Topology of extra-twisted connected sum G_2 -manifolds

Johannes Nordström

9 June 2022

Joint work with Diarmuid Crowley and Sebastian Goette arXiv: 1411.0656, 1505.02734, 2010.16367

These slides available at http://people.bath.ac.uk/jlpn20/xtcs_cbd.pdf

Survey of topology of TCS and XTCS

Twisted connected sums generate huge numbers of closed G_2 -manifolds, many 2-connected.

Crowley, Corti, Goette, Haskins, N, Pacini, Wallis

By now understand pretty much all there is to know about the topology of the underlying manifolds and the homotopy classes of the G_2 -structures in the 2-connected case.

Crowley-Goette-N

Extra-twisted connected sums are less plentiful, many still 2-connected, but topology more complicated—in interesting ways.

One aspect of the G_2 -structure well understood analytically.

In some cases we understand basic topological invariants, which sometimes is enough to pin down diffeomorphism type, but still much left.

Work in progress

For a class of extra-twisted connected sums "dual to simply-connected", there seems to be a way to construct a coboundary to compute all invariants (that are relevant in the 2-connected case).

Lennon, Harrison, McCartney, Starkey (1965)

Help! I need somebody Help! Not just anybody Help! You know I need someone

...who understands the topology of resolutions of a $\mathbb{C}^3/\mathbb{Z}_k$ -bundle over a Riemann surface

Outline

- 1. Twisted connected sums and primary invariants
- 2. Coboundary defect invariants
- 3. Extra-twisted connected sums
- 4. Non-spin coboundaries of twisted connected sums

1. TCS and primary invariants Twisted connected sum outline

Kovalev (2003), Corti-Haskins-N-Pacini (2014). Ingredients:

- Closed simply-connected Kähler 3-folds Z₊, Z₋
- $\Sigma_{\pm} \subset Z_{\pm}$ anticanonical K3 divisors ([Σ] = $c_1(Z)$), normal bundle trivial
- lacksquare $r: \Sigma_+ o \Sigma_-$ diffeomorphism

Let $V_{\pm}:=Z_{\pm}\setminus$ tubular neighbourhood $\Sigma_{\pm}\times\Delta$; so $\partial V_{\pm}=\Sigma_{\pm}\times S^1$. Form simply-connected M^7 by gluing boundaries of $V_{+}\times S^1$ to $V_{-}\times S^1$ by

$$\Sigma_{+} \times S^{1} \times S^{1} \to \Sigma_{-} \times S^{1} \times S^{1},$$
$$(x, u, v) \mapsto (r(x), v, u)$$

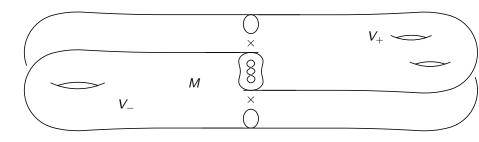
Tian-Yau. Haskins-Hein-N:

 V_{\pm} admits asymptotically cylindrical Calabi-Yau metrics

 \rightsquigarrow metrics on $V_{\pm} \times S^1$ with holonomy $SU(3) \subset G_2$.

For "hyper-Kähler rotations" r, these glue to a holonomy G_2 metric on M.

Diagram of twisted connected sum



 V_+ , V_- asymptotically cylindrical Calabi-Yau threefolds with ends asymptotic to $\Sigma_\pm \times S^1 \times \mathbb{R}$, where Σ_\pm are K3 surfaces.

Truncate ends and glue $V_- \times S^1$ to $V_+ \times S^1$, flipping the circles.

For large neck length, the G_2 -structure on M obtained by gluing has $d\varphi=0$ and $d^*\varphi$ "small", and can be perturbed to a torsion-free one.

Flipping the circles ensures M simply-connected, so $Hol(M) = G_2$.

Primary invariants

Many examples of

- building blocks from Fano 3-folds (or weaker)
- hK rotations from deformation theory of Fano 3-folds + Torelli theorem

Compute the cohomology of the resulting TCS by Mayer-Vietoris

Many are 2-connected, ie $\pi_1 M$ and $\pi_2 M$ both trivial.

Then we can compute all the "primary" data.

- $H^4(M)$ (with \mathbb{Z} coefficients)
- Spin characteristic class $p_M \in H^4(M)$ $(2p_M = Pontrjagin class <math>p_1(M)$)
- Torsion linking form $TH^4(M) \times TH^4(M) \to \mathbb{Q}/\mathbb{Z}$

Many examples have torsion-free $H^4(M)$, so primary data reduces to $b_3(M)$ and d := greatest integer dividing p_M .

