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In this lecture we outline a programme studying the adiabatic geometry of
G2-manifolds

Part I Review of the set-up.

Part II Adiabatic assocatives.



Part I.
Start with a (compact) oriented 7-manifold M .
A G2-structure on M is specified by a positive 3-form φ. Such a form defines a
Riemannian metric gφ and a dual 4-form ∗φφ.
A positive 3-form is one which is equivalent at each point to the standard
model on

R7 = R4 × R3 = {(x0, x1, x2, x3, t1, t2, t3)},

φmodel = dt1dt2dt3 −
3∑

i=1

ωidti ,

where (ωi) are the standard basis for the self-dual 2-forms on R4.

ωi = dx0dxi + dxjdxk ,

(ijk) cyclic.



Some standard questions about G2 structures.



I Fix a cohomology class C ∈ H3(M; R). Can C be represented by a closed
positive 3-form (dφ = 0). ?

I If so, can we additionally choose φ so that d ∗φ φ = 0? (The

conditions dφ = 0, d ∗φ φ = 0 mean that φ defines a torsion-free G2-structure.)

I Can we find a torsion-free structure as the limit of the Bryant
Laplacian flow

∂φ

∂t
= d ∗φ d ∗φ φ?

(This is the gradient flow of the Hitchin volume functional, and a torsion-free structure

is a local maximum.)

I If we have a torsion free structure φ, what can we say about its geometry: e.g.can
we describe the associative and co-associative submanifolds in
(M , φ)?

I Can we describe the moduli space of torsion-free G2-structures,
the “boundary” of the moduli space and relations to the period
mapping φ→ [φ] ∈ H3(M)?



These questions are largely out of reach at present



The “adiabatic programme”seeks to construct another system of questions in
3-dimensions which one hopes:

I are more tractable than the 7-dimensional questions;

I replicate those questions in a highly collapsed regime of G2-manifolds with
co-associative fibrations having very small fibres. (cf. The talk by Haskins
in this meeting.)



7 = 3 + 4

This programme exploits our detailed knowledge of the K3 4-manifold X and
of hyperkähler structures on X .
X is the smooth oriented 4-manifold described as any of:

I a smooth quartic surface in CP3;

I a “Kummer surface”
T̂ 4/± 1;

I a double cover of CP2 branched over a curve of degree 6;

I . . . . . . . . .



The real cohomology H2(X ) has an integer lattice and cup-product form:

H2(X ) = R3,19 ⊃ ΛK3.

A class δ ∈ ΛK3 with δ2 = −2 defines a reflection Rδ ∈ O(ΛK3):

Rδ(α) = α + (δ.α)δ.

We also consider the affine extension of O(ΛK3)

(R22,+)→ Aff(ΛK3)→ O(ΛK3),

and corresponding reflections in Aff(ΛK3).



Definition (for our purposes): A hyperkähler structure on X is given by
closed 2-forms ω1, ω2, ω3 on X such that

ωi ∧ ωj = aijvol,

for a constant matrix (aij) > 0 and volume 4-form vol.



BASIC POINT: The 3-form

dt1dt2dt3 −
∑

ωidti

defines a torsion-free G2-structure on X × R3.



Torelli theorem for K3
Let H+ ⊂ R3,19 be a 3-dimensional subspace such that

1. H+ is positive with respect to the quadratic form;

2. there are no integer −2 classes in H⊥
+ .

Let ei be an oriented orthonormal basis for H+.
Then there is a hyperkähler structure on X with [ωi ] = ei and this is unique
up to diffeomorphism. Conversely, any hyperkähler structure defines such a
space H+ = Span([ωi ]).



Dictionary item 1.
The adiabatic analogue of M7 is a compact 3-manifold B , a link L ⊂ B and a
flat bundle E0 with fibre R22 and structure group O(Λ) over B \ L such that
the monodromy around L is given by reflections.
Explanation
If we have a map π : M → B which is a fibration over B \ L with fibre X we get a flat O(Λ)

bundle over B \ L from the cohomology of the fibres. The condition on the monodromy

around L corresponds to the assumption that around the singular fibres f has “ordinary

double point singularities” modelled on {z21 + z2 + z23 = 0} ⊂ C3. The reflection is in the

class of the “vanishing cycle” δ.



“Kovalev-Lefschetz fibration”



Dictionary item 2.
The adiabatic analogue of a class C ∈ H3(M7) is a lift of E0 to an affine
bundle E , with structure group Aff(ΛK3).
Explanation
We consider π : M → B whose fibres are co-associative with respect to a closed form φ.

