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Motivation

M-theory on G2-manifolds is in theory a perfect place to construct 4d
N =1SYM coupled to matter, with interactions, and coupling to
(super-)gravity:

SO(7) = G

8 - 7d1.
e Interesting 4d gauge theories: non-compact G'2s with codimension 4

and 7 singularities [Acharya, Witten, Atiyah, Maldacena, Vafa...] = Main
challenge: compact G2s with codim 4 and 7 conical singularities

e Compact Gz-manifolds:
— Joyce orbifolds T7 /T
- CY3 x S1/Q
— Twisted Connected Sums: Kovalev; Corti, Haskins, Nordstrom,

Pascini, = codim 4 & 6 singularities but not codim 7

A useful way to guide the search: Higgs bundles
Proposed first by [Pantev, Wijnholt, 2009]



Some Lessons from F-theory

The framework of choice in recent years for geometric engineering, e.g.
4d N =1, is F-theory (i.e. Type IIB with varying axio-dilaton 7) on elliptic
Calabi-Yau four-folds (CY4). Lessons we learned there:

e Start with ‘local’ models, i.e. Higgs bundles, encoding gauge sector of
7-branes on M, inside CY4:

7-branes on My x R'3 ={(¢, A): wAFa+i[p, | =0,06=0, FO2) =0}

VEV for adjoint valued Higgs field (¢) # 0 breaks G — G x G .

e Spectral cover description for [¢, ¢] = 0:
The local ALE-fibration over M, is encoded in the eigenvalues of

¢ ~ diag(A1,---, Apn).

e Most importantly: these spectral cover models opened up the
systematic study of global F-theory compactifications. = Precise
connection between elliptic fibrations (+ flux) and Higgs bundles



Higgs bundles/Hitchin systems ubiquitous in the description of the
gauge sectors in string theory.

Dp-branes on calibrated cycles M, in reduced holonomy manifolds X:
partial topological twist of the p 4+ 1 dimensional supersymmetric
Yang-Mills theory on M, always yields an equation on M, of the type

F+[¢,¢]=0, D¢=D'¢=0

The specific details of this depend on the characteristics of X and M.

For the gauge sector of M-theory compactifications a similar argument
holds, as we shall see, using the Super-Yang-Mills (SYM) arising from
twisted dimensional reduction

M-theory on ALE-space C*/Tspr = 7d SYM with gauge group G

Further reduction from 7d to 4d = Higgs bundle on M3, which
reconstructs ALE-fibration over M3



Plan

1. Gauge sector of Gy-compactifications:
Local Higgs bundles for Gs

2. Twisted Connected Sum (TCS) G,
3. From TCS to chiral models.



4d N =1 Gauge Theories from
G2 Holonomy



Gauge Sector of M-theory on Gy Manifolds

e M-theory on C?/T' 4pg gives 7d SYM with G=ADE: gauge connection

A, adjoint scalars ¢;, ¢ =1,--- , 3, and fermions A
1 1 1 : 1 .

S =3 d"x [—ZTrFMNFMN - Tr (Dapgi DM ¢") + L Tr ([pis d51[0", W])]
7
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e ADE-singularity fibered over a three-manifold:
C?/Tapr — M3
This can be given a local G»-structure.
e Adiabatic picture: 7d SYM on M;3
SO(1,6)r, xSU(2)r — SO(1,3)r, xSO3)m x SU(2)r

To retain susy in 4d, topologically twist SO(3)as with SU(2)
R-symmetry: SO(3)iwist = diag(SO(3)yr x SU(2)Rr)



Higgs bundle on M;

The supersymmetric field configurations on M3 are characterized by the

BPS equations
(0A) =0
where
O0Aaa = —%FMNWMN)O[B%@ + EDM@(@M)QB(&)&B%B — l[qb@-, qu]eijk(ak)(feaé
2 4

After the twist: background fields are one-forms 3 of SO(3)uwist:
e ¢ twisted scalars are adjoint valued one-forms, i.e. Q' (M3) ® Ad(G )

o A gauge field for principal G| bundle, components along M3

O0=Fa—ild, 0], 0=Du¢
0=Dl¢.
[Pantev, Wijnholt][Braun, Cizel, Huebner, SSN]
(¢) # 0 breaks G — G x G, e.g. SU(N +1) — SU(N) x U(1).



