Asymptotic analysis, moment maps and numerical approximations in Kähler geometry

Simon Donaldson¹ ²

¹Simons Center for Geometry and Physics Stony Brook

> ²Imperial College London

May 24, 2021

Simon Donaldson, Asymptotic analysis, moment maps and numerical approximation

There are many general *existence theorems* in Kähler geometry (and also important open questions). These include results for

- Metrics with zero Ricci curvature on manifolds with c₁ = 0 (Calabi-Yau);
- Hermitian Yang-Mills connections on stable holomorphic vector bundles;
- Constant scalar curvature K\u00e4hler (CSCK) metrics and extremal metrics (no completely general existence theorem, but many results linking existence to "K-stability").

In this talk we will focus on Calabi-Yau (CY) and CSCK metrics. Based on papers:

- Scalar curvature and projective embeddings II arxiv 0407534
- Some numerical results in complex differential geometry arxiv 0512625
- Numerical approximations to extremal metrics on toric surfaces(with R. Bunch) arxiv 0803.0987

Recall that the CY equation can be set up a second order PDE for a potential ϕ . It is a particular case of finding a metric $\omega_{\phi} = \omega_0 + i\overline{\partial}\partial\phi$ with prescribed volume form

$$\frac{1}{n!}\omega_{\phi}^{n}=\mu$$

The CSCK equation is a fourth order PDE for ϕ .

General existence theorems do not give information about the solution.

For example, a smooth quartic surface $\{P = 0\}$ in **CP**³ has, according to Yau, a zero Ricci curvature metric. What is the diameter, the maximum size of the curvature...? Even approximately.

These quantities to depend on the particular polynomial *P*.

We are interested in finding numerical approximations to the metrics.

Strategic questions:

- How to approximate general Kähler metrics, in a form which can be put on a computer.
- How to find approximations to the CY and CSCK metrics, i.e. to the solutions of these nonlinear PDE.

For (1) we use *projective embeddings*, i.e. we consider embeddings $X \rightarrow \mathbf{CP}^N$ and the restriction of the standard Fubini-Study metric on \mathbf{CP}^N .

Background Theory I: asymptotic analysis

Let $L \to X$ be a positive line bundle over a compact complex line bundle. We consider the powers L^k , $k \ge 1$.

An L^2 -metric on $H^0(X; L^k)$ is determined by a fibrewise Hermitian metric *h* on *L* and a volume form μ on *X*. Given this data we have Bergman functions $B_k : X \to \mathbf{R}$.

$$B_k = \sum |s_{\alpha}|^2,$$

where s_{α} is any orthonormal basis of $H^0(L^k)$. Alternatively, $\sqrt{B_k}(x)$ is the norm of the evaluation map

$$\operatorname{ev}_{\boldsymbol{X}}:H^0(L^k)\to L^k_{\boldsymbol{X}}.$$

Note that

$$\int_X B_k \ \mu = \dim \ H^0(L^k),$$

which, for large k, is given by the Riemann-Roch formula.

 B_k gives the "density" of the holomorphic sections.

The Bergman function and projective embedding The L^2 metric on $H^0(L^k)$ defines a Fubini Study metric on $P(H^0(L^k)^*)$. For sufficiently large *k* there is an intrinsic embedding

$$X \to \mathbf{P}(H^0(L^k)^*).$$

Let $\omega_{FS,k}$ be k^{-1} times the restriction of the Fubini-Study metric to X and ω_h be the *i* times the curvature of the Hermitian line bundle (L, h). Then

$$\omega_{FS,k} = \omega_h + ik^{-1}\overline{\partial}\partial\log B_k.$$

Asymptotic theory

Take $\mu = \mu_h = \omega_h^n / n!$. As $k \to \infty$ there is a Yau-Tian-Zelditch-Caitlin-Tian-Lu expansion

$$B_k \sim k^n (1 + a_1 k^{-1} + a_2 k^{-2} + \dots)$$
 (***)

where a_i are functions on X given by expressions in the curvature tensor of (X, ω_h) and its derivatives. In particular a_1 is one half the scalar curvature.

Note that the integrals of the a_i are the terms appearing in the Riemann-Roch formula so there is some similarity with the "local index theorem".

Corollary (Tian) The metrics $\omega_{FS,k}$ converge to ω_h as $k \to \infty$. In fact

$$\omega_{FS,k} = \omega_h + O(k^{-2}).$$

So any Kähler metric on X (in the class $c_1(L)$) can be approximated by "algebraic" metrics, induced from the Fubini-Study metric by embeddings of X. Two points of view:

- Fix the embedding X → CP^N and vary the Hermitian metric on C^{N+1} defining the FS metric on CP^N
- Fix the metric on C^{N+1} and vary the embedding by the action of GL(N + 1, C).

One can show that there are algebraic metrics ω_k of degree k, converging to all orders as $k \to \infty$. That is, $\omega_k = \omega_h + o(k^{-r})$ for all r, analogous to the approximation of smooth functions by truncated Fourier series.

