# Gauge Theories and Associatives

# Sakura Schäfer-Nameki





Established by the European Commission

## Simons Foundation Meeting, September 2018

#### Associatives in *G*<sub>2</sub>-manifolds

 $G_2$ -holonomy manifolds are 7d admitting a Ricci-flat metric with holonomy  $G_2$ .

M/superstring theory on  $G_2$  manifolds preserves supersymmetry as this gives a solution to the Killing spinor equation  $\langle \delta \psi \rangle = \nabla \epsilon = 0$ Metric specified by a three-form, the  $G_2$ -form,  $\Phi$ 

 $\mathbf{d}\Phi = \mathbf{d}\star\Phi = 0\,.$ 

Calibrated submanifolds are 3d associatives  $M_3$ 

$$\Phi|_{M_3} = \operatorname{vol}(M_3) \,.$$

i.e. volume minimising in their homology class, or 4d co-associatives, which are calibrated by  $\star \Phi$ .

M-/D-branes wrapped on these cycles preserve supersymmetry, if suitably topologically twisted.

# Plan

Main focus in this talk will be associative three-cycles.

- I. 7d SYM on Associatives and Higgs bundles
- II. String Dualities, Associatives and M2-instanton
- III.  $3d \mathcal{N} = 1$  from M5-branes on Associatives and a 3d-3d Correspondence
  - Witten Index
  - $S^3$ -partition function

Associatives in M-theory Compactifications

# M-theory on $G_2$ Holonomy

M-theory on a compact  $G_2$  manifold preserves 4d  $\mathcal{N} = 1$  supersymmetry: 4d  $\mathcal{N} = 1$  Super-Yang Mills (SYM) + matter coupled to supergravity.

Two reasons why this is interesting:

- Phenomenological applications: realizing compact G<sub>2</sub> manifolds, with suitable singularities in codim 4 and 7 that yield chiral 4d theories with non-abelian gauge symmetry.
   ⇒ familiar from the 2000s.
   Mathematical setup: compact G<sub>2</sub> manifolds
- Field-theoretic motivations: structure of minimally supersymmetric gauge theories. With minimal, i.e. N = 1 supersymmetry, the theory is much less under control, e.g. non-perturbative corrections.
   Mathematical setup: non-compact G<sub>2</sub> manifolds.

## Associatives in M-theory: a Trifecta

M-theory on  $G_2$ :

I. 4d  $\mathcal{N} = 1$  gauge sector of M/ $G_2$  characterized by a Higgs-bundle on an associative cycle: ALE-fibration over an associative  $M_3$  $\Rightarrow$  partial topological twist of 7d SYM on  $M_3 \times \mathbb{R}^{1,3}$ 

[work in progress: Braun, Cizel, Hubner, SSN]

In M-theory there are two types of branes: M2 and M5. Their low energy description is not a SYM theory, however:

II. M2-branes on associatives:

Instantons (non-perturbative) corrections to 4d  $\mathcal{N} = 1$  theory [Braun, SSN 2017][Braun, del Zotto, Halverson, Larfors, Morrison, SSN, 2018]

III. M5-branes on associatives:  $3d \mathcal{N} = 1$  theories [Eckhard, SSN, Wong, 2018]

# I. 7d SYM on Associatives

## I. 7d SYM on $M_3$

ADE-singularity over  $M_3$  gives a local description of the 4d  $\mathcal{N} = 1$  gauge sector of M/ $G_2$  [see Acharya, Witten,..., Pantev, Wijnholt]

Field theoretic description:

1. start with M-theory on  $\mathbb{C}^2/\Gamma_{ADE} \Rightarrow 7d$  SYM with G = ADE.

2. Dimensionally reduce 7d SYM on  $M_3$  with a partial topological twist:

 $SO(1,6)_L \times SU(2)_R \quad \rightarrow \quad SO(1,3)_L \times SO(3)_M \times SU(2)_R$ (8,2)  $\rightarrow \quad (\mathbf{2},\mathbf{1};\underline{\mathbf{2}},\mathbf{2}) \oplus (\mathbf{1},\mathbf{2};\underline{\mathbf{2}},\mathbf{2}) \,.$ 

To preserve 4d supersymmetry, twist  $SO(3)_M$  with the R-symmetry  $SU(2)_R$  of 7d SYM: under this twisted local Lorentz group  $(2,2) \rightarrow 1 \oplus 3$ . Thus giving rise to 4 supercharges in 4d:  $(2,1) \oplus (1,2)$ . The supersymmetric field configurations on  $M_3$  are characterized by the BPS equations  $\langle \delta \psi \rangle = 0$ , constraining  $\phi$  (twisted scalars) and  $\mathcal{A}$  (gauge field components along  $M_3$ ), both in the **3** of  $SO(3)_{\text{twist}}$ :

 $0 = F_{\mathcal{A}} + i[\phi, \phi], \qquad 0 = D_{\mathcal{A}}\phi, \qquad 0 = D_{\mathcal{A}}^{\dagger}\phi.$ 

For  $[\phi, \phi] = 0$  and  $\phi$  regular, non-trivial solutions only exist for  $\pi_1(M_3) \neq 0$ .