Topological classification

Theorem (Wilkens 1971)

Closed smooth 2-connected manifolds M with $H^4(M)$ torsion-free are classified up to homeomorphism by $b_3(M)$ and d(M). If d(M) is not divisible by 8 or 7 then they also classify up to diffeomorphism.

Pay-off: Many different TCS realise the same smooth 7-manifold.

In general, classification also requires some "secondary" invariants defined via coboundaries (obstructions to improving a bordism to an h-cobordism)

- If one drops torsion-free hypothesis, then one needs to add a "quadratic refinement" of the torsion-linking form (Crowley)
- If d(M) is divisible by 7 or 8 one needs a generalisation of the Eells-Kuiper invariant to detect smooth structure

2. Coboundary defect invariants The Eells-Kuiper invariant

For a closed spin 8-manifold X, combining the Atiyah singer index theorem and the Hirzebruch signature theorem to eliminate $p_2(X)$ gives

$$\frac{p_1(X)^2 - 4\sigma(X)}{32} = 28 \operatorname{ind} \mathcal{D}_X.$$

For compact spin 8-manifolds W with boundary M such that $p_1(M) = 0$, $\sigma(W)$ and $p_1(W)^2$ are both

- well-defined integers (use that $p_1(W)$ has a pre-image in $H^4(W, M)$)
- additive under gluing coboundaries.

Therefore

$$\mu(M) = \frac{p_1(W)^2 - 4\sigma(W)}{32} \in \mathbb{Z}/28$$

depends only on the boundary M of W, and not on W itself.

 $\mu(M)$ distinguishes all 28 classes of smooth structures on S^7 . $d \neq 0$ and $H^4(M)$ torsion-free $\rightsquigarrow \mu(M)$ well-defined in $\mathbb{Z}/\gcd(28, \tilde{d}/4)$,

for $\tilde{d} = \text{lcm}(4, d)$.

*G*₂-structures and spinors

We found some spin coboundaries W of twisted connected sums, but they were too complicated to compute $p_1(W)^2$...

but they did have some explicit spinor fields (sections of real rank 8 bundle)

$$G_2$$
-structure on $M^7 \leftrightarrow$

metric g + spin structure + nowhere vanishing spinor field s modulo scale

If W is a compact spin 8-manifold with boundary M, and s_+ is a positive spinor restricting to s, then $\#s_+^{-1}(0)$ depends only on W and s.

On a closed spin 8-manifold X, Hirzebruch signature theorem + Aityah-Singer + relation between Euler classes of spinor and tangent bundles \Rightarrow can eliminate both $p_1(X)^2$ and $p_2(X)$ in favour of $\#s_+^{-1}(0)$ and $\chi(X)$:

$$\chi(X) - 3\sigma(X) - 2 \# s_+^{-1}(0) = -48 \text{ ind } D_X$$

 \rightsquigarrow well-defined invariant $\nu \in \mathbb{Z}/48$ of (M,s), ie of M with G_2 -structure.

ν of twisted connected sums

$$\nu(\varphi) = \chi(W) - 3\sigma(W) - 2 \# s_+^{-1}(0) \in \mathbb{Z}/48$$

Also clear that ν is invariant under continuous deformation of a G_2 -structure (fibre-homotopy).

Theorem

If M is closed 2-connected, $H^4(M)$ torsion-free and greatest divisor d of p_M divides $16 \cdot 7$, then there are exactly 24 equivalence classes of G_2 -structures on M up to diffeomorphism and homotopy, distinguished by ν .

Can we use ν to distinguish G_2 -structures of different twisted connected sums on the same underlying manifold? No.

Theorem (Crowley-N)

Any twisted connected sum has $\nu = 24$.

Twisted connected sums always have d dividing 24, so unless d is divisible by 3, there is no chance at all to use the homotopy class of the G_2 -structure to distinguish components of the G_2 moduli space.

Analytic refinement

One can use eta invariants to define an analytic invariant $\bar{\nu} \in \mathbb{Z}$, refining ν in the sense that $\nu = \bar{\nu} + 24 \mod 48$.

 $\bar{\nu}$ can jump by 48 if one deforms through non-torsion-free G_2 -structures, so can distinguish components of the G_2 moduli space even when the G_2 -structures are homotopic.

Can that distinguish twisted connected sums? No.

Theorem (Crowley-Goette-N)

Any twisted connected connected sum has $\bar{\nu} = 0$.

Proof.

