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Two variational problems in geometry

Given a Riemannian manifold M, we are interested in minimizing

1. The Yang–Mills functional

connection A 7→
∫
M
|FA|2

2. The volume functional

submanifold Q 7→ volume(Q)

Classical examples

1. Electromagnetism; Hodge theory
2. Geodesics; minimal surfaces



Special holonomy manifolds (Calabi–Yau, G2, Spin(7)) have natural
calibrations, i.e. differential forms φ ∈ Ωk(M) such that

dφ = 0 and φ(e1, . . . , ek) ≤ vol(e1, . . . , ek)

1. Instantons: connections A satisfying

FA + ∗(FA ∧ φ) = 0 =⇒ A is a Yang–Mills connection

2. Calibrated submanifolds: Q ⊂ M satisfying

φ|Q = volQ =⇒ Q is a minimal submanifold

Calabi–Yau: holomorphic curves and surfaces, special Lagrangians
G2: associative and coassociative submanifolds
Spin(7): Cayley submanifolds



The Euler–Lagrange equations for the Yang–Mills and volume
functionals are non-linear generalizations of the Laplace equation

∆f = 0.

Instantons and calibrated submanifolds obey simpler, first order
elliptic differential equations.

Analogy
Cauchy–Riemann equation ∂f = 0 or Dirac equation /Df = 0

=⇒ ∆f = 0.



Motivations from low dimensions

1. Invariants of manifolds: Donaldson defined topological
invariants of 4–manifolds by "counting" instantons

FA + ∗FA = 0.

More generally, there is Donaldson–Floer topological field theory

dimension type of invariant
4 number
3 vector space
2 category



2. Algebraic geometry: Atiyah and Bott related flat connections

FA = 0

to Mumford’s theory of holomorphic vector bundles on curves.

3. Symplectic geometry: Monopoles on symplectic 4–manifolds
correspond to pseudo-holomorphic curves, by work of Taubes.

4. Quantum field theory: Chern–Simons theory and quantum
invariants of knots, Seiberg–Witten QFT, S–duality



We want to find similar beautiful structures in higher dimensions,
for Calabi–Yau, G2, and Spin(7) manifolds.

I will mention three fascinating but challenging problems.



1. Invariants

Problem (Donaldson–Thomas, 1998)
Define invariants by counting instantons / calibrated submanifolds.

dimension holonomy type of invariant
8 Spin(7) number
7 G2 vector space
6 SU(3) category



Main difficulties
1. Bubbling phenomenon (Uhlenbeck): for a sequence (An) of

instantons, energy |FAn |2 can concentrate as n→∞ along
codimension 4 subset S ⊂ M, which is calibrated (Tian)

=⇒ Gauge theory and calibrated geometry are closely related!

2. Singularities of instantons
3. Singularities of calibrated cycles

Interesting foundational questions in analysis: elliptic differential
equations, geometric measure theory (cf. DeLellis, Naber, . . .)



2. Algebraic geometry

Donaldson–Thomas invariants were rigorously constructed for
Calabi–Yau three-folds using sheaf theory.

instanton ⇐⇒ stable holomorphic bundle ⇐⇒ sheaf of sections

calibrated surface ⇐⇒ holomorphic curve ⇐⇒ ideal sheaf

There is rich algebraic theory of moduli spaces of sheaves!

Connections with mirror symmetry and representation theory

Conjecture (Maulik–Nekrasov–Okounkov–Pandharipande, 2003)
Donaldson–Thomas invariants of Calabi–Yau three-folds are
equivalent to Gromov–Witten invariants:

GWA(u) = DT red
A (q) q = −e iu



3. Symplectic geometry

Gromov–Witten invariants depend only on the symplectic structure.

Problem
Find a symplectic interpretation of Donaldson–Thomas invariants.

We should count instantons and embedded pseudo-holomorphic
curves as in Taubes’ work on symplectic 4–manifolds.

This approach can help us understand better the MNOP conjecture
(cf. proof of Gopakumar–Vafa conjecture by Ionel–Parker, 2013)
and shed light on higher rank invariants.