Consider  $M_3$  with boundaries, which maps this problem to an electro-statics problem, with  $\phi$  the interpretation of the potential and  $\phi = df$  with  $\Delta f = 0$  on  $M_3$  with  $\partial M_3 \neq \emptyset$ . This system can be studied using Morse theory for critical loci given by points ([Pantev, Wijnholt]) or Morse-Bott theory for more general critical loci, e.g. as in twisted connected sum constructions of  $G_2$ s manifolds [wip: Braun, Cizel, Hubner, SSN] Open questions:

- 1. Compact models realizing local models with chiral matter
- 2. Generalized matter, e.g. conformal matter theories from local model.

# II. M2-branes on Associatives

# M2-branes and Dualities

Euclidean M2-branes on associative three-cycles in  $G_2$  give rise to non-perturbative corrections the 4d effective theory of  $M/G_2$  – hard problem, in particular, it's hard to identify associatives.

With Andreas Braun we identified a duality chain, mapping M-theory on $TCS-G_2$  to heterotic as well as F-theory duals.[Braun, SSN, 2017]

As part of the Simons Collaboration: we used this duality to map known D3-instantons in F-theory to M2-instantons in M-theory on TCS  $G_2$ 

[Braun, del Zotto, Halverson, Larfors, Morrison, SSN, 2018]

We thereby give evidence for an infinite number of M2-instanton corrections to the superpotential in twisted connected sum  $G_2$  manifolds, and thereby conjecturally a construction of infinitely many associatives in such TCS geometries.

# TCS – Cartoon



Acyl CY3 building blocks that are K3-fibered  $S_{\pm}$  over  $\mathbb{P}^1$ . Remove a fiber  $(S_0^{\pm})$ , take a product with  $S^1$  and glue  $S_{\pm}$  with a hyper-Kähler rotation

[Kovalev; Corti, Haskins, Nordström, Pacini]



Let  $S_{\pm}$  to elliptically fibered K3 with sections, i.e. Weierstrass models over  $\mathbb{P}^1$ , and e.g.  $S_+$ : smooth elliptic fibration  $S_-$ : two  $II^*$  singular fibers

[Braun, SSN]

Elliptic building blocks enable application of duality between M-theory/heterotic/F-theory.

### M-theory/Heterotic String Duality for TCS

Moduli space for both theories:  $\Gamma \setminus SO(3, 19) / (SO(3) \times SO(19)) \times \mathbb{R}^+$ 

M-theory on K3: moduli space of Einstein metrics on K3 Heterotic: Narain moduli space for  $T^3$  compactification. Specializing to elliptic K3s: 3 complex structures  $\omega_i$  of the K3 are idenfied in the  $T^3$  as follows:

$$H^2(K3,\mathbb{Z}) = U_1 \oplus U_2 \oplus U_3 \oplus (-E_8)^{\oplus 2}$$

Periods of  $\omega_i$  along  $U_i \quad \leftrightarrow \quad$ radii of the  $S_i^1$ Periods of  $\omega_i$  along  $(-E_8)^2 \quad \leftrightarrow \quad$ Wilson lines along  $S_i^1$ 

Fiber-wise duality for the TCS geometries with elliptic building blocks: For an elliptic K3, additionally fibered over  $\widehat{\mathbb{P}}^1$ , only  $\omega_1$  and  $\omega_2$  vary. By fiber-wise duality in heterotic only  $T^2 \subset T^3$  varies over the base  $\widehat{\mathbb{P}}^1$ , and the total space of the heterotic compactification is an elliptic K3× $S_3^1$ .

#### M-theory/Heterotic String Duality for TCS

[Braun, SSN, 2017]



Apply same gluing, i.e. HK rotation to these building blocks:

$$S_{2+}^1 = S_{3-}^1$$
,  $S_{1+}^1 = S_{1-}^1$ ,  $S_{3+}^1 = S_{2-}^1$ .

We find:  $h^{1,1}(X_{het}) = 19 = h^{1,2}(X_{het})$  for any such TCS!  $\Rightarrow$  TCS-construction of SYZ-fibration of the Schoen CY3  $\Rightarrow$  All TCS with elliptic building blocks are dual to the Schoen CY3 with a choice of vector bundles.

#### Duality Chain for TCS G<sub>2</sub> Manifolds

[Braun, SSN, 2017]

Recap:  $M/K3 = Het/T^3$  and Het/Elliptic CY3 = F-theory/K3-fiberedCY4.



#### Instantons in the Duality Chain for TCS *G*<sub>2</sub> Manifolds

#### [BdZHLMS, 2018]

<u>F-theory</u> on  $\mathbb{E} \hookrightarrow Y_{\text{DGW}} \to (\mathbb{P}^1 \times \widehat{dP_9})$  has inftinitely many D3-instantons [Donagi, Grassi, Witten], wrapping surfaces D which satisfy  $\chi(D, \mathcal{O}_D) = 1$ :  $D_{\gamma} = \sigma_{\gamma} \times \mathbb{P}^1$ , where  $\sigma_{\gamma}$  are sections of  $\widehat{dP_9}$ : choose in  $H^2(dP_9, \mathbb{Z}) = U \oplus (-E_8)$ 

$$\sigma_{\gamma} = \sigma_0 + \gamma + n\hat{\mathbb{E}}$$

where  $\sigma_0, \hat{\mathbb{E}} \in U$  are zero section and fiber class,  $\gamma \in E_8$  with  $\gamma^2 = -2n$ . Then  $\sigma_{\gamma}^2 = -1$  and  $\sigma_{\gamma} \cdot \hat{\mathbb{E}} = 1$ .

