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Survey of topology of TCS and XTCS

Twisted connected sums generate huge numbers of closed G,-manifolds,
many 2-connected.

Crowley, Corti, Goette, Haskins, N, Pacini, Wallis

By now understand pretty much all there is to know about the topology of
the underlying manifolds and the homotopy classes of the G,-structures in
the 2-connected case.

Crowley-Goette-N

Extra-twisted connected sums are less plentiful, many still 2-connected, but
topology more complicated—in interesting ways.

One aspect of the Gp-structure well understood analytically.

In some cases we understand basic topological invariants, which sometimes
is enough to pin down diffeomorphism type, but still much left.



Work in progress

For a class of extra-twisted connected sums “dual to simply-connected”,
there seems to be a way to construct a coboundary to compute all invariants
(that are relevant in the 2-connected case).

Lennon, Harrison, McCartney, Starkey (1965)
Help! | need somebody

Help! Not just anybody

Help! You know | need someone

...who understands the topology of resolutions of a C3/Z-bundle over a
Riemann surface
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1. TCS and primary invariants
Twisted connected sum outline

Kovalev (2003), Corti-Haskins-N-Pacini (2014).
Ingredients:

m Closed simply-connected Kahler 3-folds Z,, Z_
® Y, C Zy anticanonical K3 divisors ([£] = ¢1(Z)), normal bundle trivial
mr:Y, — ¥_ diffeomorphism
Let Vi := Z.\ tubular neighbourhood 1 x A; so 9V = ¥, x Si.
Form simply-connected M7 by gluing boundaries of V. x S* to V_ x S! by
Y xStx Sty xStx S
(x, u,v) = (v(x), v, u)
Tian-Yau, Haskins-Hein-N:
V4 admits asymptotically cylindrical Calabi-Yau metrics

~~ metrics on Vi x St with holonomy SU(3) C G,.

For “hyper-Kahler rotations” r, these glue to a holonomy G, metric on M.



Diagram of twisted connected sum

V., V_ asymptotically cylindrical Calabi-Yau threefolds
with ends asymptotic to X4 x S x R, where ¥ are K3 surfaces.

Truncate ends and glue V_ x S! to V, x S!, flipping the circles.

For large neck length, the Gy-structure on M obtained by gluing has dp =0
and d*¢ “small”, and can be perturbed to a torsion-free one.

Flipping the circles ensures M simply-connected, so Hol(M) = G,.



Primary invariants

Many examples of
® building blocks from Fano 3-folds (or weaker)
m hK rotations from deformation theory of Fano 3-folds + Torelli theorem

Compute the cohomology of the resulting TCS by Mayer-Vietoris
Many are 2-connected, ie 1M and m M both trivial.

Then we can compute all the “primary” data.

m H*(M) (with Z coefficients)
® Spin characteristic class py € H*(M) (2pm = Pontrjagin class p1(M))

m Torsion linking form TH*(M) x TH*(M) — Q/Z
Many examples have torsion-free H*(M), so primary data reduces to b3(M)
and d := greatest integer dividing py.



Topological classification

Theorem (Wilkens 1971)

Closed smooth 2-connected manifolds M with H*(M) torsion-free are
classified up to homeomorphism by b3(M) and d(M).

If d(M) is not divisible by 8 or 7 then they also classify up to
diffeomorphism.

Pay-off: Many different TCS realise the same smooth 7-manifold.
In general, classification also requires some “secondary” invariants defined

via coboundaries (obstructions to improving a bordism to an h-cobordism)

m |f one drops torsion-free hypothesis, then one needs to add a “quadratic
refinement” of the torsion-linking form (Crowley)

m |f d(M) is divisible by 7 or 8 one needs a generalisation of the
Eells-Kuiper invariant to detect smooth structure



2. Coboundary defect invariants
The Eells-Kuiper invariant

For a closed spin 8-manifold X, combining the Atiyah singer index theorem
and the Hirzebruch signature theorem to eliminate p,(X) gives

pL(X)? — 40(X)

o = 28ind Dy.

