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Survey of topology of TCS and XTCS

Twisted connected sums generate huge numbers of closed G2-manifolds,
many 2-connected.

Crowley, Corti, Goette, Haskins, N, Pacini, Wallis

By now understand pretty much all there is to know about the topology of
the underlying manifolds and the homotopy classes of the G2-structures in
the 2-connected case.

Crowley-Goette-N

Extra-twisted connected sums are less plentiful, many still 2-connected, but
topology more complicated—in interesting ways.

One aspect of the G2-structure well understood analytically.

In some cases we understand basic topological invariants, which sometimes
is enough to pin down diffeomorphism type, but still much left.



Work in progress

For a class of extra-twisted connected sums “dual to simply-connected”,
there seems to be a way to construct a coboundary to compute all invariants
(that are relevant in the 2-connected case).

Lennon, Harrison, McCartney, Starkey (1965)
Help! I need somebody
Help! Not just anybody
Help! You know I need someone

...who understands the topology of resolutions of a C3/Zk -bundle over a
Riemann surface
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1. TCS and primary invariants
Twisted connected sum outline

Kovalev (2003), Corti-Haskins-N-Pacini (2014).
Ingredients:

� Closed simply-connected Kähler 3-folds Z+, Z−

� Σ± ⊂ Z± anticanonical K3 divisors ([Σ] = c1(Z )), normal bundle trivial

� r : Σ+ → Σ− diffeomorphism

Let V± := Z±\ tubular neighbourhood Σ± ×∆; so ∂V± = Σ± × S1.
Form simply-connected M7 by gluing boundaries of V+ × S1 to V− × S1 by

Σ+ × S1 × S1 → Σ− × S1 × S1,

(x , u, v) 7→ (r(x), v , u)

Tian-Yau, Haskins-Hein-N:
V± admits asymptotically cylindrical Calabi-Yau metrics

 metrics on V± × S1 with holonomy SU(3) ⊂ G2.

For “hyper-Kähler rotations” r, these glue to a holonomy G2 metric on M.



Diagram of twisted connected sum

V−

V+

×

×

M

V+, V− asymptotically cylindrical Calabi-Yau threefolds
with ends asymptotic to Σ± × S1 × R, where Σ± are K3 surfaces.

Truncate ends and glue V− × S1 to V+ × S1, flipping the circles.

For large neck length, the G2-structure on M obtained by gluing has dϕ = 0
and d∗ϕ “small”, and can be perturbed to a torsion-free one.

Flipping the circles ensures M simply-connected, so Hol(M) = G2.



Primary invariants

Many examples of

� building blocks from Fano 3-folds (or weaker)

� hK rotations from deformation theory of Fano 3-folds + Torelli theorem

Compute the cohomology of the resulting TCS by Mayer-Vietoris

Many are 2-connected, ie π1M and π2M both trivial.

Then we can compute all the “primary” data.

� H4(M) (with Z coefficients)

� Spin characteristic class pM ∈ H4(M) (2pM = Pontrjagin class p1(M))

� Torsion linking form TH4(M)× TH4(M)→ Q/Z
Many examples have torsion-free H4(M), so primary data reduces to b3(M)
and d := greatest integer dividing pM .



Topological classification

Theorem (Wilkens 1971)

Closed smooth 2-connected manifolds M with H4(M) torsion-free are
classified up to homeomorphism by b3(M) and d(M).
If d(M) is not divisible by 8 or 7 then they also classify up to
diffeomorphism.

Pay-off: Many different TCS realise the same smooth 7-manifold.

In general, classification also requires some “secondary” invariants defined
via coboundaries (obstructions to improving a bordism to an h-cobordism)

� If one drops torsion-free hypothesis, then one needs to add a “quadratic
refinement” of the torsion-linking form (Crowley)

� If d(M) is divisible by 7 or 8 one needs a generalisation of the
Eells-Kuiper invariant to detect smooth structure



2. Coboundary defect invariants
The Eells-Kuiper invariant

For a closed spin 8-manifold X , combining the Atiyah singer index theorem
and the Hirzebruch signature theorem to eliminate p2(X ) gives

p1(X )2 − 4σ(X )

32
= 28 ind /DX .

For compact spin 8-manifolds W with boundary M such that p1(M) = 0,
σ(W ) and p1(W )2 are both

� well-defined integers (use that p1(W ) has a pre-image in H4(W ,M))

� additive under gluing coboundaries.

Therefore

µ(M) =
p1(W )2 − 4σ(W )

32
∈ Z/28

depends only on the boundary M of W , and not on W itself.