Heterotic string theory on the Schoen CY3  $X_{19,19}$ : duality map allows to identify infinitely many world-sheet instantons. These can be identified in the SYZ-description using "string junctions":

We associative a "string junction", i.e. a worldsheet for the Euclidean heterotic string,  $\mathfrak{t}_{\gamma}$  to each section  $\sigma_{\gamma}$ : Consider one building block in the TCS-description of the Schoen CY3: The  $T^2$ -fiber degenerates at 12 points: 10 realize the  $E_8$  roots, whereas the remaining two correspond to asymptotic [p,q] charges [1,0] and [3,1]: the string junction is  $T^2$  fibered over the paths in the base  $\mathbb{P}^1$ :

 $\mathfrak{t}_{\gamma} = \gamma + \mathfrak{t}_0 + nE$ 



To construct the sections  $\sigma_{\gamma}$  we glue the thimbles from each building block together.

<u>M-theory on the TCS *J* thereby has an  $E_8 \oplus E_8$  worth of assocative three-cycles, which are homology three-spheres  $\Sigma_{\gamma\hat{\gamma}}$ .</u>

Expanding  $C_3 + i\Phi$  in terms of these  $H^3(J,\mathbb{Z})$  cycles (coefficients given by  $\omega_i$ ) the superpotential correction by M2-instantons is then [BdZHLMS]

$$\begin{split} \Delta W^{\text{M2}} &= \sum_{\Sigma_{\gamma\hat{\gamma}}} G(\gamma\hat{\gamma}) \exp\left[2\pi i \int_{\Sigma_{\gamma\hat{\gamma}}} C + i\Phi_3\right] \\ &= \sum_{m,\hat{m}\in\mathbb{Z}^8\times\mathbb{Z}^8} G(\gamma\hat{\gamma}) \exp 2\pi i \left[z + n\tau + \hat{n}\hat{\tau} + \sum_i m_i\varsigma_i + \hat{m}_i\hat{\varsigma}_i\right] \,, \end{split}$$

For  $G(\gamma \hat{\gamma}) = 1$  this just becomes a product of two  $E_8 \theta$ -functions.

 $\Rightarrow$  Using M/het/F duality applied to the TCS-construction with elliptic K3-building blocks as proposed in [Braun, SSN].

#### Conjecture:

For every element  $(\gamma, \hat{\gamma}) \in E_8 \oplus E_8$  there is a pair of three-chains  $\Sigma_{\gamma}^+$  in  $Z_+$ and  $\Sigma_{\gamma}^-$  in  $Z_-$ , with boundary a (-2) curve in the transcendental lattice of the asymptotic K3  $S_0$ , which can be glued together to a  $\Sigma_{\gamma\hat{\gamma}} \in H^3(J)$  We conjecture that the class of this three-cycle contains a unique associative representative that has the topology of a three-sphere.

# III. M5-branes on Associatives

M5-branes are 6d membranes in M-theory. The effective theory is not a SYM theory (unlike D-branes) and most likely is non-Lagrangian, but is known to be the unique 6d  $\mathcal{N} = (2,0)$  superconformal field theory with gauge group ADE. Whatever can be learned about M5-branes should be, as they form one of the key missing pieces in our understanding of M-theory.

Recently a whole class of correspondences have been determined from M5-branes wrapped on supersymmetric cycles. The basic idea is:

- M5-branes on M<sub>d</sub> yields a supersymmetric theory in 6 − d dimensions: T[M<sub>d</sub>]
- Observables such as partition functions on S<sup>6-d</sup> or indices of T[M<sub>d</sub>] can be computed by considering a 'dual' theory obtained from M5-branes on S<sup>6-d</sup>. This d dimensional theory is usually not supersymmetric, but a conformal or TQFT.
- Conjecture: TQFT partition function on  $M_d$  computes the supersymmetric partition function of  $T[M_d]$ .

# M5-brane Correspondences: $\mathcal{N} = 2$ SUSY

The sphere-partition functions for the  $T[M_d]$  theories are computed by the following *d*-dimensional theories:

- d=2: AGT correspondence between 4d N = 2 theories and 2d Toda theories on M<sub>2</sub> [Alday, Gaiotto, Tachikawa]
   ⇒ M<sub>2</sub> is a curve in CY3
- d=3: 3d–3d correspondence between 3d  $\mathcal{N} = 2$  theories and complex Chern-Simons on  $M_3$  [Gaiotto, Gukov, Dimofte]  $\Rightarrow M_3$  is a Slag in a CY3
- d=4: 4d-2d correspondence between 2d N = (0,2) and topological sigma-model from M<sub>4</sub> into the Nahm moduli space [Assel, SSN, Wong] ⇒ M<sub>4</sub> is a Coassociative in G<sub>2</sub>

# M5-brane Correspondences $\mathcal{N} = 2$ SUSY

The sphere-partition functions for the  $T[M_d]$  theories are computed by the following *d*-dimensional theories:

- d=2: AGT correspondence between 4d  $\mathcal{N} = 2$  theories and 2d Toda theories on  $M_2$  [Alday, Gaiotto, Tachikawa]  $\Rightarrow M_2$  is a curve in CY3
- d=3: 3d–3d correspondence between 3d  $\mathcal{N} = 2$  theories and complex Chern-Simons on  $M_3$  [Gaiotto, Gukov, Dimofte]  $\Rightarrow M_3$  is a Slag in a CY3
- d=4: 4d-2d correspondence between 2d N = (0,2) and topological sigma-model from M<sub>4</sub> into the Nahm moduli space [Assel, SSN, Wong] ⇒ M<sub>4</sub> is a Coassociative in G<sub>2</sub>

# M5-brane Correspondences: $\mathcal{N} = 1$ SUSY

The sphere-partition functions for the  $T[M_d]$  theories are computed by the following *d*-dimensional theories:

- d=2: AGT correspondence between 4d  $\mathcal{N} = 2$  theories and 2d Toda theories on  $M_2$  [Alday, Gaiotto, Tachikawa]  $\Rightarrow M_2$  is a curve in CY3
- d=3: 3d–3d correspondence between 3d  $\mathcal{N} = 2$  theories and complex Chern-Simons on  $M_3$  [Gaiotto, Gukov, Dimofte]  $\Rightarrow M_3$  is a Slag in a CY3
- d=3: N = 1 3d-3d correspondence between 3d N = 1 theories and Chern-Simons-Dirac on M<sub>3</sub> [Eckhard, SSN, Wong, 2018]
   ⇒ M<sub>3</sub> is an associative in G<sub>2</sub>
- d=4: 4d-2d correspondence between 2d N = (0,2) and topological sigma-model from M<sub>4</sub> into the Nahm moduli space [Assel, SSN, Wong] ⇒ M<sub>4</sub> is a Coassociative in G<sub>2</sub>

In the 4d  $\mathcal{N} = 1$  theory from M/ $G_2$  M5-branes on assocatives  $M_3$  correspond to domain walls. For SQCD this was studied in [Acharya, Vafa].

Complementary motivation to study such theories: partial topological twist results in 3d  $\mathcal{N} = 1$  theories:  $T_{\mathcal{N}=1}[M_3]$  (G = SU(N), but more generally can be any ADE). [Eckhard, SSN, Wong]

Questions:

# How does the geometry of  $M_3$  enter the 3d theory?

#  $T^3$  and  $S^3$  partition functions for  $T[M_3]$  via TQFTs and compute observables of the 3d theory from a dual topological theory

# Recent progress in understanding of partition functions and generalized dualities in 3d  $\mathcal{N} = 1$  theories [Gaiotto, Gomis, Komargodski, Seiberg, Witten, Benini, Benvenuti,...]. What is the counterpart in the TQFT dual?

# III.1. 3d $\mathcal{N} = 1$ Gauge Theories from M5-branes on Associatives

#### M5-branes

Nahm's classification of Superconformal theories implies that there is a unique up to choice of ADE-gauge group 6d  $\mathcal{N} = (2,0)$  superconformal theory with superconformal algebra  $OSp(6|4) \supset SO(6)_L \times Sp(4)_R$ . For  $G = A_N$  this is the effective theory on a stack of M5-branes. Single M5-brane has G = U(1).

Dimensional reduction on a three-cycle:

$$\begin{aligned} SO(1,5)_L &\to SO(1,2)_L \times \underline{SO(3)_M} \\ Sp(4)_R &\to \begin{cases} \underline{SU(2)_R} \times U(1)_R & \text{3d } \mathcal{N} = 2; \ M_3 = \text{sLag in CY}_3 \\ \underline{SU(2)_r} \times SU(2)_\ell & \text{3d } \mathcal{N} = 1; \ M_3 = \text{Associative in } G_2 \,. \end{cases} \end{aligned}$$

The main challenge is: we have absolutely no idea what the theory is for  $G \neq U(1)!$ 

#### Associatives in *G*<sub>2</sub>-manifold

Normal bundle of  $M_3$  is the spin-bundle twisted with SU(2)-bundle

 $N_{M_3} = \mathbb{S} \otimes V$ 

Linear deformations parametrised by twisted harmonic spinors satisfying

 $\mathcal{D}_{\mathfrak{V}}\phi = 0$ 

on  $M_3$ . Moduli space of solutions  $\mathcal{H}_{\mathcal{D}}$  metric dependent!

VitualDim( $\mathcal{H}_{\mathcal{D}}$ ) = 0  $\Rightarrow$  dim(Ker $\mathcal{D}_{\mathfrak{V}}$ ) = dim(Coker $\mathcal{D}_{\mathfrak{V}}$ ).

So there can be obstructions. However, generically  $d_{p} \equiv \dim(\text{Ker}\mathcal{P}_{v})$ vanishes. [McLean]

#### Harmonic Spinors

When *V* is trivial i.e.  $\mathfrak{V} = 0$  there are three distinct cases:

$$(\mathcal{D})^2\psi = \nabla^*\nabla\psi + \frac{R}{4}\psi$$

- R > 0:  $d_{p} = 0$  and the associative is rigid
- R = 0:  $M_3 = T^3$  and harmonic spinors coincide with parallel spinors
- R < 0: Every closed spin manifold admits a metric with  $d_{p} \ge 1$

Space of linear deformations depends on induced metric on  $M_3$ 

### Theory of a single M5-brane

# Lorentz and R-symmetry:

$$SO(6)_L \times Sp(4)_R \subset OSp(6|4)$$

# Tensor multiplet:

 $B_{\underline{ab}}$ :(15,1)with selfduality  $H = dB = *_6 H$  $\Phi^{\underline{\hat{m}n}}$ :(1,5) $\varrho^{\underline{\alpha m}}$ :(\bar{4},4)

