From gauge theory to calibrated geometry and back

Aleksander Doan

Third Annual Meeting of the Simons Collaboration on Special Holonomy in Geometry, Analysis, and Physics

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Two variational problems in geometry

Given a Riemannian manifold M, we are interested in minimizing

1. The Yang–Mills functional

connection
$$A\mapsto \int_M |F_A|^2$$

2. The volume functional

submanifold $Q \mapsto \operatorname{volume}(Q)$

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ う へ つ ・

Classical examples

- 1. Electromagnetism; Hodge theory
- 2. Geodesics; minimal surfaces

Special holonomy manifolds (Calabi–Yau, G₂, Spin(7)) have natural calibrations, i.e. differential forms $\phi \in \Omega^k(M)$ such that

$$\mathrm{d}\phi = 0$$
 and $\phi(e_1, \ldots, e_k) \leq \mathrm{vol}(e_1, \ldots, e_k)$

1. Instantons: connections A satisfying

 $F_A + *(F_A \wedge \phi) = 0 \implies A \text{ is a Yang-Mills connection}$

2. Calibrated submanifolds: $Q \subset M$ satisfying

 $\phi_{|Q} = \operatorname{vol}_{Q} \implies Q$ is a minimal submanifold

Calabi–Yau: holomorphic curves and surfaces, special Lagrangians G_2 : associative and coassociative submanifolds Spin(7): Cayley submanifolds

The Euler–Lagrange equations for the Yang–Mills and volume functionals are non-linear generalizations of the Laplace equation

$$\Delta f = 0.$$

Instantons and calibrated submanifolds obey simpler, first order elliptic differential equations.

Analogy

Cauchy–Riemann equation $\overline{\partial}f = 0$ or Dirac equation $\not D f = 0$

$$\implies \Delta f = 0.$$

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ う へ つ ・

Motivations from low dimensions

1. Invariants of manifolds: Donaldson defined topological invariants of 4-manifolds by "counting" instantons

$$F_A + *F_A = 0.$$

More generally, there is Donaldson-Floer topological field theory

dimension	type of invariant
4	number
3	vector space
2	category

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

2. Algebraic geometry: Atiyah and Bott related flat connections

$$F_A = 0$$

to Mumford's theory of holomorphic vector bundles on curves.

- 3. Symplectic geometry: Monopoles on symplectic 4-manifolds correspond to pseudo-holomorphic curves, by work of Taubes.
- 4. Quantum field theory: Chern–Simons theory and quantum invariants of knots, Seiberg–Witten QFT, *S*–duality

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ う へ つ ・

We want to find similar beautiful structures in higher dimensions, for Calabi–Yau, G_2 , and Spin(7) manifolds.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

I will mention three fascinating but challenging problems.

1. Invariants

Problem (Donaldson-Thomas, 1998)

Define invariants by counting instantons / calibrated submanifolds.

dimension	holonomy	type of invariant
8	Spin(7)	number
7	G ₂	vector space
6	SU(3)	category

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Main difficulties

1. Bubbling phenomenon (Uhlenbeck): for a sequence (A_n) of instantons, energy $|F_{A_n}|^2$ can concentrate as $n \to \infty$ along codimension 4 subset $S \subset M$, which is calibrated (Tian)

 \implies Gauge theory and calibrated geometry are closely related!

- 2. Singularities of instantons
- 3. Singularities of calibrated cycles

Interesting foundational questions in analysis: elliptic differential equations, geometric measure theory (cf. DeLellis, Naber, ...)

2. Algebraic geometry

Donaldson–Thomas invariants were rigorously constructed for Calabi–Yau three-folds using sheaf theory.

 $\label{eq:stanton} \stackrel{}{\longleftrightarrow} \mathsf{stable} \ \mathsf{holomorphic} \ \mathsf{bundle} \ \Longleftrightarrow \ \mathsf{sheaf} \ \mathsf{of} \ \mathsf{sections} \\ \mathsf{calibrated} \ \mathsf{surface} \ \Longleftrightarrow \ \mathsf{holomorphic} \ \mathsf{curve} \ \Longleftrightarrow \ \mathsf{ideal} \ \mathsf{sheaf} \\ \mathsf{sheaf} \$

There is rich algebraic theory of moduli spaces of sheaves!

Connections with mirror symmetry and representation theory

Conjecture (Maulik–Nekrasov–Okounkov–Pandharipande, 2003) Donaldson–Thomas invariants of Calabi–Yau three-folds are equivalent to Gromov–Witten invariants:

$$GW_A(u) = DT_A^{\mathrm{red}}(q) \qquad q = -e^{iu}$$

3. Symplectic geometry

Gromov-Witten invariants depend only on the symplectic structure.

Problem

Find a symplectic interpretation of Donaldson-Thomas invariants.

We should count instantons and embedded pseudo-holomorphic curves as in Taubes' work on symplectic 4-manifolds.

This approach can help us understand better the MNOP conjecture (cf. proof of Gopakumar–Vafa conjecture by lonel–Parker, 2013) and shed light on higher rank invariants.

