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Related to a lecture in the collaboration meeting of June 2018.



SECTION 1: Description of problems.

Problem I . “multivalued harmonic functions”.

Let (M, g) be a compact (oriented) Riemannian n-manifold and
Σ ⊂ M a (co-oriented) codimension-2 submanifold with [Σ]
even in Hn−2(M).

Then there is a flat real line bundle V → M \ Σ with holonomy
−1 around a small loop locally linking Σ.

There is also a double branched cover p : M̃ → M, branched
over Σ.



We are interested in harmonic 1-forms on M \ Σ with values in
V .
i.e. sections a of T ∗M ⊗ V with da = 0, d∗a = 0.

These pull back to ordinary 1-forms p∗(a) on M̃ \ p−1(Σ).

If a is in L2 one can show that p∗(a) defines a de Rham
cohomology class

χ ∈ H1(M̃, R)−,

the −1 eigenspace of the action of the covering involution on M̃.

Conversely, given any such class χ a version of the Hodge
Theorem shows that there is a unique harmonic representative
p∗(a).



We are interested in the question: for which (g, Σ, χ) is the form
a bounded on M \ Σ.



Fundamental Example n = 0, so Σ is a finite set of points.

The harmonic condition is conformally invariant so M should be
regarded as a Riemann surface.

We can write a = Re(α) where α is a holomorphic 1-form on
M \ Σ, with values in V .

The square α⊗2 is a holomorphic quadratic differential on M \Σ.



In a local complex co-ordinate z centred on a point of Σ the
condition that a ∈ L2 means that

α = c0z−1/2dz + c1z1/2dz + c2z3/2dz + . . . .

Then α⊗2 = c2
0z−1dz2 + . . . .

The condition that the form a is bounded is equivalent to
c0 = 0, which is equivalent to the condition that α⊗2 is a
holomorphic quadratic differential on M. In this case

α⊗2 = c2
1z dz2,

so α⊗2 has a simple zero provided that c1 6= 0.



Recall a piece of standard theory. Given a manifold W and a
class θ in H1(W ; R) we form a flat bundle Fθ over W with fibre
R and structure group (R, +) such that sections of Fθ

correspond to closed 1-forms on W representing θ in de Rham
cohomology.



Similarly, given the class χ ∈ H1(M̃, R)− we can form a bundle
E → M \ Σ with fibre R and structure group the isometries of R
(i.e. y 7→ ±y + c) such that our 1-form a is the derivative of a
harmonic section h of E .

When n = 2 we have a local description

h = Re
(

Az1/2 + Bz3/2 + . . .
)

,

where A = 2c0, B = (2/3)c1.

The condition that a is bounded is equivalent to A = 0.



In general (for any n), the harmonic section h has an asymptotic
development with leading term h = Aζ1/2 + O(r3/2) where r is
the distance to Σ and ζ is a complex normal co-ordinate.

Now A is a section of the complex line bundle N−1/2
Σ over Σ,

where NΣ is the normal bundle.

If A = 0 then h = Bζ3/2 + O(r5/2) where B is a section on
N−3/2

Σ over Σ.



So for any (g, Σ, χ) we get a section A(g, Σ, χ) of N−1/2
Σ and if

this vanishes we have a section B(g, Σ, χ) of N−3/2
Σ .

Deformation Theorem
Suppose that A(g0, Σ0, χ0) = 0 and B(g0, Σ0, χ0) is
nowhere-vanishing on Σ. Then for any (g, χ) close to (g0, χ0)
there is a unique Σ close to Σ0 such that A(g, Σ, χ) = 0.

A proof of this was outlined in the June 2018 talk, written up in
arxiv 1912.08274. The approach we will outline in Section III
could be used to give a somewhat different proof.

There are related, earlier, results of Takahashi for harmonic
spinors: arxiv 1503.00767.



This Deformation Theorem can be thought of as a
generalisation to higher dimensions of the fact that holomorphic
quadratic differentials with simple zeros on a Riemann surface
M are locally parametrised by the class of the real parts of their
square roots in H1(M̃; R)−, as in Ivan Smith’s talk.



Problem II “branched maximal sections”.

Let Rn,m be the standard (n + m)-dimensional vector space
with quadratic form of signature (n, m).
A n-dimensional submanifold of Rn,m is called positive if its
tangent spaces are positive subspaces of Rn,m.

There is an induced volume form on positive submanifolds
which leads to Euler-Lagrange equations for the volume
functional, just as in the familiar Euclidean case. The equations
are mean curvature= 0.

Solutions of these equations are called maximal submanifolds.



Example Consider the graph of a real-valued function f on Rn.