# EOMs:

$$H^- = dH = 0, \qquad \partial^2 \Phi^{\underline{\hat{m}}\underline{\hat{n}}} = 0, \qquad \not \partial \rho = 0.$$

#### An M5-brane on an Associative

Recall: partial topological twist along  $M_3$ :

$$\begin{split} SU(2)_{\text{twist}} &= \text{diag}(SU(2)_M, SU(2)_r) \,. \\ SO(6)_L \times Sp(4)_R &\to SO(3)_L \times SU(2)_{\text{twist}} \times SU(2)_\ell \\ \Phi^{\underline{\hat{m}\hat{n}}} \colon (\mathbf{1}, \mathbf{5}) &\to (\mathbf{1}, \mathbf{2}, \mathbf{2}) \oplus (\mathbf{1}, \mathbf{1}, \mathbf{1}) \equiv (\phi^{\alpha \hat{\alpha}}, \varphi) \\ H_{\underline{abc}} \colon (\mathbf{10}, \mathbf{1}) &\to (\mathbf{1}, \mathbf{1}, \mathbf{1}) \oplus (\mathbf{3}, \mathbf{3}, \mathbf{1}) \equiv (h, H_{axy}) \\ \varrho^{\underline{\alpha}\underline{\hat{m}}} \colon (\overline{\mathbf{4}}, \mathbf{4}) &\to (\mathbf{2}, \mathbf{2}, \mathbf{2}) \oplus (\mathbf{2}, \mathbf{1}, \mathbf{1}) \oplus (\mathbf{2}, \mathbf{3}, \mathbf{1}) \equiv (\rho^{\sigma \alpha \hat{\alpha}}, \lambda^{\sigma}, \xi_a^{\sigma}) \,. \end{split}$$

 $SU(2)_{\ell}$  identified with the structure group of V, and  $\phi$  a section of  $N_{M_3}$ . The zero-mode spectrum depends on

$$H_1(M_3, \mathbb{Z}) \cong \mathbb{Z}^{b_1(M_3)} \oplus \mathbb{Z}_{p_1} \oplus \cdots \oplus \mathbb{Z}_{p_r}$$
$$d_{\not D}(M_3, g) = \# \text{ of twisted harmonic spinors on } M_3 \text{ wrt metric } g$$

# $T[M_3, U(1)]$

The theory  $T[M_3, U(1)]$  enjoys  $\mathcal{N} = 1$  supersymmetry and is a supersymmetric CS-theory coupled to scalar multiplets:

- 1. A single scalar multiplet  $\mathcal{A}_{\varphi} \ni \{\varphi, \lambda^{\sigma}, h\}$ . If we view  $T_{\mathcal{N}=1}[M_3, U(1)]$  as a domain wall in the 4d  $\mathcal{N} = 1$  bulk theory, obtained by compactifying M-theory on the  $G_2$ -holonomy manifold, this multiplet describes the center of mass.
- 2.  $b_1(M_3)$  massless scalar multiplets  $\mathcal{A}^I_{\alpha} \ni \{\alpha^I, \xi^{\sigma I}\}$  coming from the free part of the first homology group of  $M_3$ .
- 3.  $d_{p}(M_{3},g)$  massless scalar multiplets  $\mathcal{A}_{\phi}^{i} \ni \{\phi^{i}, \rho^{\sigma i}\}$  which describe the deformations of the associative  $M_{3}$  inside the  $G_{2}$ -holonomy manifold. These explicitly depend on the  $G_{2}$ -holonomy metric grestricted to the associative cycle  $M_{3}$ .
- 4. A set of *r* massive gauge multiplets  $\mathcal{V}_A^m \ni \{A^m, \xi^{\sigma m}\}$  whose masses are generated by Chern-Simons terms at levels  $p_m$ . Each multiplet  $\mathcal{V}_A^m$ is induced by a factor in the torsion part of  $H^1(M_3, \mathbb{Z})$

# Non-abelian Generalization

In general this is unknown. However we can use a key fact about the M5-brane theory:

6d (2,0) Theory on *S*<sup>1</sup> with gauge group *G* = 5d Super-Yang Mills with gauge group *G* 

In particular, if one wishes to compactify M5-brane on circle-fibration we can infer the non-abelian generalization by defining the 5d SYM theory in a suitable "supergravity background".

Examples:

- $M_3 = L(p, 1)$ .
- $S^3$  or L(p, 1) partition function, via 5d SYM on  $S^2$  + graviphoton background that models the Hopf fibration.

I will discuss this in detail in the next part of the talk.

