture will follow.
Good features:
I General
I No need for subsequence
I Uniqueness of metric limit in some sense
I Clean approach, no messy combinatorics
I The NA conjecture is purely algebraic



Discussions

Unsatisfactory feature:
I No known way to verify the NA conjecture, even for K3

surfaces or the Fermat family (hopefully will change soon!)
I The region with SYZ fibration in my construction is not

connected (roughly because I did not assume anything about
codimension 1 faces of the essential skeleton). (In contrast, in
my previous work on the Fermat case, we do know this
connectedness).

The plan for today is to first push as far as possible without really
talking about NA geometry, so that you appreciate what we need
for the purpose of SYZ, and then mention some basic features of
NA so that it feels less arcane.
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Weak SYZ conjecture: NA assumption

For the benefit of those who already know some NA geometry, the
conjecture I am assuming is the following:

Consider the Boucksom-Favre-Jonsson solution to the NA Calabi
conjecture, represented by a potential function φ on the Berkovich
space X an. There exists a large enough semistable snc model X ,
(whose dual complex ∆X necessarily contains the essential skeleton
Sk(X )), such that over the n-dimensional open faces of Sk(X ), the
solution φ factorizes through the retraction map X an → ∆X .
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Weak SYZ conjecture: NA assumption

I Morally, this is saying the information of the NA CY solution is
no more than the value on the essential skeleton. (The
assumption above is technically weaker).

I Christian Vilsmeier has a recent result which says the above
assumption implies a real MA equation on φ on the open
n-dimensional faces of Sk(X ).



Easy complex geometry

Basic feature of the complex geometry: near the large complex
structure limit, the generic region (in the measure theoretic sense)
is locally modelled on (C∗)n.

Let’s compute the CY volume form. Given a semistable snc model
X → S , with a holomorphic volume form Ω, which can only vanish
somewhere on the central fibre. The holomorphic volume form on
the CY manifolds Xt is

Ωt = Ω/dt.

The semistable snc condition means X → S locally looks like

t = z0 . . . zk , k ≤ n.

The zi are the local defining functions of the components of the
central fibre, which are divisors on the total space X .
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Easy complex geometry

Now using

Ω ∼ za0
0 . . . zakk dz0 ∧ dz1 ∧ . . . dzn, ai ≥ 0.

we see

Ωt ∼ za0
0 . . . zakk d log z1 ∧ . . . d log zk ∧ dzk+1 . . . dzn.

You can compute the volume integral
∫
Xt

Ωt ∧ Ωt in polar
coordinates in these charts. You easily see that the dominant
contribution comes from the case a0 = . . . = 0, in which case the
local volume is O(| log |t||k). The large complex structure limit says
max k = n. This means the generic region is modelled on

t = z0 . . . zn,

with holomorphic volume form ∼
∏n

1 d log zi .



Easy complex geometry

I Formally, the dual complex ∆X associated to a snc model X is
the simplicial complex whose vertices vi correspond to the
components Ei of the central fibre, and we attach a simplex
with vertices vi for i ∈ J if ∩i∈JEi 6= ∅.

I The condition a0 . . . = 0 = min ai precisely singles out the
essential skeleton from the dual complex of the snc model.
The advantage is that the snc model is highly nonunique (you
can always blow up further), but Sk(X ) is a well defined
birational invariant. This is not surprising because the CY
volume measure does not care about the birational transform
of the central fibre.

I There is a ‘hybrid topology’ in which you can remove the
central fibre X0 from X and replace it with ∆X . Intuitively, the
measure theoretic limit of the family is highly non-algebraic. (If
you follow this idea further, you will discover NA geometry...)
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Semiflat metric and SLag

I CY metrics have an important dimensional reduction. Take a
function φ on (a torus invariant subset of) (C∗)n, so
φ = u ◦ Log. Then φ is psh iff u is convex, and φ satisfies
complex MA iff u satisfies real MA.