I In Euclidean space Rn+1 the minimal submanifold equation
is

∑

i

∂

∂xi

(
1

√
1 + |∇f |2

∂f
∂xi

)

= 0

I In Lorentzian space Rn,1 the positive condition is |∇f | < 1
and the maximal submanifold equation is

∑

i

∂

∂xi

(
1

√
1 − |∇f |2

∂f
∂xi

)

= 0.



Remarks

I If ∇f is small the equations are approximately

Δf ±
∑

fij fi fj = 0.

I The maximal condition can be stated as the condition that
the restriction of the coordinate functions to the
submanifold are harmonic, with respect to the induced
metric.



A vector v ∈ Rn,m with v2 = −1 defines a reflection

Rv : Rn,m → Rn,m

Rv (w) = w + (v .w)v .

Let Γ be the affine extension of O(n, m), so we have an exact
sequence of group homomorphisms

0 → (Rn,m, +) → Γ → O(n, m) → 1.

We have a set of affine reflections in Γ, which map to reflections
in O(n, m).



Let (M, Σ) be as before but now we do not need a Riemannian
metric on M. Let V → M \ Σ be a flat vector bundle with fibre
Rn,m and structure group O(n, m) such that the holonomy
around a loop locally linking Σ is a reflection.

We consider lifts of V to a flat affine bundle E with structure
group Γ such that the holonomy around a linking loop is an
affine reflection. These are parametrised by a certain
cohomology group which we denote by H1

V : a finite dimensional
real vector space.

Fix such a bundle E .



A section of E over M \ Σ is represented in a flat local
trivialisation by a map to Rn,m.

We say that the section of E over M \Σ is maximal if these local
maps are embeddings with images maximal submanifolds.



To discuss the behaviour around Σ we consider for simplicity
the case when m = 1.

Write Rn,1 = Rn × R with the reflection R0 acting as −1 on the
R factor.

Let S be a codimension-2 submanifold of Rn and choose a
diffeomorphism φ from C × Rn−2 to Rn which takes {0} × Rn−2

to S and such that dφ defines an isometry from the (trivial)
normal bundle of {0} × Rn−2 to the normal bundle of S.



Let V0 be the flat Rn,1 bundle over Rn \ S with holonomy R0

around S. We say that a maximal section h0 of V0 is branched if

h0(x) = (x , f (φ−1(x))

where
f (z, t) = Re(B(t)z3/2) + o(r3/2),

with B a non-vanishing complex-valued function of t ∈ Rn−2.

More precisely, everything here is local, defined on suitable
small open sets and we should also fix a lift of φ to the flat
bundles on the complements of the codimension-2 sets
{0} × Rn−2 and S.



Also, we require that f lies in a certain function space that we
will define later.

But all sensible choices of function space should lead to
equivalent definitions.



Going back to our set-up (M, Σ, E), we get a corresponding
notion of a branched maximal section; locally equivalent to that
considered above, for some S.



A small diffeomorphism θ : M → M takes a maximal section
branched along Σ to one branched along θ(Σ). The only
intrinsic continuous data in the triple (M, Σ, E) is the flat
Γ-bundle E and in particular the cohomology class χ ∈ H1

V .



Deformation Theorem
Suppose that (M, Σ, E) admits a branched maximal section h0

with B nowhere vanishing. Then for any small deformation E ′ of
E there is a branched maximal section h′ of (M, Σ, E ′) close to
h0, and h′ is unique up to small diffeomorphisms of M.



SECTION 2: Context 1.
(This will be quiet vague; apologies for errors or omissions.)

We are particulary interested in the cases dimM = n = 2, 3.
The notions above are related to Calabi-Yau 3-folds and
G2-manifolds, respectively, fibred over a base M with
hyperkähler 4-manifolds as fibres:

X 4 → Z → M.

In particular to “adiabatic limits” when the fibres are very small.

The deformation statements on M that we have discussed are
the counterparts of Torelli-type theorems for deformations of Z .



The harmonic 1-form set-up arises when the generic fibre is the
Eguchi-Hanson ALE manifold (i.e. type A1). The fibres over Σ
acquire ordinary double point singularities. This is
well-developed in the case when n = 2 and everything can be
expressed in terms of quadratic differentials, as in the talk of
Ivan Smith in this meeting. There are also extensions of the
theory with n = 2 to other ALE fibres, as mentioned in Ivan
Smith’s talk.



For n = 3, in the case when Σ is empty, constructions on these
lines were made by Joyce and Karigiannis, starting with a
nowhere vanishing harmonic 1-form on M3 and producing an
approximate G2-structure on a 7-manifold fibred over M3 with
Eguchi-Hanson fibres. (They used this as a component in a
smoothing theory, for compact manifolds.)