# III.2. A 3d–3d Correspondence: TQFT Dual to 3d $\mathcal{N} = 1$

#### Witten-Index: 3d-3d Correspondence



BFH = BF-model coupled to a spinorial hypermultiplet. The Witten index  $Tr(-1)^F$  is

$$I_{T^3}(T_{\mathcal{N}=1}[M_3]) = Z_{\text{BFH}}(M_3).$$

BPS equations for  $(\phi^{\alpha \hat{\alpha}}, A)$  fields of BFH on  $M_3$  are generalized Seiberg Witten equations:

$$(\mathcal{D}\phi)^{\alpha\hat{\alpha}} = 0$$

$$(gSW_{M_3}): \qquad \varepsilon_{abc}F^{bc} - \frac{i}{2}[\phi_{\alpha\hat{\alpha}}, (\sigma_a)^{\alpha}{}_{\beta}\phi^{\beta\hat{\alpha}}] = 0.$$

and

$$Z_{\rm BFH}(M_3) = \chi \left( \mathcal{M}_{\rm gSW}_{M_3} \right)$$

# *S*<sup>3</sup>-partition Function: 3d-3d Correspondence

[Eckhard, SSN, Wong]



CS-Dirac= level 1 CS coupled to a twisted harmonic spinor  $M_3$ , eom = gSW equations.  $S^3$ -partition function is computed by:

$$Z_{S^3}(T_{\mathcal{N}=1}[M_3,G]) = \mathcal{Z}_{\mathrm{CS}_1-\mathrm{Dirac},G}(M_3)$$

No twisted harmonic spinors for a given metric g induced from the  $G_2$ :

$$d_{\mathcal{D}}(M_3, g) = 0:$$
  $Z_{S^3}(T_{\mathcal{N}=1}[M_3, G]) = WRT(M_3)$ 

Generalization: L(p, 1) reduction instead of  $S^3$ :

 $Z_{L(p,1)}\left(T_{\mathcal{N}=1}[M_3,G]\right) = \mathcal{Z}_{\mathrm{CS}_p-\mathrm{Dirac},G}(M_3)$ 



BFH: supersymmetric BF model coupled to spinorial hypermultiplet

CS-Dirac: Chern-Simons-Dirac theory

### Witten Index: Derivation

M5-branes compactified on  $T^3 \Rightarrow 3d \mathcal{N} = 8$  SYM

Two topological twists of 3d  $\mathcal{N} = 8$  SYM, both preserving two topological supercharges



 $SU(2)_r$  twist: scalars  $\phi^{\alpha \hat{\alpha}}$  in  $(\mathbf{2}, \mathbf{2}, \mathbf{1})$  twisted into 'bispinors' under twisted Lorentz group and  $SU(2)_\ell$ 

 $\Rightarrow$  sections of  $N_{M_3}$ , where  $SU(2)_{\ell}$  identified with structure group of V

#### **BFH-Model**

[Eckhard, SSN, Wong]

BF-model coupled to spinorial Hypermultiplet preserving two topological supercharges

$$\mathcal{L}_{\rm BFH} = B^a (B_a - \varepsilon_{abc} F^{bc} + \frac{i}{2} [\phi_{\alpha\hat{\alpha}}, (\sigma_a)^{\alpha}{}_{\beta} \phi^{\beta\hat{\alpha}}]) + \frac{1}{2} W_{\alpha\hat{\alpha}} (W^{\alpha\hat{\alpha}} - 2i \not\!\!\!D^{\alpha}_{\beta} \phi^{\beta\hat{\alpha}}) + \cdots$$

where  $B_a$ ,  $W_{\alpha\hat{\alpha}}$  are auxiliary fields, whose eoms are

$$B_{a} = \frac{1}{2} \left( \varepsilon_{abc} F^{bc} - \frac{i}{2} [\phi_{\alpha\hat{\alpha}}, \phi^{\beta\hat{\alpha}}] (\sigma_{a})^{\alpha}{}_{\beta} \right)$$
$$W^{\alpha\hat{\alpha}} = i \not\!\!\!D^{\alpha}{}_{\beta} \phi^{\beta\hat{\alpha}},$$

The action can be written as

$$S_{\rm BFH} = \varepsilon_{\sigma\tau} Q^{\sigma} Q^{\tau} V_{\rm BFH}$$

and the energy-momentum tensor is Q-exact, however partition function depends on the metric, due to the dependence of the bispinors on *g*.

### BFH Partition Function $Z_{BFH}(M_3)$

[Eckhard, SSN, Wong]

BPS equations given by generalised Seiberg-Witten equations

$$(\mathcal{D}\phi)^{\alpha\hat{\alpha}} = 0$$
  
(gSW<sub>M3</sub>):  
$$\varepsilon_{abc}F^{bc} - \frac{i}{2}[\phi_{\alpha\hat{\alpha}}, (\sigma_a)^{\alpha}{}_{\beta}\phi^{\beta\hat{\alpha}}] = 0$$

Partition function of  $N_T = 2$  TQFTs computes  $\chi(\mathcal{M}_{BPS})$  [Blau, Thompson][Dijkgraaf, Moore]. Applied to this theory, we expect:

$$Z_{\rm BFH}(M_3) = \chi(\mathcal{M}_{\rm gSW}_{M_3})$$

#### Checks: Abelian Theory

Abelian spectrum depends on first integral homology group

 $H_1(M_3,\mathbb{Z})\cong\mathbb{Z}^{b_1(M_3)}\oplus\mathbb{Z}_{p_1}\oplus\cdots\oplus\mathbb{Z}_{p_r}$ 

Reduction of topologically twisted 6d EoMs yielded:

- Centre of mass scalar multiplet
- $b_1(M_3)$  scalar multiplets
- $d_{\mathcal{D}}(M_3,g)$  scalar multiplets
- r vector multiplets with Chern-Simons interactions at level  $p_m$