Metrics from this dim reduction are called semiflat, because
the restriction to torus fibres are flat. The metrics on fibres
can vary.
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Semiflat metric and SLag

Really we want to prove that on local charts in the generic region
the metric is C∞ approximately

ωt ≈
√
−1

| log |t||2
∑ ∂2u

∂xi∂xj
d log z i ∧ d logz j .

Here xi = log |zi |
log |t| . This scaling convention of the Kähler class is

compatible with a finite diameter Gromov Hausdorff limit as t → 0.

The SLag fibration in such regions is more or less for free; it is a
small deformation of the log map. The construction uses no more
than McLean deformation theory; then you check the independence
of the chart.



Reduction to potential estimate

I We have argued that SLag fibration is a consequence of C∞

metric asymptote. Now we claim it is enough to prove a
C 0-estimate on the potential in the generic region.

I This means we want the local potential φt to satisfy

|φt − u| → 0, t → 0,

where u solves the real MA equation det(D2u) = const.
I Solutions of real MA have automatically very good regularity,

so u is C∞ if we discard some subset with Hausdorff
(n − 1)-measure zero.



Reduction to potential estimate

This reduction uses a highly nontrivial result of Savin:
Savin’s small perturbation theorem roughly says that for a large
class of fully nonlinear 2nd order elliptic equation, including
complex MA, if u is a smooth solution in B2, and v is another
(viscosity) solution with ‖u − v‖C0 � 1, then v has C∞ bounds
and u − v is C∞-small.

We apply Savin to the local universal cover of the annuli in (C∗)n.
The effect is that the high regularity of u is transferred to the CY
local potential φt for small t.
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Potential estimate: two strategies (To use NA, or not to use
NA, that is the question...)

The strategies of my two papers bifurcate on the potential estimate.
I Either you can produce u by arguing a priori that φt converge

to a subsequential limit, and argue that the limit satisfies real
MA;

I Or you can produce the limit u from some other methods (eg.
NA geometry), and argue try to compare φt with u.



Pluripotential theory toolbox

How do you estimate potentials?
I Given a psh function, you can use mean value theorem to

achieve upper bounds.
I The core of Kolodziej’s method is to achieve lower bounds on

Kähler potentials, given some integral bound on the volume
density. Technically, the main thing you need is a Skoda type
inequality. This holds even in highly degenerate settings, and I
verified a uniform version for arbitrary polarized algebraic
degenerations of Calabi-Yau manifolds in an auxiliary paper.
Unlike the upper bound, this lower bound requires a global
argument.



Pluripotential theory toolbox

How do you compare potentials? On a fixed Kähler manifolds,
given two potentials φ, ψ with density bounds, with suitable
normalisation,
I If you know φ− ψ is small in L1, you can conclude the

smallness in L∞.
I If you know the two volume densities are close in L1, you can

also conclude φ− ψ is small in L∞.

There are uniform versions of these in degenerate settings.

I emphasize that you need the two potentials to be globally defined,
even though you just want to compare them in the generic region.
Global positivity is hard to achieve!
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Strategy I: a priori limit

In my strategy I, no NA geometry is needed, and I produce u a
priori as follows:
I On (C∗)n, if you have a psh function, you can average in the

T n direction to produce a convex function on Rn. A priori the
deviation between the two functions is small in a very strong
integral sense. Intuitively, ‘near the large complex structure
limit any Kähler potential looks almost convex’.

I Patch together the convex functions into a global Kähler
potential. This step is nontrivial and is the place to really use
the Fermat hypersurfaces via tropical combinatorics. Global
positivity is the key difficulty here.



Strategy I: a priori limit

I Then one appeals to pluripotential theory to argue the local
CY potentials are C 0-close to convex functions.

I Use uniform Lipschitz bounds on convex functions to extract
subsequential limit u.

I Argue u satisfies real MA.