Solutions

Higgs bundle (¢,.A):
0=Fq—i[p,0], 0=Dag
0=D¢.
Consider first [¢, ¢] = 0 and so F 4 = 0. If ¢ regular:
e m(M3)=0then =0
e 11 (Ms) # 0: ¢ can have non-trivial solutions
Relax regularity: allow ¢ to have poles. Model by electrostatics

p = charge distribution on M3

p=df, Af=p

f = electrostatics potential



e e

M3 M3: M3\T(T)

¢ singular along support of p: I'. Excise a tubular neighborhood 7'(I") and
consider instead manifold with boundary

Ms — M3 = Mg\T(F)
In summary: we consider solutions to the Hitchin equations on M3 that
satisty:
® (9M3 # (Z)
e ¢ € I'(Q' (M3, AdG) with non-trivial entries along G|

e ¢ regular, ¢ =df and Af = 0 and suitable boundary conditions on
OMs3

¢ = (p1, P2, ¢3) vanishes generically in codim 3 in M3, where gauge group
is unhiggsed from G to G.



ALE-fibration

As per usual: Higgs bundles define ALE-fibrations over the base, here
Ms3. Local geometry

¢ = ;. odx' Ty, T, = generators of Lie (G )

then the vevs of ¢; ,, give the volume of the rational curves in the ALE
fiber with HK structure w1, ws, ws

¢i,oz :/ Wy -
P

E.g. for f =c+ Y x? then 27 + 23 + 25 =Y. 27 in C° x R? gives a local
ALE fibration where fiber collapses at x = 0.

= Critical points of f correspond to collapse of cycles in the fiber. Defines
a local G5: ALE-fibration over Ms3.



Spectrum

Consider ¢ U(1)-Higgs field, Higgsing
AdSU(N +1) - AdSU(N)® AdU(1) @R, ®R_,.

Given background values “vevs” for (¢,.A), i.e. a local G2, what is 4d
matter content? 7d SYM dimensionally reduced along M3 yields:

. Xa € H%(MS) _
Fermions: 1 where D =d+[pA:], =0+ iA.
Vo € HD<M3)

Compute twisted cohomology for D = d + [p A -] and DT = d — [p A -] with
¢ = df, or harmonic forms for twisted Laplacian

3
Ay =DD'+ DD =d'd+dd" + Pldf[* +q > (Hp)i;[(a")',a].

1,J=1

where H ;= Hessian of f, (a*)" = dz'A and a* = 15,.



Zero-Modes

Boundary conditions: D and DT acting on forms are not adjoints unless
we impose on the boundary

/ aAN*x8 =0
O M3

oy, be the tangent (i.e. pullback of a to the boundary) and normal
components a = o + o, of the forms and OM3 =X UX_:

Dirichlet b.c. on X _: ailss,. =0
Neumannb.c.on¥;: *a,ls, =0

Then the twisted cohomologies are computed by the relative cohomology
wrt X

Hp(My) = H*(My, )



Example

= S3\T'(T"), where I'= points, links.
ny = #components with charge +
{+ = #loops with charge +
r = #- charged looops that are independent in homology in S°\T'

Then the zero-mode spectrum is
bl(Mg, )—€_|_—|-n_—’l“—1 b(Mg, )_ﬁ —|—n+—7’—1
and the chiral index is simply

X=ny—Ly)—(n_—1_)




Next: Interactions

However to describe the interactions we first need to take an alternative,
but equivalent description, of the zero-mode spectrum, using
Super-Quantum Mechanics (SQM) and Morse/Morse-Bott theory (cf.
Witten)

4d Effective Theory SOM
Matter fields State Space
D, DT Supercharges
Ay Hamiltonian

Higgs field ¢ = df | f=Superpotential

Matter zero modes Ground states




For U(1) Higgs field and f = ¢+ 1 370 ¢;i(2%)? + - - with isolated critical
points

= f Morse.