For compact spin 8-manifolds W with boundary M such that p;(M) =0,
(W) and py(W)? are both
® well-defined integers (use that p;(W) has a pre-image in H*(W, M))
® additive under gluing coboundaries.
Therefore )

u(m) = AW % 40W) ¢ 7,28
depends only on the boundary M of W, and not on W itself.

p(M) distinguishes all 28 classes of smooth structures on S7.

d # 0 and H*(M) torsion-free ~» (M) well-defined in Z/gcd(28, d/4),
for d = lem(4, d).



G,-structures and spinors

We found some spin coboundaries W of twisted connected sums, but they

were too complicated to compute p;(W)>?...

but they did have some explicit spinor fields (sections of real rank 8 bundle)

Gs-structure on M7
metric g + spin structure + nowhere vanishing spinor field s modulo scale

If W is a compact spin 8-manifold with boundary M, and s, is a positive
spinor restricting to s, then #SJ:I(O) depends only on W and s.

On a closed spin 8-manifold X, Hirzebruch signature theorem +
Aityah-Singer + relation between Euler classes of spinor and tangent bundles
= can eliminate both p1(X)? and py(X) in favour of #s;*(0) and x(X):

X(X) = 30(X) — 2#s;1(0) = —48ind Dx

~ well-defined invariant v € Z/48 of (M, s), ie of M with Gp-structure.



v of twisted connected sums

v(p) = x(W) — 30(W) — 2#s,1(0) € Z/48

Also clear that v is invariant under continuous deformation of a Gy-structure
(fibre-homotopy).

Theorem

If M is closed 2-connected, H*(M) torsion-free and greatest divisor d of py
divides 16 - 7, then there are exactly 24 equivalence classes of Gy-structures
on M up to diffeomorphism and homotopy, distinguished by v.

Can we use v to distinguish G,-structures of different twisted connected
sums on the same underlying manifold? No.

Theorem (Crowley-N)

Any twisted connected sum has v = 24.

Twisted connected sums always have d dividing 24, so unless d is divisible
by 3, there is no chance at all to use the homotopy class of the G,-structure
to distinguish components of the G, moduli space.



Analytic refinement

One can use eta invariants to define an analytic invariant v € Z,
refining v in the sense that v = 7 + 24 mod 48.

7 can jump by 48 if one deforms through non-torsion-free G;-structures,
so can distinguish components of the G, moduli space even when the
Go-structures are homotopic.

Can that distinguish twisted connected sums? No.
Theorem (Crowley-Goette-N)
Any twisted connected connected sum has v = 0.

Proof.
Boundary conditions b4 ~ well-defined ¥ for each half My = Vi x St.

o(M)=0(My,by)+0(M_,b_)+ G(by, b_).

For obvious choices of by, (M+, bi) = 0 by spectral symmetry.
Then G(by, b_) = 0 because the external circle direction in the
cross-sections K3 x T2 are aligned at right angle in the gluing.



3. Extra-twisted connected sums
Tori

Recall:

From a building block (Z,X) we get an ACyl Calabi-Yau 3-fold V :=Z\ ¥
with cylindrical end R x S x ¥. Think of this circle factor as “internal”.

Now suppose the building block (Z,X) has a cyclic automorphism group I
that fixes & pointwise.

Then the action of I on V acts trivially on the ¥ factor in the asymptotic
end while rotating the S factor.

int

Next choose a free action of I' on “external” circle SL,.
Then (SL, x V)/T is a smooth ACyl G,-manifold. Its asymptotic end is of
the form R x T2 x ¥, but the torus T2 := (S, x S..)/T need not be a
metric product of two circles.

The geometry of T2 depends on the circumferences of SL, and Si., which

can be chosen freely.



Adding the extra twist

To make an extra-twisted connected sum

® Find some building blocks (Zy, ¥ 1) with automorphism groups I+

® Choose circumferences so that there is an isometry t : T_% - T2

m Find ACyl Calabi-Yau metrics so that there is v: £ — ¥ _ that makes

(- xtxT:RxTIxZy 5> Rx T2 x¥_

an isomorphism of the asymptotic limits of the Gy-structures.