# Checks: Abelian Theory

Witten index:  $I = \text{Tr}(-1)^F$ 



Combining with spectrum of the abelian theory:

$$I(T_{\mathcal{N}=1}[M_3, U(1)]) = \begin{cases} \prod_{m=1}^r p_m & b_1 = d_{\mathcal{D}} = 0\\ 0 & \text{else} \end{cases}$$

#### Checks: Abelian Theory

 $\mathcal{N} = 1$  3d–3d correspondence implies

$$I(T_{\mathcal{N}=1}[M_3, U(1)]) = \chi(\mathcal{M}_{U(1)}-\operatorname{Flat})\chi(\mathcal{H}_{p})$$

U(1)-flat connections: Hom $(\pi_1(M_3), U(1))$ 

Topologically,  $\mathcal{M}_{F=0} = T^{b_1} \times (\prod_{m=1}^r p_m)$  pts so for generic embeddings of  $M_3$ 

$$d_{\mathcal{D}} = 0: \quad Z_{\text{BFH},U(1)}(M_3) = \begin{cases} \prod_{m=1}^r p_m & b_1 = 0\\ 0 & \text{else} \end{cases}$$

Matches abelian Witten index when associative is obstructed

#### Jump in Witten Index

Conjecture

$$d_{\mathcal{D}} \neq 0: \quad I(T_{\mathcal{N}=1}[M_3, U(1)]) \Rightarrow \chi(\mathcal{H}_{\mathcal{D}}) = 0$$

Consider deforming metric on  $M_3$  such that  $d_{\mathcal{D}} \neq 0$ 

 $T_{\mathcal{N}=1}[M_3, U(1)]$  now has  $d_{\mathcal{D}}$  additional scalar multiplets

$$\Rightarrow I(T_{\mathcal{N}=1}[M_3, U(1)]) = 0$$

 $\Rightarrow$  Witten index for abelian theory is not a metric independent quantity, but jumps when  $M_3$  admits twisted harmonic spinors.

#### Checks: Lens-Space Theories

Consider  $G_2$ -manifolds  $X_7 = (S^3 \times \mathbb{R}^4)/\mathbb{Z}_p$ , where action on  $S^3$  is free. Associative is a Lens spaces L(p, 1), and is embedded with  $\mathfrak{V} = 0$ 

$$T_{\mathcal{N}=1}[L(p,1),U(N)] = \begin{cases} 3d \mathcal{N} = 1 \text{ Chern-Simons-Yang-Mills at level} \\ p \text{ coupled to adjoint scalar multiplet} \end{cases}$$

Witten index computed by considering

$$U(N) = \frac{U(1) \times SU(N)}{\mathbb{Z}_N}$$

and discarding fermion zero mode from centre of mass U(1) factor [Acharya, Vafa]

$$I(T_{\mathcal{N}=1}[L(p,1),U(N)]) = p \times \frac{(p-1)!}{(N-1)!(p-N)!} \times \frac{1}{N} = \binom{p}{N}$$

#### Check via 3d-3d Correspondence

Metric on L(p, 1) does not admit harmonic spinors

$$d_{\mathcal{D}} = 0: \quad Z_{\text{BFH},U(N)} = \chi(\mathcal{M}_{U(N)-\text{Flat}})$$

Flat connections correspond to Hom $(\pi_1(M_3), U(N))$ 

Moduli space consists of *N*-dimensional representations of  $\mathbb{Z}_p$ 

Abelian flat connections  $\Leftrightarrow$  Irreducible representations of  $\mathbb{Z}_p$ 

$$\Rightarrow \chi(\mathcal{M}_{U(N)}) = \begin{pmatrix} p \\ N \end{pmatrix}$$

#### Extension

[work in progress: Julius Eckhard, Heeyeon Kim, SSN]

[Bashmakov, Gomis, Komargodski, Sharon, 2018] observed that the Witten index for 3d  $\mathcal{N} = 1$   $SU(N)_p$ + adjoint multiplet of mass M, has in fact some more subtle behavior, including phase transitions, as a function of the mass M. Using our approach this mass deformation is also realizable:

 $T_{\mathcal{N}=1}[L(p,1), U(N), M] = U(N)_p$  + adjoint scalar multiplet of mass M

Consider: p > N. For |M| >> 0 we can integrate out both the gaugino (which has negative) mass and the massive adjoint fermion. Each massive fermion shifts the SU(N) level by  $sign(m)\frac{N}{2}$  depending on the sign of its mass term, while the U(1) level is unchanged. Thus, the theory admits a single vacuum TQFT for parametrically large mass *M*:

$$M \gg 0: \qquad U(N)_{p-N,p} \quad \Rightarrow I_{+} = \begin{pmatrix} p \\ N \end{pmatrix}$$
$$M \ll 0: \qquad U(N)_{p,p} \quad \Rightarrow I_{-} = \begin{pmatrix} p+N-1 \\ N \end{pmatrix}.$$

Note: 
$$U(N)_{p,q} = \frac{SU(N)_p \times U(1)_{Nq}}{\mathbb{Z}_N}$$
 has  $I = \begin{pmatrix} p+N-1\\ N-1 \end{pmatrix} \cdot \frac{q}{N}$ .

Note that the index for  $M \gg 0$  agrees with the index of  $\mathcal{N} = 2 U(N)_p$ . The reason for this is that at  $M = \frac{pg^2}{4\pi}$  supersymmetry enhances to  $\mathcal{N} = 2$ . *g*-independence then implies that the index will only depend on the sign of M.