Work of Barbosa (presented in his lecture at the October 2020
collaboration meeting) develops this kind of picture for n = 3,
with non-empty Σ and for other ALE fibres.



The maximal submanifold set-up arises when the generic fibre
is the K3 manifold X . The fibres over Σ acquire ordinary double
point singularities and the reflections appear from the
Picard-Lefschetz formula. We take m = 19, so R3,19 is H2(X )
and R2,19 is the orthogonal complement in H2(X ) of a fixed
Kähler class.

When n = 2 there is a Weierstrasse representation of maximal
positive submanifolds. This leads to a holomorphic description
of branched maximal sections in terms of a complex structure
on M and a holomorphic 1-form with values in V ⊗ C, which is
the usual complex geometry point of view.



Remarks

I One could also take m = 3 and consider 4-torus fibres, as
in the work of Baraglia (who was the first to introduce the
maximal submanifold equation in G2 geometry). But then
one would need some other class of singular fibres.

I The metric geometry around the double points of the
singular fibres should be modelled on the Calabi-Yau
metric on C3 discovered by Yang Li.

I There should be a theory with n = 4, for fibred
Spin(7)-manifolds with hyperkähler fibres.



Enumerative geometry
When n = 2, with a quadratic differential on a Riemann surface,
there are theories counting configurations of trajectories on the
surface, as described in Ivan Smith’s talk, and these are related
to (special) Lagrangian submanifolds in the corresponding
complex 3-fold X and hence the Fukaya category of Z .

When n = 3 there are similar (partly conjectural) theories
counting configurations of local gradient flow lines and level
sets, related to associative and coassociative submanifolds in
the G2 setting. For the case of ALE fibres these were
considered by Pantev and Wijnholt and in the K3 case by the
speaker and Scaduto, as presented in the June 2019
collaboration meeting and arxiv 2004.07314.



SECTION 3.
3.1 Nash-Moser Theory
(Sketch : following X.Saint-Raymond, A simple Nash-Moser
Implicit function theorem L’Enseignement Math. 1989)

Let V , W be Fréchet spaces, with scales of norms ‖ ‖k : for
example C∞ functions with the Ck norms.

Suppose that there are smoothing operators Sε : V → V with,
for r ≥ 0:

‖Sεu‖k+r ≤ Cε−r‖u‖k

and
‖u − Sεu‖k−r ≤ Cεr‖u‖k .

And suppose that the norms satisfy interpolation inequalities.



Let U ⊂ V be an open subset and F : U → W be a smooth
map—for example a differential operator—satisfying certain
natural estimates.
Suppose that for each u ∈ U there is a right inverse Qu to the
derivative of F at u which obeys an estimate, for some d :

‖Quσ‖k ≤ C (‖σ‖k+d + ‖u‖k+d‖σ‖2d)

Suppose that F(u0) = 0 for some u0 ∈ U . Then for ρ in a
neighbourhood of 0 in W there is solution near to u0 of the
equation F(u) = ρ.



ALSO (the case we need):

if F = F0 is one of a smooth family of maps Ft , where t ∈ RN

say, then for small t there is a solution ut near u0 of the
equation Ft(ut) = 0.



The point is that , compared to the implicit function theorem in
Banach spaces, the inverse Q of the linearisation is allowed to
“lose” any fixed number of derivatives.

The proof involves introducing judicious smoothings of the
sequence of approximations obtained by Newton’s method.



3.2 The differential-geometric set-up (for the branched
maximal section problem).
First, imagine that Σ is empty. The orthogonal complement of
the image of the derivative of h0 is a line subbundle ν ⊂ V . We
consider a normal variation h(x) = h0(x) + f (x) where f is a
section of ν. We let F(f ) be the projection of the mean
curvature of the section h to ν. So F maps (small) sections of ν
to sections of ν. The derivative at 0 is given by a “second
variation’ formula:

L(f ) = ∇∗∇f + |S|2f ,

where S is the second fundamental form of the section. This is
a positive operator, hence invertible.



On a neighbourhood Ω of Σ ⊂ M we can write E = E+ ×M E−

where E± are flat bundles.

Choose the line subbundle ν to be given by E− on Ω and by the
normals, as above, away from Ω.

Suppose for simplicity that the flat bundle E+ is trivial over Ω
and fix a trivialisation. Then we can identify Ω ⊂ M with an
open set Ω′ ⊂ Rn so that Σ maps to a submanifold S ⊂ Ω′ ⊂ Rn

and we have a flat line bundle E− over the complement of S.