This is just the condition that φ vanishes on the fibres. Locally over an open set U ⊂ B \ L
we can write φ = dσ, so σ restricts to a closed 2-form on each fibre and we get a map

hU : U → H2(X ). The global version of this is a section h of the affine bundle E , which

depends only on the cohomology class [φ] ∈ H3(M).

Alternatively, the affine lift E is determined by a class χ in a sheaf cohomology group

H1(B,E0) and the Leray spectral sequence gives an exact sequence

0→ H3(B)→ H3(M)→ H1(B ;E0)→ 0.



Dictionary item 3.
The adiabatic analogue of a closed positive form in the class C ∈ H3(M7) is a
“positive” section h of E . Locally, away from L, this is given by a
parametrisation of a “spacelike” submanifold in R3,19. We do not take time to
explain here the extension of this notion to the singular fibres.
Explanation
At each point of U ⊂ B \ L the image of dhU is a positive subspace in R3,19 with a basis

corresponding to ∂
∂ti

. Let ωi be the corresponding hyperkähler structure on the fibres of π,

these can be extended in the horizontal directions to ω̃i such that

Ψh = λdt1dt2dt3 −
∑

ω̃idti

is a closed positive 3-form , for suitable λ > 0.



Dictionary item 4.
The adiabatic analogue of a torsion-free structure in the class C ∈ H3(M7) is
a “maximal positive” section h of E0. Locally, away from L, this is given by a
parametrisation of a “maximal spacelike” submanifold in R3,19.



Explanation
I Maximal submanifolds in indefinite spaces like R3,19 are defined just as

minimal submanifolds in Euclidean spaces through the Euler-Lagrange
equations for the volume functional. In our setting there an an adiabatic
analogue of Hitchin’s functional, with gradient flow given by a version of
mean curvature flow.

I Introduce a parameter ε > 0. Given h, we have a positive form

Ψh,ε = λdt1dt2dt3 + ε
∑

ω̃idti .

The condition that h maps to a maximal submanifold is necessary and
sufficient for the existence of a (local) formal power series solution to the
torsion-free equation

Φε = Ψh,ε + ελ′dt1dt2dt3 +
∞∑
k=2

φkε
k .

The fibre diameter is O(ε1/2) and the base diameter is O(1).



Adiabatic analogues of the standard questions



I Fix a cohomology class χ ∈ H1(B ;E0) and so affine bundle E . Is there a
positive section of E ?

I If so, can we additionally choose the section to be maximal?

I Can we find a maximal section as the limit of a mean curvature
flow?

I Adiabatic associatives and co-associatives? See Part II.

I Can we describe the moduli space of maximal sections, the
“boundary” of the moduli space and relations to the periods
χ ∈ H1(B ,E0)?



It should be emphasised that many of the foundations of this
adiabatic theory are not yet complete. and the adiabatic analogues of
the standard questions still seem very difficult (Deformation theory,
examples, short term existence for mean curvature flow . . . )

The adiabatic analogues of the “standard questions” still seem very
difficult



There are more decisive results for boundary value problems.

I Y. Li: Let Ω be a bounded convex domain in R3 and S ⊂ R3,19 the
(spacelike) graph of a function f : ∂Ω→ R19. Then the following are
equivalent:

I S bounds a maximal spacelike submanifold in R3,19;
I S bounds some spacelike submanifold in R3,19;
I

|f (x)− f (y)| < |x − y |

for all distinct x , y ∈ ∂Ω.

I Lambert and Lotay: long time existence and convergence for mean
curvature flow in R3,19.



Part II. Adiabatic associative submanifolds

Joint work with C. Scaduto (Simons Collaboration postdoc 2018-19).

Let (M7, φ) be a G2-manifold. An associative submanifold of M is a
3-dimensional submanifold P such that φ vanishes on the normal bundle of P .

This is an elliptic equation of index 0. We expect that for generic φ the
associative submanifolds are isolated. One is interested in the possibility of
enumerative theories, based on counting associative submanifolds in a given
homology class.



Connection with moduli
If P ⊂ M is associative the restriction φ|P is the volume form of P and so∫

P

φ > 0.

So if we know that a homology class π ∈ H3(M) is represented by an
associative submanifold we get a constraint on the cohomology class
[φ] ∈ H3(M):

〈[φ], π〉 > 0.

This gives one kind of “boundary” in the moduli space of torsion-free G2

structures on M .