µ(M) distinguishes all 28 classes of smooth structures on S7.

d 6= 0 and H4(M) torsion-free  µ(M) well-defined in Z/gcd(28, d̃/4),
for d̃ = lcm(4, d).



G2-structures and spinors

We found some spin coboundaries W of twisted connected sums, but they
were too complicated to compute p1(W )2...
but they did have some explicit spinor fields (sections of real rank 8 bundle)

G2-structure on M7 ↔
metric g + spin structure + nowhere vanishing spinor field s modulo scale

If W is a compact spin 8-manifold with boundary M, and s+ is a positive
spinor restricting to s, then #s−1

+ (0) depends only on W and s.

On a closed spin 8-manifold X , Hirzebruch signature theorem +
Aityah-Singer + relation between Euler classes of spinor and tangent bundles
⇒ can eliminate both p1(X )2 and p2(X ) in favour of #s−1

+ (0) and χ(X ):

χ(X )− 3σ(X )− 2 #s−1
+ (0) = −48 indDX

 well-defined invariant ν ∈ Z/48 of (M, s), ie of M with G2-structure.



ν of twisted connected sums

ν(ϕ) = χ(W )− 3σ(W )− 2 #s−1
+ (0) ∈ Z/48

Also clear that ν is invariant under continuous deformation of a G2-structure
(fibre-homotopy).

Theorem
If M is closed 2-connected, H4(M) torsion-free and greatest divisor d of pM
divides 16 · 7, then there are exactly 24 equivalence classes of G2-structures
on M up to diffeomorphism and homotopy, distinguished by ν.

Can we use ν to distinguish G2-structures of different twisted connected
sums on the same underlying manifold? No.

Theorem (Crowley-N)

Any twisted connected sum has ν = 24.

Twisted connected sums always have d dividing 24, so unless d is divisible
by 3, there is no chance at all to use the homotopy class of the G2-structure
to distinguish components of the G2 moduli space.



Analytic refinement

One can use eta invariants to define an analytic invariant ν̄ ∈ Z,
refining ν in the sense that ν = ν̄ + 24 mod 48.

ν̄ can jump by 48 if one deforms through non-torsion-free G2-structures,
so can distinguish components of the G2 moduli space even when the
G2-structures are homotopic.

Can that distinguish twisted connected sums? No.

Theorem (Crowley-Goette-N)

Any twisted connected connected sum has ν̄ = 0.

Proof.
Boundary conditions b±  well-defined ν̄ for each half M± = V± × S1.

ν̄(M) = ν̄(M+, b+) + ν̄(M−, b−) + G (b+, b−).

For obvious choices of b±, ν̄(M±, b±) = 0 by spectral symmetry.
Then G (b+, b−) = 0 because the external circle direction in the
cross-sections K3× T 2 are aligned at right angle in the gluing.



3. Extra-twisted connected sums
Tori

Recall:

From a building block (Z ,Σ) we get an ACyl Calabi-Yau 3-fold V := Z \ Σ
with cylindrical end R× S1 × Σ. Think of this circle factor as “internal”.

Now suppose the building block (Z ,Σ) has a cyclic automorphism group Γ
that fixes Σ pointwise.
Then the action of Γ on V acts trivially on the Σ factor in the asymptotic
end while rotating the S1

int factor.

Next choose a free action of Γ on “external” circle S1
ext .

Then (S1
ext × V )/Γ is a smooth ACyl G2-manifold. Its asymptotic end is of

the form R× T 2 × Σ, but the torus T 2 := (S1
ext × S1

int)/Γ need not be a
metric product of two circles.
The geometry of T 2 depends on the circumferences of S1

ext and S1
int , which

can be chosen freely.



Adding the extra twist

To make an extra-twisted connected sum

� Find some building blocks (Z±,Σ±) with automorphism groups Γ±

� Choose circumferences so that there is an isometry t : T 2
+ → T 2

−
� Find ACyl Calabi-Yau metrics so that there is r : Σ+ → Σ− that makes

(−1)× t× r : R× T 2
+ × Σ+ → R× T 2

− × Σ−

an isomorphism of the asymptotic limits of the G2-structures.

V−

V+

×
S1
−,int

×
S1
+,int

Σ− Σ+

×
S1
−,ext

×
S1
+,ext

Γ−

Γ+



Inflexibility of the gluing angle for TCS

In the twisted connected sum construction we identify the asymptotic
cross-sections S1

+,ext × S1
+,int × Σ+ and S1

−,ext × S1
−,int × Σ− by the product

of an isometry r : Σ+ → Σ− and the “flip” isometry

S1
+,ext × S1

+,int → S1
−,ext × S1

−,int , (u, v) 7→ (v , u).