Under this identification, the section h0 is h0(x) = (x , u0(x)) for
x ∈ Ω′ and u0 a section of E−.



Let ψ : Ω′ → Ω′ be a small compactly-supported
diffeomorphism and f be a section of E− (with suitable
behaviour at the singular set S). Then we can define a new
section h over Ω′ by

h(x) = (ψ(x), u0(x) + f ).

We require that dψ is an isometry on the normal bundle of S.

In this way we parametrise variations of h0 by pairs (f , ψ) where
ψ is a suitable diffeomorphism of a neighbourhood of S (or
equivalently Σ) and f is a section of the line bundle ν.



We define F(ψ, f ) to be the projection of the mean curvature of
this section to ν.
Near Σ, in the co-ordinates given by the identification with
Ω′ ⊂ Rn, we have

F = Δg(u),

where u = u0 + f and g is the metric

gij = 〈ψi , ψj〉 − uiuj .

The point here is that the singularity of u is at the fixed set S.

Our condition on ψ means that the metric is standard on the
normal bundle of S.



The derivative of F with respect to f is a Laplace-type operator

L : Γ(ν) → Γ(ν).

The derivative of F with respect to ψ is a linear operator P
taking vector fields ṽ on M to Γ(ν). One finds the formula

P(v) = ∇ṽF − L(∇ṽ u).



III.3 Function spaces and estimates
The flat model is the Laplace operator Δ acting on sections of
the line bundle with holonomy −1 over C∗ × Rn−2. The Greens
function can be expressed by a formula involving Bessel
functions. It has homogeneity G(λx , λy) = λ2−nG(x , y).
Fix α ∈ (0, 1/2). We work with Hölder spaces C,α. Note that in
this context if f is a section in C,α then |f | = O(rα) where
r = |z|.

By estimating integrals one finds that if ρ ∈ C ,α then f = Gρ
has an asymptotic expansion

f ∼ Re
(

Aρz1/2 + Bρz3/2
)

,

for complex valued functions Aρ, Bρ on Rn−2 with

Aρ ∈ C1,α+1/2 , Bρ ∈ C ,α+1/2



Let
Dk = {ρ : Dρ ∈ Cα},

for all operators D which are the product of at most k tangential
vector fields. For example, r∂r , ∂θ and any derivative in the
Rn−2 direction are tangential, but not ∂r .
Let

Ek+2,α = {f ∈ L∞ : Δf ∈ Dk ,α.

Then we have
A : Ek+2 → Ck+1,α+1/2.

Let Ek+2
0 ⊂ Ek+2 be the kernel of A.



The Fréchet spaces E∞
0 =

⋂
Ek

0 and D∞ =
⋂

Dk give a good
setting for the nonlinear analysis.

If u ∈ Ek+2
0 then one finds that

Δu,
∑

uijuiuj ∈ Dk



We also want estimates in some larger spaces.

If rρ ∈ C ,α then Aρ is defined and lies in C ,α+1/2 (but Bρ is not
defined).

(The condition that rρ ∈ C,α allows ρ which are O(r−1/2)



We define similar function spaces on the manifold M. Then we
have set up our problem as

F : U → D∞,

with U ⊂ (E∞
0 × C∞).

That is F(u, ψ) where u ∈ E∞
0 , ψ ∈ C∞.

We just have to check that this map, with these function spaces,
satisfies the conditions to apply the Nash-Moser theory.



To invert the linearised operator we have to solve the equation

Pṽ + Lf = ρ,

for any ρ ∈ D∞, where ṽ is a vector field on M and the O(r1/2)
term A(f ) of f vanishes.
Following some analysis of the Laplace type operator L, one
finds that there is a solution of Lg = ρ but with A(g) not
necessarily 0.

Recall that
Pṽ = ∇ṽF − L(∇ṽ u).

So for a solution we must have

L(g + ∇ṽ u − f ) = ∇ṽF

i.e.
g + ∇ṽ u − f = G(∇ṽF),

where G = L−1.



The condition A(f ) = 0 means that we need

A(∇ṽ u) − A(G∇ṽF) = −A(g).

Let v be the normal component of ṽ on Σ, so v ∈ Γ(NΣ).
THE CRUCIAL FACT is that

A(∇ṽ u) =
3
2

(v .B)

where . is the algebraic pairing

NΣ × N−3/2
Σ → N−1/2

Σ .

This is essentially the formula

d
dz

z3/2 =
3
2

z1/2.