Boundary conditions $b_\pm \leadsto$ well-defined $\bar{
u}$ for each half $M_\pm = V_\pm \times S^1.$

$$\bar{\nu}(M) = \bar{\nu}(M_+, b_+) + \bar{\nu}(M_-, b_-) + G(b_+, b_-).$$

For obvious choices of b_{\pm} , $\bar{\nu}(M_{\pm}, b_{\pm}) = 0$ by spectral symmetry. Then $G(b_+, b_-) = 0$ because the external circle direction in the cross-sections $K3 \times T^2$ are aligned at right angle in the gluing.

3. Extra-twisted connected sums

Tori

Recall:

From a building block (Z, Σ) we get an ACyl Calabi-Yau 3-fold $V := Z \setminus \Sigma$ with cylindrical end $\mathbb{R} \times S^1 \times \Sigma$. Think of this circle factor as "internal".

Now suppose the building block (Z, Σ) has a cyclic automorphism group Γ that fixes Σ pointwise.

Then the action of Γ on V acts trivially on the Σ factor in the asymptotic end while rotating the S^1_{int} factor.

Next choose a free action of Γ on "external" circle S_{ext}^1 .

Then $(S_{\text{ext}}^1 \times V)/\Gamma$ is a smooth ACyl G_2 -manifold. Its asymptotic end is of the form $\mathbb{R} \times T^2 \times \Sigma$, but the torus $T^2 := (S_{\text{ext}}^1 \times S_{\text{int}}^1)/\Gamma$ need *not* be a metric product of two circles.

The geometry of \mathcal{T}^2 depends on the circumferences of S^1_{ext} and S^1_{int} , which can be chosen freely.

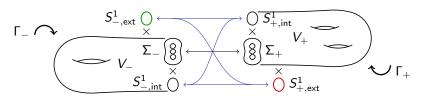
Adding the extra twist

To make an extra-twisted connected sum

- Find some building blocks (Z_{\pm}, Σ_{\pm}) with automorphism groups Γ_{\pm}
- lacktriangle Choose circumferences so that there is an isometry ${
 m t}:T_+^2 o T_-^2$
- Find ACyl Calabi-Yau metrics so that there is $r: \Sigma_+ \to \Sigma_-$ that makes

$$(-1)\times t\times r:\mathbb{R}\times \mathcal{T}_+^2\times \Sigma_+\to \mathbb{R}\times \mathcal{T}_-^2\times \Sigma_-$$

an isomorphism of the asymptotic limits of the G_2 -structures.

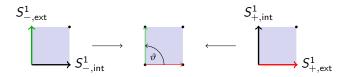


Inflexibility of the gluing angle for TCS

In the twisted connected sum construction we identify the asymptotic cross-sections $S^1_{+,ext} \times S^1_{+,int} \times \Sigma_+$ and $S^1_{-,ext} \times S^1_{-,int} \times \Sigma_-$ by the product of an isometry $r: \Sigma_+ \to \Sigma_-$ and the "flip" isometry

$$S^1_{+,\text{ext}} \times S^1_{+,\text{int}} \to S^1_{-,\text{ext}} \times S^1_{-,\text{int}}, \quad (\textit{u},\textit{v}) \mapsto (\textit{v},\textit{u}).$$

We can choose the circumferences of $S^1_{+,\mathrm{ext}}=S^1_{-,\mathrm{int}}$, and $S^1_{-,\mathrm{ext}}\cong S^1_{+,\mathrm{int}}$, but the angle ϑ between the external circle direction will *always* be $\frac{\pi}{2}$.



More exciting torus isometries

As soon as at least one of the tori T_+^2 and T_-^2 is not simply an isometric product $S_{\text{ext}}^1 \times S_{\text{int}}^1$, there are other possibilities for the gluing angle ϑ .

$$S_{-,\mathrm{ext}}^1$$
 $S_{-,\mathrm{int}}^1$
 $S_{+,\mathrm{int}}^1$
 $S_{+,\mathrm{int}}^1$
 $S_{+,\mathrm{ext}}^1$
 $\Gamma_- \cong \mathbb{Z}/3$
 $\Gamma_+ \cong \mathbb{Z}/4$

eg
$$\theta = \frac{3\pi}{4}, \frac{2\pi}{3} \text{ or } \arccos\left(\frac{1}{\sqrt{6}}\right).$$

Using $\bar{\nu}$ to disconnect the G_2 moduli space

$$\bar{\nu}(M) = \bar{\nu}(M_+, b_+) + \bar{\nu}(M_-, b_-) + G(b_+, b_-).$$

As soon as the "gluing angle" $\vartheta \neq \frac{\pi}{2}$, the gluing term $G(b_+,b_-)$ can be non-zero.