A variant: let μ be an arbitrary volume form. Then

$$B_k \sim rac{\mu_h}{\mu} k^n + \mathcal{O}(k^{n-1}). \qquad (***)_\mu$$

Idea of proof of the asymptotic expansion (***). Let $x \in X$. From the definition, $B_k(x) = |\sigma_x(x)|^2$ where $\sigma_x \in H^0(L^k$ is the section of L^2 norm 1 which is L^2 -orthogonal to the sections vanishing at x.

Let $\Lambda \rightarrow \mathbf{C}^n$ be the Hermitian holomorphic line bundle with curvature the standard metric on \mathbf{C}^n . The same definitions make sense and the section σ_0 has rapid decay :

$$|\sigma_0(z)| = \exp(-|z|^2/2).$$

Replacing *L* by L^k we replace the Kähler form ω_h by $k\omega_h$. That is, we scale lengths by a factor $k^{1/2}$. As $k \to \infty$ the rescaled geometry around *x* converges to the flat model. For large *k* the section σ_x is a small perturbation of σ_0 .

General principle

The sections of L^k can "see" the metric geometry of X on length scales down to $O(k^{-1/2})$

Now turn to item (2): how to find good approximations to CY and CSCK metrics.

The CSCK metrics are minima of the *Mabuchi functional*. One approach would be to seek minima of the functional restricted to the algebraic metrics of degree k. That is, we minimise a function on a finite dimensional space M_k of $N_k \times N_k$ Hermitian matrices where $N_k = \dim H^0(L^k) = O(k^n)$. Such minima should converge rapidly to the CSCK metric, to all orders in k.

There is a similar discussion in the CY case.

Another, related, approach uses explicit iterative procedures.

Background Theory II: moment maps and Geometric Invariant Theory

Let p_1, \ldots, p_d be distinct points in $S^2 \subset \mathbb{R}^3$. If d > 1 it is a fact that there is a Möbius map $g : S^2 \to S^2$ so that $p'_i = g(p_i)$ is a "balanced" configuration with

$$\sum p_i' = 0 \in \mathbf{R}^3.$$

Writing $S^2 = \mathbf{P}(\mathbf{C}^2)$, we choose vectors $P_i \in \mathbf{C}^2$ representing p_i and define

$$F(P_1,\ldots,P_d)=\sum \log |P_i|^2.$$

Then $SL(2, \mathbb{C})$ acts on the set of d-tuples (P_1, \ldots, P_d) and the balanced configuration corresponds to a minimum of the function *F* on the $SL(2, \mathbb{C})$ -orbit.

More generally, we have an embedding \mathbb{CP}^N in the Lie algebra of SU(N + 1). If ν is a measure on \mathbb{CP}^N we say ν is balanced if its centre of mass in Lie(SU(N + 1)) is zero. Under very mild hypotheses on ν we can find a $g \in SL(N + 1, \mathbb{C})$ such that $g(\nu)$ is balanced. This minimises a function similar to F above. Suppose that X has $c_1 = 0$ and trivial canonical bundle, so there is a measure $\mu = \text{const.}\Theta \land \overline{\Theta}$ on X, for a trivialising section Θ . Let $L \to X$ be a positive line bundle as before, giving embeddings $X \to \mathbb{CP}^{N_k}$. Regarding μ as a measure on \mathbb{CP}^{N_k} (supported on X), the theory above allows us to move X to a balanced embedding. Let $\tilde{\omega}_k$ be k^{-1} times the restriction of the Fubini-Study metric to this balanced embedding.

Then it can be shown that the $\tilde{\omega}_k$ converge to the Calabi-Yau metric on X in the class $c_1(L)$ as $k \to \infty$.

In one direction, it follows from the definitions that $\tilde{\omega}_k$ is characterised by the property that B_k is constant, so if we know that the $\tilde{\omega}_k$ converge then the fact that the limit is the CY metric follows from $(***)_{CY}$.

To treat the CSCK case we use a variant of these ideas. We call $X \subset \mathbf{CP}^N$ balanced if the centre of mass of the measure induced by the restriction of the Fubini-Study metric is zero. A variety can be moved to a balanced one by a projective transformation if and only if it is "Chow stable". Assuming this is the case we get metrics $\tilde{\omega}_k$ as above and it can be shown that *if* X admits a CSCK metric ω_{CSCK} then the $\tilde{\omega}_k$ converge to ω_{CSCK} .

(More precisely, this is known to hold if X has no holomorphic automorphisms.)

As before, if we know that the $\tilde{\omega}_k$ converge the fact that the limit is CSCK follows from the appearance of the scalar curvature in (***).

Iteration to find the $\tilde{\omega}_k$ for fixed k. (CSCK case).

Let \mathcal{H} be the infinite dimensional space of metrics on L and M_k be the finite dimensional space of metrics on $H^0(L^k)$.