Since B is nowhere 0 we can write the equation as

3
2

v − B−1 (A(G∇ṽ )) = B−1A(g). (1)

We choose an extension ṽ of any normal vector field v in a
standard fashion. Then this becomes an equation for v .



The derivative ∇ṽF is not necessarily in C ,α but it is in r−1C ,α.
Applying our estimates we find that

‖AG∇ṽF‖C,α+1/2 ≤ C‖F‖D1‖v‖C ,α .

We can suppose that ‖F‖D1 is as small as we please and this
means that (1) has a unique solution v .



Section III, Context 2.
Consists of five parts (a)-(e).
(a) Small deformation are just the beginning of what would
ultimately like to understand. In particular convergence theory
for sequences and regularity. B. Zhang showed that, for the
harmonic 1-form set-up, starting with an a priori very general
definition of the singular set that set is in fact rectifiable.

These questions involving codimension-2 singular sets have
are analogous to free boundary problems. The regularity theory
for free boundary problems is difficult.



(b) Gauge theory gives another way in which these questions
interact with special holonomy.
Beginning around 2012, Taubes found that multivalued 1-forms,
spinors etc. with branch sets arise from limits of solutions of
various coupled equations for connection + additional field, over
3-manifolds and 4-manifolds.
The programme of Haydys and Walpuski is to use the count of
solutions of generalised Seiberg-Witten equations over
calibrated codimension 4-submanifolds to (at least partially) get
around the compactness problems in putative enumerative
theories for Yang-Mills instantons on G2 and Spin(7) manifolds.



It seems likely that there are “stable” solutions to the G2 and
Spin(7) instanton equations with codimension 6 singularities
(see (e) below) and that these should be related to the
codimension 2 singularities on calibrated submanifolds via
“Taubes/Walpuski gluing”.
In the Hermitian Yang-Mills case, over Calabi-Yau 3-folds, there
are some results of Doan and of Yang Li in this direction.



(c)
Another aspect is that these branched solutions may model
sequences of calibrated submanifolds collapsing to a multiple
cover, as is familiar for complex curves.
There is work of Doan and Walpuski in this direction, in the
case of associative submanifolds, and work in progress by Siqi
He, for Special Lagrangians.



(d)
There are parabolic versions of both the problems that we
discussed. In the second case this is given by mean curvature
flow away from the singular set, and one expects that this flow
is related to Bryant’s G2-Laplacian flow and the 6-dimensional
reduction of that.

The Nash-Moser theory can also be applied to parabolic
equations and probably can be used to establish short time
existence.

Even the simplest situation on a Riemannian surface with a
moving set of points Σ and the ordinary heat equation, seems
interesting.



(e)
The work of Yuanqi Wang on singular G2-instantons (arxiv
2011.15042, and his presentation at the September 2020
collaboration meeting) suggests a general framework for
studying “free” singular sets.

Suppose that we have some natural equation with a model
singular solution having a point singularity in dimension p i.e.
over Rp \ {0}. Suppose that this has a conical structure, so is
defined by data over Sp−1 (the “tangent cone”).



Let L be the linearised operator, so there are separated
solutions of Lf = 0 of the form f = rλg where g is an
eigenfunction with eigenvalue λ of a corresponding operator
over Sp−1.
For large enough λ these will correspond to genuine
deformations to solutions of the non-linear problem (near 0),
with the same point singularity. But for some λ they will not.
On the other hand, to invert L, i.e. to solve Lf = ρ near 0 for
general ρ, we need to use functions that grow according to a
suitable collection of these eigenvalues.



Let H be the space spanned by eigenfunctions on Sp−1 which:
I Are required to invert L;
I Do not correspond to deformations with the same point

singularity.



Translations of Rp give obvious deformations of the model
solution, not fixing the singular point. So in suitable cases we
will get a linear map

W : Rp → H.

Suppose that W is surjective. Then if we have a solution of our
equation on a manifold of dimension p + q with a
codimension-p singular set Σ and a singularity modelled,
transverse to Σ, on that above it should be possible to analyse
the deformations using techniques like those we have
discussed in these lectures.



In Wang’s case the relevant tangent cones come from
holomorphic bundles E over CP2. He shows that the space H
is H1(EndE(−1)) and the map W is defined by product with the
“Atiyah class” of E .



Another interesting case to consider is that of harmonic maps.
The spectral discussion is then related to results on conformal
transformations and stability of harmonic maps of spheres (and
thence to work of Simons for other variational problems).
In codimension 4, the Hopf map S3 → S2 is a possible “tangent
cone”. It seems likely that the condition above is satisfied.
Singular harmonic maps with this tangent cone would be
differential geometric generalisations of rational functions in
algebraic geometry.