The “standard conjecture” (Joyce)

In a generic 1-parameter family φt there are two reasons why the count of
associative submanifolds can change:

I “Joyce-Nordström crossing”

I “Smoothing of Harvey-Lawson cone singularities”

(and possibly another phenomenon arising from multiple covers which we
ignore here, cf. the lecture of Doan in this meeting).



J-N crossing

A pair P ,Q of associative submanifolds in M do not generically intersect
(3 + 3 < 7). In a 1-parameter family φt the submanifolds Pt ,Qt will
generically intersect for a discrete set of parameter values (4 + 4 = 7 + 1). If
t0 is such a value then there is an associative created or destroyed, modelled
on the connected sum Pt0]Qt0.



Smoothings of H-L cones
There is an explicit singular associative in C3 ⊂ R7 = C3 × R which is a cone
on a T 2:

{(z1, z2, z3) : |z1|2 = |z2|2 = |z3|2, Im(z1z2z3) = 0}.

There are three explicit, topologically distinct , smoothings of this,
corresponding to three ways of writing T 2 = ∂(S1 × D2).

Suppose that Π ⊂ (M , φt0) is a singular associative with this tangent cone. In
a 1-parameter family φt we could encounter a family of associatives Pt for
t ≤ t0 converging to Π as t → t0 and two such families Qt ,Rt for t > t0.



Topologically, the triple of 3-manifolds Pt ,Qt ,Rt are related by Dehn surgeries.



The verification of Joyce’s “standard conjecture” seems a long way off: it
would require a deep understanding of singularity formation for associative
submanifolds.



Adiabatic version
Let ω1, ω2, ω3 be a hyperkähler structure on X . For v ∈ R3 \ {0} there is
complex structures Iv on X with Kähler form ωv =

∑
viωi .

This has a cohomology class [ωv ] which lies in

H+ = Span(ω1, ω2, ω3) ⊂ H2(X ) = R3,19.

With the product G2 structure on X × R3, if Σ ⊂ X is an Iv -complex curve
then

Σ× Rv ⊂ X × R3

is an associative submanifold.



Let σ ∈ H2(X ) with σ.σ ≥ −2.

If [ωv ] is a positive multiple of the projection of σ to H+ there is a
complex curve in the class σ.

When σ.σ = −2 this is unique and typically (see later) a smooth embedded
2-sphere.

The condition on the line R[ωv ] is that it is the gradient line of the restriction
of the linear function on R3,19 defined by σ to the subspace H+ ⊂ R3,19.



Now consider an adiabatic set-up (B , L,E , h). If this comes from a fibration
π : M → B there is an exact sequence

0→ H1(E0)→ H3(M)→ R→ 0,

for a certain homology group H1(E0). This can be described by cycles which
are embedded (directed) graphs in B , with edges labelled by locally constant
sections of E0 and:

I For an edge which terminates on a vertex on L the label is multiple of the
corresponding vanishing cycle.

I At a vertex in B \ L the sum of the labels of the incoming edges is 0.





We restrict attention here to the case when the labels are integer classes of
square −2.

The label of an edge defines a gradient vector field, as in the product case
above.

We define a calibrated cycle to be one where each edge is a segment of an
integral curve of the gradient vector field.



In simple situations, at least, it can be shown that such a calibrated cycle
defines an associative submanifold in (M ,Φε), for small ε.



Connection with moduli problem. One kind of boundary of the moduli
space of positive maximal sections occurs when two components on L which
are joined by a gradient curve come together. which implies that 〈[Γ], χ〉 → 0.
This corresponds to associative 3-spheres in M shrinking to a point.



One would like to “count” calibrated cycles in a given class in H1(E0) and
understand how this count can change in 1-parameter families.

There are adiabatic analogues of JN crossing and HL smoothings. These arise
from the fact that a complex curve in X could be reducible, with several
components.

If σ21 = σ22 = −2 and σ1.σ2 = 1 then σ3 = −(σ1 + σ2) has

σ23 = −2 + 2− 2 = −2.



JN crossing
Gradient flow lines in B do not generically intersect (1 + 1 < 3) but in a
1-parameter family they do. So we can expect to see:



HL smoothings
The gradient vectors defined by two classes σ1, σ2 are generically linearly
independent, but in a 1-parameter family we can expect to see:



The analysis of calibrated cycles is relatively straightforward, so one can hope
to prove an adiabatic analogue of the “standard conjecture”