Some recent developments

1. Constructions
Instantons on known G2 and Spin(7) manifolds (Walpuski, Sá Earp,
Menet, Nordström, Tanaka); similarly for calibrated submanifolds
(discussed in Mark Haskins’ talk)

2. Analytic foundations
Gluing theorems for associatives (Joyce, Nordström) and instantons
(Walpuski); orientations (Cao, Joyce, Upmeier, Tanaka); new ideas
on counting problems (Joyce, Haydys, Walpuski)

3. Singularities
Local models (Bryant, Li, Joyce); deformation theory (Wang,
Waldron); relations to algebraic geometry (Jacob, Walpuski, Chen,
Sun), singularities in gauge theory (Haydys, Walpuski, Doan)

4. Dualities
G2 fibrations (Li, Donaldson, Scaduto), twisted connected sums
(Acharya, Braun, Svanes, Valandaro)



Instantons → calibrated submanifolds → monopoles

Donaldson–Segal, Haydys, Walpuski

(M7, φ) = G2–manifold

When φ varies, G2 instantons can bubble along associative S ⊂ M
=⇒ counting G2 instantons does not yield invariants of M

Idea
Count also associatives S with weights. Schematically,

DT(M, φ) =
∑

A instanton on (M,φ)

sign(A) +
∑

S⊂M calibrated by φ

w(S , φ)

We want w(S , φ) to change by ±1 when bubbling along S happens.



Haydys and Walpuski proposed to construct w(S , φ) by counting
monopoles, solutions to generalized Seiberg–Witten equations on S .

This proposal connects special holonomy geometry with problems
in low-dimensional topology, especially with

1. work of Taubes on flat SL(2,C) connections,
related 3–manifolds invariants of Abouzaid–Manolescu;

2. new approaches to Khovanov homology via gauge theory by
Witten and via symplectic geometry by Seidel–Smith.



Counting associatives
joint work with Thomas Walpuski

The proposal is interesting even when we ignore instantons.
The naive count of associatives is not an invariant as φ varies.
We expect that these transitions can occur:

1. S1, S2  S1#S2 (Joyce–Nordström crossing)
2. S1, S2  S3 (Harvey–Lawson smoothing of cone singularities);
3. S1  kS2 for k > 1 (degeneration to multiple cover).

The idea is to equip each S with a weight given by counting
solutions to generalized Seiberg–Witten equations on S .
For the usual Seiberg–Witten invariant (provided b1 > 1):

w(S1#S2) = 0
w(S1) + w(S2) = w(S3)



Multiple covers are harder. To understand this better, consider a
dimensional reduction of this proposal to S1×CY3.



Towards symplectic invariants

M = Calabi–Yau three-fold, or symplectic 6–manifold with c1 = 0

Theorem (Doan–Walpuski)
For a generic compatible J there are finitely many closed,
embedded J–holomorphic curves in a given class A ∈ H2(M,Z).
If A is primitive, a signed count of genus g curves ng ,A does not
depend on J and fits into the Gopakumar–Vafa formula. For g
large, ng ,A = 0 (finiteness part of the GV conjecture).

Proof uses work / ideas of DeLellis et al., Taubes, Wendl, Zinger.



If A ∈ H2(M,Z) is divisible, the naive count depends on J.

Suppose A = 2B with B primitive.
As Jt varies, we can have [C̃t ] = A and C̃t → 2C with [C ] = B .

Consider

DTA(M, J) =
∑
[C̃ ]=A

SW1(C̃ ) +
∑

[C ]=B

SW2(C , J)

SW1(C ) = count of solutions to the abelian vortex equations on C

SW2(C , J) = count of solutions to non-abelian vortex equations
similar to Hitchin’s equations and depending on J

∂̄J,Aξ = 0, ∂̄Aα = 0, ∂̄Aβ = 0
[ξ ∧ ξ] + α · β = 0
i ∗ FA + [ξ ∧ ξ∗] + αα∗ − β∗β = 0



SW2(C , J) changes whenever there exists a J–holomorphic section

C → Sym2NC/M .

This is Hitchin’s spectral curve construction:

ξ ∈ Γ(N ⊗ EndE )

[ξ ∧ ξ] = 0,
[ξ ∧ ξ∗] = 0.

Such a section can be deformed to a J–holomorphic curve C̃ with
[C̃ ] = 2B = A. Thus, DTA(M, J) should not depend on J.

To prove invariance, we need to study carefully the compactness
problem for these equations (following Taubes, Walpuski–Zhang).



After a long journey we come back to where we started:
gauge theory on Riemann surfaces.

Michael Atiyah and Raoul Bott