We have two constructions: $M_k \to \mathcal{H}$ and $\mathcal{H} \to M_k$.

The first assigns to a metric on the vector space the metric on the line bundle corresponding to the restriction of the

Fubini-Study metric. The second assigns to a metric on the line bundle the L^2 metric on the space of sections defined using the volume form μ_h . Composing these we get a map $T : M_k \to M_k$. It can be shown that for any starting point $m \in M_k$ the iterates $T^j m$ converge to a fixed point as $j \to \infty$, and this fixed point corresponds to a balanced embedding.

The same holds in the Calabi-Yau case, except that we use the given volume form μ to define the L^2 metric.

Putting this together we have explicit schemes to find CY metrics and CSCK metrics, when they exist.

Remark The relation between the sequence of finite dimensional questions in M_k and the infinite dimensional question in \mathcal{H} can be developed a long way and is connected to Geometric Quantisation.

To see the iteration explicitly in the CY case, let s_{α} be any basis of $H^0(L^k)$ and *G* be a Hermitian metric defined by a matric $G_{\alpha\beta}$.

- Form the inverse matrix $G^{\alpha\beta}$.
- 2 For each γ , δ define a function $f_{\gamma\delta}$ on X by

$$f_{\gamma\delta}=rac{{f s}_\gamma\overline{f s}_\delta}{D},~~(****)$$

where $D = \sum G^{\alpha\beta} s_{\alpha} \overline{s}_{\beta}$. (While the s_{α} are not functions, the formula(****) makes invariant sense.)

Now set

$$ilde{G}_{\gamma\delta}={m c}\int_X {m f}_{\gamma\delta}\;\mu$$

where c is a normalising constant chosen so that

$$\sum G^{\gamma\delta} \tilde{G}_{\gamma\delta} = N + 1.$$

The iteration is to pass from G to \tilde{G} .

The CSCK case is the same except that we need to compute a volume from the Fubini-Study metric at each stage. This extra complication reflects the extra complication of the fourth order PDE.

LIMITATION A

The $\tilde{\omega}_k$ will usually only converge slowly to the CSCK or CY metric, as $O(k^{-1})$. The rate of convergence will be related to the size of the next terms in the asymptotic expansion.

However If the $\tilde{\omega}_k$ are reasonably close to the actual solution we can use different techniques (Newton method) to find better approximations like ω_k , converging to all orders.

LIMITATION B

In a region of X where the actual solution has $|\text{Riem}| \sim C$ the natural length scale is $O(C^{-1/2})$ so to get good approximations one needs to take $k \sim C$. If the there is a small region where the curvature is large we need to take an impractically large value of k to study it. But on the bulk of the manifold a much smaller value of k suffices.

In the context of this Simons Collaboration, the method is well-adapted to studying points "deep inside moduli space", opposite to "gluing techniques".

A possible approach to get around Limitation B is to combine different values of k on different parts of the manifold. (cf. Other talks in this meeting.)

EXAMPLES

1. Toric surfaces

A toric manifold is associated to a polytope $P \subset \mathbf{R}^n$ and a basis of sections of L^k to lattice points $k^{-1}\mathbf{Z}^n \cap P$. The metric matrices are diagonal.

Some differential geometry on a toric surface *X*. A 4-fold cover of the polygon *P* is embedded as totally geodesic submanifold Σ in *X*. The curvature tensor of *X* has 4 components

- The Scalar curvature S,
- The Gauss curvature K of Σ .
- A quadratic differential on Σ which corresponds to Ric₀.
- A quartic differential on Σ which corresponds to the Weyl curvature W.

To compare different manifolds we scale so that the average value of the scalar curvature is 1.

Then for example **CP**² has K = 1/6, S = 1 as the only non vanishing components while for $S^2 \times S^2$ the non-vanishing components are $|W|^2 = 1/8$, S = 1

The "hexagon manifold" is the Kähler-Einstein surface of Tian-Yau and Siu: the blow-up of \mathbf{CP}^2 in three general points. We find it has

Max Riem	2.48
Min Riem	0.61
Max K	0
Min K	-0.82
Max W	2.1
Ric ₀	0

These are obtained using k = 20 but one gets a reasonable approximation using k = 6 in which case there are just 6 independent matrix entries to find.

The "heptagon manifold" is obtaining by blowing up 4 points and has an extremal metric with:

Max Riem	13.9
Min Riem	0.54
Max K	.25
Min <i>K</i>	-5.5
Max W	11.7
Max Ric ₀	4.3

from an approximation obtained using k = 45.

2.A K3 surface

matrix entries to find.

We consider the double cover of the plane branched over the curve D = 0 where $D = x^6 + y^6 + z^6 = 0$. Holomorphic sections can be expressed as $p + q\sqrt{D}$ where p is a polynomial of degree k and q of degree k - 3. One gets a reasonable approximation to the Calabi-Yau metric using k = 6. Taking account of the symmetries there are just 11

.