If $M_{\pm}=(\mathit{V}_{\pm}\times\mathit{S}^{1})/\mathbb{Z}_{2}$ then

- we can work out primary invariants
- still have spectral symmetry so that $\bar{\nu}(M_{\pm}, b_{\pm}) = 0$

Pay-off: Can find diffeomorphic TCS and XTCS, with components of G_2 moduli space distinguished by $\bar{\nu}$. In some cases, the G_2 -structures are nevertheless homotopic.

If $M_{\pm}=(V_{\pm}\times S^1)/\mathbb{Z}_k$ for $k\geq 3$ then $\bar{\nu}(M_{\pm},b_{\pm})$ can be non-zero \leadsto examples with $\bar{\nu}(M)$ not divisible by 3.

4. Non-spin coboundaries of TCS Plumbing coboundary of TCS

Recall: Twisted connected sum was defined from

- Closed simply-connected Kähler 3-folds Z₊, Z_−
- $\Sigma_+ \subset Z_+$ anticanonical K3 divisors with trivial normal bundle
- Hyper-Kähler rotation $r: \Sigma_+ \to \Sigma_-$

 Σ_{\pm} has tubular neighbourhood of the form $\Sigma_{\pm} \times \Delta$ (for disc $\Delta \subset \mathbb{C}$). Form an 8-manifold W by "parametric plumbing along the K3":

glue $Z_+ \times \Delta$ to $Z_- \times \Delta$ along open subsets

$$\Sigma_{+} \times \Delta \times \Delta \to \Sigma_{-} \times \Delta \times \Delta,$$
$$(x, z, w) \mapsto (\mathbf{r}(x), w, z)$$

Then ∂W is the twisted connected sum M. W not spin, but spin^c good enough to compute generalised Eells-Kuiper.

Pay-off: Examples of TCSs that are homeomorphic but not diffeomorphic. (Needs some work to find the right hyper-Kähler rotations)

Almost complex coboundaries

When computing Eells-Kuiper, we can use $spin^c$ coboundaries, applying Atiyah-Singer index theorem to twisted Dirac operator.

But apparently little prospect of using spin c coboundaries to compute ν , since the twisted spinor bundle is complex of rank 8 and thus does not have useful Euler class.

Wallis (2018)

For U(3)-structures on closed 7-manifolds, one can define an invariant by evaluating

$$\chi(W) - 3\sigma(W) - c_1(W)c_3(W) \in \mathbb{Z}/48$$

for any U(4)-boundary W.

For any SU(3) reduction of a G_2 -structure φ , this coincides with $\nu(\varphi)$.

The plumbing coboundaries of TCS have U(4)-structure \rightarrow another (third!) computation $\nu = 24$.

Final ingredient for 2-connected classification

Another way to combine Hirzebruch signature theorem, Atiyah-SInger index theorem and relation between Euler classes \leadsto

$$\xi(M,s) := \frac{3p_1(W)^2 - 180\sigma(W)}{8} + 7\chi(W) - 14 \# s_+^{-1}(0) \in \mathbb{Z}/3\tilde{d}$$

is a well-defined invariant of G_2 -structures on closed 7-manifold M with torsion-free $H^4(M)$.

(ν and ξ together determine Eells-Kuiper by $\mu=\frac{\xi-7\nu}{12}$.)

Theorem (Crowley-N)

Closed 2-connected 7-manifolds M with G_2 -structures, with $H^4(M)$ torsion-free, are classified up to diffeomorphism + homotopy of G_2 -structure by $b_3(M)$, d, ν and ξ .

Wallis: ξ can also be computed by U(4)-coboundaries \rightarrow pairs of TCS that are diffeomorphic, but G_2 -structures are not homotopic

Coboundaries of some XTCS

Let $B_{\pm} \to Z_{\pm}$ disc bundle with c_1 a multiple of Σ_{\pm} .

Lift action of cyclic group Γ_{\pm} to \mathcal{B}_{\pm} , act trivially on fibres over Σ_{\pm}

- \leadsto this fixed component yields smoothable singularities in $W_{\pm}:=B_{\pm}/\Gamma_{\pm}$
- $\rightsquigarrow W_{\pm}$ contains region $\Sigma_{+} \times \Delta \times \Delta$

Gluing by map that swaps Δ factors

 \leadsto compact orbifold W^s whose boundary is an XTCS (but only some XTCS can possibly be realised this way)

 Γ also has a fixed component in Z_{\pm} that is a curve C

 \rightsquigarrow singularities in W^s modelled on \mathbb{C}^3/Γ bundle over C.

For $\Gamma = \mathbb{Z}/2$ we can simply blow up

For a special case of $\Gamma=\mathbb{Z}/3$ I could carry out computations by working out an explicit resolution