Inflexibility of the gluing angle for TCS

In the twisted connected sum construction we identify the asymptotic
cross-sections S} .. x S}, x Xy and ST x ST . x ¥ by the product
of an isometry v : X — ¥ _ and the “flip” isometry

Sjlt,ext X Sjlt,int — Si,ext X Si,inta (u7 V) = (V7 u)'

H 1 —_cl 1 ~ 1
We can choose the circumferences of 5_+7ext = 57_),-,”, a_nd SLext =St it
but the angle ¥ between the external circle direction will always be 7.

st st

—,ext +,int

L, st }E_, L S}»,ext

—,int



More exciting torus isometries

As soon as at least one of the tori Ti and T2 is not simply an isometric

product S., x Sk, there are other possibilities for the gluing angle oJ.

1
5— ext °
s 51
+

,int

5t

,int
r_~z/3 r.~7/4

3r 27w

e ¥ = —, — or arccos i
g =723 \@ .



Using 7 to disconnect the G, moduli space

(M) =o(My,by) +(M_,b_) + G(by,b_).

As soon as the “gluing angle” ¥ # 7, the gluing term G(b,,b_) can be
non-zero.

If My = (Vi X 51)/Z2 then
B we can work out primary invariants
® still have spectral symmetry so that 7(My,b1) =0

Pay-off: Can find diffeomorphic TCS and XTCS, with components
of G, moduli space distinguished by .
In some cases, the G,-structures are nevertheless homotopic.

If My = (Vi x SY)/Zy for k > 3 then (M., by) can be non-zero
~ examples with 7(M) not divisible by 3.



4. Non-spin coboundaries of TCS
Plumbing coboundary of TCS

Recall: Twisted connected sum was defined from

m Closed simply-connected Kahler 3-folds Z,, Z_

B Y C Zi anticanonical K3 divisors with trivial normal bundle
® Hyper-Kahler rotation 7: X, — ¥ _

Y 1 has tubular neighbourhood of the form 1 x A (for disc A C C).
Form an 8-manifold W by “parametric plumbing along the K3":
glue Z, x A to Z_ x A along open subsets

YIXAXA =T XAXA ‘

(x,z,w) = (r(x),w, z)
Then OW is the twisted connected sum M.
W not spin, but spin€ good enough to compute generalised Eells-Kuiper.

Pay-off: Examples of TCSs that are homeomorphic but not diffeomorphic.
(Needs some work to find the right hyper-K&hler rotations)



Almost complex coboundaries

When computing Eells-Kuiper, we can use spin® coboundaries, applying
Atiyah-Singer index theorem to twisted Dirac operator.

But apparently little prospect of using spin© coboundaries to compute v,
since the twisted spinor bundle is complex of rank 8 and thus does not have
useful Euler class.

Wallis (2018)
For U(3)-structures on closed 7-manifolds, one can define an invariant by

evaluating
xX(W) =3c(W) — ci(W)e3(W) € Z/48

for any U(4)-boundary W.
For any SU(3) reduction of a Gp-structure ¢, this coincides with v(y).

The plumbing coboundaries of TCS have U(4)-structure
~ another (third!) computation v = 24.



Final ingredient for 2-connected classification

Another way to combine Hirzebruch signature theorem, Atiyah-Singer index

theorem and relation between Euler classes ~

3p1(W)? — 1800( W)
8

£(M,s) = +7x(W) — 14 4s7%(0) € Z/3d
is a well-defined invariant of Go-structures on closed 7-manifold M with
torsion-free H*(M).

(v and & together determine Eells-Kuiper by p = = 7”.)

Theorem (Crowley-N)

Closed 2-connected 7-manifolds M with Gy-structures, with H*(M)
torsion-free, are classified up to diffeomorphism + homotopy of G,-structure
by b3(M),d,v and €.

Wallis: £ can also be computed by U(4)-coboundaries
~ pairs of TCS that are diffeomorphic, but Gy-structures are not homotopic



Coboundaries of some XTCS

Let By — Z1 disc bundle with ¢; a multiple of .

Lift action of cyclic group '+ to B4, act trivially on fibres over X

~- this fixed component yields smoothable singularities in Wy := BL /Ty
~ W4 contains region £, x A x A

Gluing by map that swaps A factors

~» compact orbifold W* whose boundary is an XTCS
(but only some XTCS can possibly be realised this way)

I" also has a fixed component in Z4 that is a curve C
~~ singularities in W* modelled on C3/T bundle over C.
For ' = Z/2 we can simply blow up

For a special case of I = Z/3 | could carry out computations by working out
an explicit resolution