Strategy II: limit via NA geometry

Regardless of where u comes from, we want the following features:
I The function u should solve the real MA equation.
I There should be a global Kähler potential ψ on Xt for |t| � 1,

which is C 0-close to u on the generic region of Xt . I
emphasize that ‘preserving positivity’ is the key difficulty.

I Morever, we want the volume density of ψ to be close to being
CY in some L1-sense. This property is not independent, and in
some sense can be arranged by a further regularisation of
solutions to the first two requirements.



Strategy II: limit via NA geometry

If we have these three properties the C 0-convergence of local CY
potentials to u can be deduced by the pluripotential theory
machinery.

The difficulty here is that the manifolds are highly degenerate, and
technically I need to adapt Kolodziej’s argument to a version where
the two potentials being compared appear asymmetrically (to
address the difficulty that ψ does not have good density bound in
the nongeneric region).
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Why NA? And what is it?

I The main unsatisfactory feature of snc models is that they are
highly nonunique, because you can keep blowing up to get
higher and higher models. NA geometry from one perspective
means to consider all snc models of a given degeneration
family all at once. More precisely, if one model dominates
another X ′ → X , then there is a natural retraction map
∆X ′ → ∆X , and the Berkovich space X an is the inverse limit
of these dual complexes.

I There are two comparison maps between X an and ∆X : an
embedding map ∆X → X an and a retraction map X an → ∆X .
One thinks of dual complexes as finite approximations of X an.



Why NA? And what is it?

I There is a GAGA principle which means the concept of line
bundles and sections on X an are equivalent to the usual
algebro-geometric notions for X base changed to the formal
disc.

I There is an analogue for metrics on line bundles, and a subtle
analogue for psh functions/semipositive metrics. There are
several equivalent definitions; the most intuitive one is to say
that continuous semipositive metrics are precisely those that
arise as C 0-limits of (the NA analogue of) Fubini-Study
metrics.

I There is a hybrid topology which allows one to say Xt

converge to X an as t → 0.
I For the purpose of SYZ it is important that semipositive

metrics on X an can be grafted to Xt up to C 0-small error, and
preserving positivity. This uses Fubini-Study approximation.



Why NA? And what is it?

I There is a theory of NA MA measures. The standard definition
is a little counterintuitive at first sight, as it is based on
intersection theory, not differential operators. However, its
formal properties are very similar to the usual complex MA
operator.

I If the potential factors through the retraction map to the dual
complex of some semistable snc model, then it is known that
the NA MA measure agrees with the real MA measure. This
result has a localized version.

I Boucksom-Favre-Jonsson proved the NA version of the Calabi
conjecture.



Why NA?

I To conclude, if we assume the B-F-J solution factors through
some retraction map at least over the n-dim open faces of
Sk(X ), then we would get a solution of real MA equation, and
crucially this can also be grafted to Xt up to C 0-error while
preserving positivity.

I These properties are sufficient to imply the weak SYZ
conjecture.
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For the future

I In my opinion the main merit of the NA formalism is to
provide an answer to the question: what is the tropical limit
notion for Kähler potentials?

I However, it is difficult to check in practice, and not elementary
enough. A more elementary version of the question is: what is
a convex function on a polyhedral set?

I My Fermat hypersurface paper depends on an ad hoc answer
to this question via tropical combinatorics. One may expect a
general answer is related to the NA conjecture I assumed.



For the future

One also would like to know beyond the generic region, and beyond
the large complex structure limit case. Deeper study of the B-F-J
solution may be useful for these questions:
I What can we say about singularities of the B-F-J solution? eg.

Does it have Hausdorff codimension 2? Does it agree with the
standard topology of ∆X ? These are highly relevant for the
Kontsevich-Soibelman conjecture, and for the strong SYZ
conjecture (that asks for the SYZ fibration to exist globally,
not just generically).

I What about the case where Sk(X ) has dimension 0 < m < n?
What geometric information does the NA MA equation give?
(cf. the last chapter in my paper for the conjectural picture).
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