Some recent developments

1. Constructions

Instantons on known G_2 and Spin(7) manifolds (Walpuski, Sá Earp, Menet, Nordström, Tanaka); similarly for calibrated submanifolds (discussed in Mark Haskins' talk)

2. Analytic foundations

Gluing theorems for associatives (Joyce, Nordström) and instantons (Walpuski); orientations (Cao, Joyce, Upmeier, Tanaka); new ideas on counting problems (Joyce, Haydys, Walpuski)

3. Singularities

Local models (Bryant, Li, Joyce); deformation theory (Wang, Waldron); relations to algebraic geometry (Jacob, Walpuski, Chen, Sun), singularities in gauge theory (Haydys, Walpuski, Doan)

4. Dualities

 ${\sf G}_2$ fibrations (Li, Donaldson, Scaduto), twisted connected sums (Acharya, Braun, Svanes, Valandaro)

Instantons \rightarrow calibrated submanifolds \rightarrow monopoles

Donaldson-Segal, Haydys, Walpuski

 $(M^7, \phi) = G_2$ -manifold

When ϕ varies, G₂ instantons can bubble along associative $S \subset M$ \implies counting G₂ instantons does not yield invariants of M

Idea

Count also associatives S with weights. Schematically,

$$\mathsf{DT}(M,\phi) = \sum_{A \text{ instanton on } (M,\phi)} \operatorname{sign}(A) + \sum_{S \subset M \text{ calibrated by } \phi} w(S,\phi)$$

We want $w(S, \phi)$ to change by ± 1 when bubbling along S happens.

Haydys and Walpuski proposed to construct $w(S, \phi)$ by counting monopoles, solutions to generalized Seiberg–Witten equations on S.

This proposal connects special holonomy geometry with problems in low-dimensional topology, especially with

- work of Taubes on flat SL(2, C) connections, related 3-manifolds invariants of Abouzaid-Manolescu;
- 2. new approaches to Khovanov homology via gauge theory by Witten and via symplectic geometry by Seidel-Smith.

Counting associatives joint work with Thomas Walpuski

The proposal is interesting even when we ignore instantons. The naive count of associatives is not an invariant as ϕ varies. We expect that these transitions can occur:

- 1. S_1 , $S_2 \rightsquigarrow S_1 \# S_2$ (Joyce–Nordström crossing)
- 2. S_1 , $S_2 \rightsquigarrow S_3$ (Harvey–Lawson smoothing of cone singularities);
- 3. $S_1 \rightsquigarrow kS_2$ for k > 1 (degeneration to multiple cover).

The idea is to equip each S with a weight given by counting solutions to generalized Seiberg–Witten equations on S. For the usual Seiberg–Witten invariant (provided $b_1 > 1$):

$$w(S_1 \# S_2) = 0$$

 $w(S_1) + w(S_2) = w(S_3)$

Multiple covers are harder. To understand this better, consider a dimensional reduction of this proposal to $S^1 \times CY3$.

▲□▶ ▲圖▶ ▲ 臣▶ ★ 臣▶ 三臣 … 釣�?

Towards symplectic invariants

M = Calabi–Yau three-fold, or symplectic 6–manifold with $c_1 = 0$

Theorem (Doan–Walpuski)

For a generic compatible J there are finitely many closed, embedded J-holomorphic curves in a given class $A \in H_2(M, \mathbb{Z})$. If A is primitive, a signed count of genus g curves $n_{g,A}$ does not depend on J and fits into the Gopakumar–Vafa formula. For glarge, $n_{g,A} = 0$ (finiteness part of the GV conjecture).

Proof uses work / ideas of DeLellis et al., Taubes, Wendl, Zinger.

If $A \in H_2(M, \mathbb{Z})$ is divisible, the naive count depends on J.

Suppose A = 2B with B primitive. As J_t varies, we can have $[\tilde{C}_t] = A$ and $\tilde{C}_t \to 2C$ with [C] = B.

Consider

$$DT_A(M,J) = \sum_{[\tilde{C}]=A} SW_1(\tilde{C}) + \sum_{[C]=B} SW_2(C,J)$$

 $SW_1(C) =$ count of solutions to the abelian vortex equations on C $SW_2(C, J) =$ count of solutions to non-abelian vortex equations similar to Hitchin's equations and depending on J

$$\begin{cases} \bar{\partial}_{J,A}\xi = 0, \quad \bar{\partial}_{A}\alpha = 0, \quad \bar{\partial}_{A}\beta = 0\\ [\xi \wedge \xi] + \alpha \cdot \beta = 0\\ i * F_{A} + [\xi \wedge \xi^{*}] + \alpha \alpha^{*} - \beta^{*}\beta = 0 \end{cases}$$

 $SW_2(C, J)$ changes whenever there exists a J-holomorphic section

$$C \to \mathrm{Sym}^2 N_{C/M}.$$

This is Hitchin's spectral curve construction:

$$\xi \in \Gamma(N \otimes \operatorname{End} E)$$

 $[\xi \wedge \xi] = 0,$
 $[\xi \wedge \xi^*] = 0.$

Such a section can be deformed to a *J*-holomorphic curve \tilde{C} with $[\tilde{C}] = 2B = A$. Thus, $DT_A(M, J)$ should not depend on *J*.

To prove invariance, we need to study carefully the compactness problem for these equations (following Taubes, Walpuski–Zhang).

After a long journey we come back to where we started: gauge theory on Riemann surfaces.

Michael Atiyah and Raoul Bott