Work in progress: show this phase transition as a function of *M* from the dual *M*-deformed TQFT.

# $S^3$ Partition Function



## Derivation of Theory on $M_3$

In  $\mathcal{N} = 2$  3d–3d correspondence, complex Chern-Simons was determined from explicit reduction from 6d (2,0) on  $S^3$ Key Observations:

- M5-branes on  $S^1 \Rightarrow 5d \mathcal{N} = 2$  Super-Yang-Mills
- Hopf fibration

$$S^1 \hookrightarrow S^3$$
$$\downarrow$$
$$S^2$$

• Non-abelianise going via 5d

# Strategy

- 1) Couple to conformal supergravity
- 2) Reduce on  $S^1$  fiber
- 3) Non-abelianise 5d action
- 4) Complete reduction on  $S^2$

Couple 6d EoMs to off-shell conformal supergravity to preserve supersymmetry on  $S^3$ 

Turn on background auxiliary fields compatible with topological twist on  $M_3$  e.g. R-symmetry gauge field:  $V_A \hat{m}_{\hat{n}} \supset v \varepsilon_{ABC} (\Gamma^{[BC]^+}) \hat{m}_{\hat{n}}$ Solution to Killing spinor equations are a one parameter family in v.

## 5d SYM on $M_3 \times S^2$

Curvature of  $S^3$  and non-trivial background fields induce mass terms for fields.

Masses are dependent on background parameter v. For spinor  $\phi^{\alpha \hat{\alpha}}$ , which parametrises deformations of  $M_3$ , the mass term takes the form

$$M_{\phi}^2 \sim \frac{1}{r^2} (v+2)(v-2)$$

Massless in 5d if  $v = \pm 2$ .

Reduction on  $S^2$ : expand in harmonics on  $S^2$ 

$$\phi^{\alpha \hat{\alpha}} = \sum_{k=0}^{\infty} \sum_{m=-k}^{k} \phi^{\alpha \hat{\alpha}}_{(k,m)} Y_k^m(\theta,\phi)$$

 $Y_k^m(\theta,\phi)$  - spherical harmonics on  $S^2$ .

Massless field content in 3d depends on choice of v. Massless  $\phi_{(k,m)}^{\alpha \hat{\alpha}}$  corresponds to

$$v = \pm(4k+2)$$

#### v = 0: Real Chern-Simons Theory

Spinor  $\phi^{\alpha \hat{\alpha}}$  is massive. The 3d Lagrangian of massless fields is

$$\mathcal{L} = \frac{r}{8\pi} \left( F \wedge \star F + \mathcal{D}_a \varphi \mathcal{D}^a \varphi + \frac{i}{2} \mathcal{D}_a \lambda^+ \mathcal{D}^a \lambda^- - \frac{i}{2} [\varphi, \lambda^+] [\varphi, \lambda^-] \right) + \frac{i}{4\pi} \mathsf{CS}(A)$$

 $(\varphi, \lambda)$  - ghost fields which gauge fix Chern-Simons action

Chern-Simons theory is topological, whereas spectrum of  $T_{\mathcal{N}=1}[M_3, U(1)]$  depends on metric!

#### v = 2: Chern-Simons-Dirac Theory

Captures metric dependence expected from  $S^3$ -partition function

$$\mathcal{L} = \frac{r}{8\pi} \left( F \wedge \star F - \frac{1}{2} \phi_{\alpha \hat{\alpha}} (\mathcal{D}^2 \phi)^{\alpha \hat{\alpha}} \right) + \frac{i}{4\pi} \left( \mathrm{CS}(A) + \frac{i}{2} \phi_{\alpha \hat{\alpha}} (\mathcal{D} \phi)^{\alpha \hat{\alpha}} \right)$$

In the limit  $r \to 0$  we obtain CS coupled to 'bispinor'  $\phi^{\alpha \hat{\alpha}}$  i.e. Chern-Simons-Dirac theory

EoMs given by the gSW equations on  $M_3$ 

$$(\mathcal{D}\phi)^{\alpha\hat{\alpha}} = 0$$

$$(gSW_{M_3}): \qquad \varepsilon_{abc}F^{bc} - \frac{i}{2}[\phi_{\alpha\hat{\alpha}}, (\sigma_a)^{\alpha}{}_{\beta}\phi^{\beta\hat{\alpha}}] = 0$$

# Summary and Outlook

- I. Topologically twisted 7d SYM on associatives for gauge sector of  $M/G_2$
- II. String duality mapped instantons: conjectured associatives in TCS  $G_2$
- III. Associatives wrapped by M5-branes: new 3d–3d correspondence between TQFTs and observables of the 3d  $\mathcal{N} = 1$  theories  $T_{\mathcal{N}=1}[M_3]$

Future directions:

- Ad I. Complete Higgs-bundle description of the gauge sector of  $M/G_2$
- Ad II. Mathematical proof of 'associativity' of three-cycles
- Ad III. Moduli space of solutions to gSW equations **Dualities in 3d**: interpretation in terms of the TQFT duals; Phase transitions in TQFTs
- Ad III.' Alternative way to construct 3d  $\mathcal{N} = 1$  theories: M-theory on Spin(7)-holonomy. New generalized connected sum construction with  $G_2 \times S^1$  and CY4 building blocks [Braun, SSN, 2018]