Let 1(p) be the Morse index of the critical point p, i.e. #¢; < 0. Then

Ap=d'd+dd" + ¢@®|df |> + q{d, Lgraa s } + q{d", df N}

3 82
- — J(z")?

+ ¢?c2 (2")* + qc;[dz, Lo /owi)

1=1

So that zero modes are to this order (“perturbative zero-modes”) are
essentially harmonic oscillator wave-functions:

1 take care of the spinor nature of the fields.



Instanton Corrections

In the 7d SYM: Tr(¢» A D) coupling, which descends to a mass term
(pa, Py critical points of f)

M = Y pa.a) PV (py.q))

1 /’Y(_OO):pb [ ] g
_ D~DnDn D, fle” "5
qf(Pa) = af () Jy(+00)=p.

where the action for the SQM is the sigma model into M3, with the fields
being paths v : p, — pp

1 dytdy gt .
Ssam /R S<29‘7 ds ds + 2 9°0if9; 1

y | a1 -
+g:;7' Deny? +qD;0;5 f1'1y + §Rijkm n”n’“nl) ,

This localizes on gradient flow trajectories for f

dvi
ds

= qg” 0, f



Zero-mode counting gets correct by

Aab — Z n’ye_Q(f(pa)_f(pb))

gradientflow~y:p,—pyp,

where n., = £1 depending on orientation on the moduli space of gradient
flows.

S3 are associatives iff v is a gradient flow line

= non-trivial M2-instanton contributions from associatives in G5 (cf.
[Harvey, Moore]), depending on # of v from p,, to py, and n,,.

Upshot: This reproduces H*(Ms,%_).



Spectral Cover
Consider [¢, ¢| = 0, diagonalizable ¢ in U(1)"

C: 0 = det(¢ — s) :an—isi = bo H(S_)‘i)
i=0 1=1

¢ = df = 0 becomes \; = 0 loci, i.e. when one of the covers intersects the
zero-section Ms.

If p is connected by a flow line to another critical point, there is a
corresponding associative three-cycle which is built by fibering the
collapsing S? (blue) over the flow line.



Couplings

From the 7d SYM the following coupling decends:

Ypaql?r? _ / w(a,pl) A 90(b7p2) A ¢(C,P3) : Ql + Q2 -+ QB — ()
M3

p; are the points where matter is localized; a, b, c labels the modes.

'® @

This localizes along gradient flows

v(f)

P1

d i y
’ycgsf) :qugajf

. a which emanuate from each critical

point. The S?s in ALE-fiber fibered
over the gradient flow tree gives rise to

-
-®
-
-
-
-
-
®
®
-
®
-
-

v(f3) a supersymmetric three-cycle

= M2-instanton contribution.



Building of Models

G—GxUQDQ)", ¢ generate U(1)s, and consider a charge configuration
i=1,...,n: ¢ =tdf;, p="tp;, Afi=pi, / pi = 0.
M3
Then for Q = (q1,- -+ , qn)
IOQ:ZQiPia fQ:ZQifi
i=1 i=1

At every point in M3 where dfg = 0, there is a localized chiral multiplet
transforming in Rq.