We can choose the circumferences of S1
+,ext = S1

−,int , and S1
−,ext

∼= S1
+,int ,

but the angle ϑ between the external circle direction will always be π
2 .

S1
−,int

S1
−,ext

S1
+,ext

S1
+,int

ϑ



More exciting torus isometries

As soon as at least one of the tori T 2
+ and T 2

− is not simply an isometric
product S1

ext × S1
int , there are other possibilities for the gluing angle ϑ.

S1
−,int

S1
−,ext

Γ− ∼= Z/3

S1
+,ext

S1
+,int

Γ+
∼= Z/4

ϑ

eg ϑ =
3π

4
,

2π

3
or arccos

(
1√
6

)
.



Using ν̄ to disconnect the G2 moduli space

ν̄(M) = ν̄(M+, b+) + ν̄(M−, b−) + G (b+, b−).

As soon as the “gluing angle” ϑ 6= π
2 , the gluing term G (b+, b−) can be

non-zero.

If M± = (V± × S1)/Z2 then

� we can work out primary invariants

� still have spectral symmetry so that ν̄(M±, b±) = 0

Pay-off: Can find diffeomorphic TCS and XTCS, with components
of G2 moduli space distinguished by ν̄.
In some cases, the G2-structures are nevertheless homotopic.

If M± = (V± × S1)/Zk for k ≥ 3 then ν̄(M±, b±) can be non-zero
 examples with ν̄(M) not divisible by 3.



4. Non-spin coboundaries of TCS
Plumbing coboundary of TCS

Recall: Twisted connected sum was defined from

� Closed simply-connected Kähler 3-folds Z+, Z−

� Σ± ⊂ Z± anticanonical K3 divisors with trivial normal bundle

� Hyper-Kähler rotation r : Σ+ → Σ−

Σ± has tubular neighbourhood of the form Σ± ×∆ (for disc ∆ ⊂ C).
Form an 8-manifold W by “parametric plumbing along the K3”:

glue Z+ ×∆ to Z− ×∆ along open subsets

Σ+ ×∆×∆→ Σ− ×∆×∆,

(x , z ,w) 7→ (r(x),w , z)

Then ∂W is the twisted connected sum M.
W not spin, but spinc good enough to compute generalised Eells-Kuiper.

Pay-off: Examples of TCSs that are homeomorphic but not diffeomorphic.
(Needs some work to find the right hyper-Kähler rotations)



Almost complex coboundaries

When computing Eells-Kuiper, we can use spinc coboundaries, applying
Atiyah-Singer index theorem to twisted Dirac operator.

But apparently little prospect of using spinc coboundaries to compute ν,
since the twisted spinor bundle is complex of rank 8 and thus does not have
useful Euler class.

Wallis (2018)
For U(3)-structures on closed 7-manifolds, one can define an invariant by
evaluating

χ(W )− 3σ(W )− c1(W )c3(W ) ∈ Z/48

for any U(4)-boundary W .
For any SU(3) reduction of a G2-structure ϕ, this coincides with ν(ϕ).

The plumbing coboundaries of TCS have U(4)-structure
 another (third!) computation ν = 24.



Final ingredient for 2-connected classification

Another way to combine Hirzebruch signature theorem, Atiyah-SInger index
theorem and relation between Euler classes  

ξ(M, s) :=
3p1(W )2 − 180σ(W )

8
+ 7χ(W )− 14 #s−1

+ (0) ∈ Z/3d̃

is a well-defined invariant of G2-structures on closed 7-manifold M with
torsion-free H4(M).
(ν and ξ together determine Eells-Kuiper by µ = ξ−7ν

12 .)

Theorem (Crowley-N)

Closed 2-connected 7-manifolds M with G2-structures, with H4(M)
torsion-free, are classified up to diffeomorphism + homotopy of G2-structure
by b3(M), d , ν and ξ.

Wallis: ξ can also be computed by U(4)-coboundaries
 pairs of TCS that are diffeomorphic, but G2-structures are not homotopic



Coboundaries of some XTCS

Let B± → Z± disc bundle with c1 a multiple of Σ±.

Lift action of cyclic group Γ± to B±, act trivially on fibres over Σ±

 this fixed component yields smoothable singularities in W± := B±/Γ±

 W± contains region Σ+ ×∆×∆

Gluing by map that swaps ∆ factors
 compact orbifold W s whose boundary is an XTCS

(but only some XTCS can possibly be realised this way)

Γ also has a fixed component in Z± that is a curve C
 singularities in W s modelled on C3/Γ bundle over C .

For Γ = Z/2 we can simply blow up

For a special case of Γ = Z/3 I could carry out computations by working out
an explicit resolution