Example: Top Yukawa

Es — SUB)xU(1)exU(1)y,

Let the matter be localized along the critical loci of the following Morse

functions, i.e. f:
5.33: fs = —=3fa+3/b,

10_, _5:  fO)=—f.—3f,
10,0: S22 =4f,.
M, :
-q1 © ng ® -q,
100" 1, fo, 10
-q; © © -2
29, @ ® 2q,




2. Local Models for TCS GG5-Manifolds



Twisted Connected Sums

Sl x Z\S°

[\

-0

Building blocks: Calabi-Yau three-folds = K3s
S+ over P'. Remove a fiber (S7), take a prod-

uct with S* and glue Sy with a hyper-Kahler
rotation (HKR)

wy < Re Qg:z’()) ;. ImQ29 5 —Im Q30

[Kovalev; Corti, Haskins, Nordstrom, Pacini]

Let S4 be elliptically fibered K3 with sections,
i.e. Weierstrass models over P!, and e.g.
S+ : smooth elliptic fibration
S_: two II* singular fibers
Singular K3-fibers result in non-abelian
gauge groups, e.g. by,

[Braun, SSN]



Field Theoretic Interpretation of TCS

St x Z+\S+O‘/H_KR\‘51 x Z\S?
ofc

. > .
01010

M-theory on Calabi-Yau Z1 xS* preserves N' = 2 in 4d.

Central region: K3 x T?xinterval preserves N’ = 4 in 4d.
HyperKéhler rotation and gluing retains only a common N = 1 susy:.
Key: building blocks have algebraic models.

TCS are globally K3 — S°. Apply M on K3/het on T* duality; and
even het/F-theory duality to e.g. understand instantons [Braun, SSN;

Braun, del Zotto, Halverson, Larfors, SSN; Acharya, Braun, Svanes, Valandro]



TCS Higgs-Bundle

Local Higgs bundle model for Calabi-Yau threefolds in each building
block is a spectral cover model over P! (with charge loci excised).
Charges: circles (red /blue), and critical loci are circles (yellow).

@/@\
el | &
04100
00 @ =

Due to product structure of each building block the critical loci of f, and

so matter loci, are always 1d! Requires generalization to Morse-Bott
theory. Upshot: Matter Spectrum is always non-chiral.



Morse-Bott generalization for TCS

=2
Example: f(z,y,z) = 2°: two critical points and one critical
line. u=0
Gradient “curves”, connect the critical loci (black lines)

=2

SQOM analysis generalizes to gradient trajectories between N, =critical
submanifolds of Morse index p

M(Ny, Np) = {fy R— M dim ~

A~ g
lim y(t) € Ny, — =tqg”(9jf}/R

Applied to M3 we have N, Ny only. The Morse-Bott complex is built from
Ct=Q°%Ny), C*=Q'(N) e Q(IVL).
Applied to critical loci in the TCS
Ol = Q0(sH)k C2 = QLS
HY (M3, X )=RF,  H*(Ms;,X_)=R".



Singular Transitions in TCS Gy-manifolds

Can TCS be deformed to yield chiral 4d theories?

Deformation of concentric circular charge configurations to e.g. ellipses:
gives 4 critical points with equal chiral and conjugate-chiral matter:




Singular Transitions in TCS Gy-manifolds

To change chirality, recall:

n+ = F#components with charge +
¢+ = #loops with charge +
r = #- charged looops that are independent in homology in S3\T'

Then the zero-mode spectrum is
b'(M3,%_)=fy +n_—7r—1, b (M3, X_)=/f_+ny —7r—1,
and the chiral index is simply

X=(ny —Ly) = (n-—L)

Singular transitions in the local model that will generate chirality:

> —-00 -



Spin(7)

— See Andreas Braun’s Talk

Recent resurgence of insights in 3d V= 1 theories and dualities.
Geometric engineering of these in M-theory: Spin(7) 8-manifold.

[Alternatively: M5-branes on associative three-cycles in G2 [Eckhard, SSN,
Wong]]

Compact Spin(7) manifolds are equally sparse:
e [Joyce (2000)] orbifold T® /T’
e Calabi-Yau four-fold orientifold [Kovalev (20187?)]

e Inspired by TCS for G5 we developed a Generalized Connected Sum
construction. [Braun, SSN (2018)]



Generalized Connected Sum Spin(7)-manifolds

Generalized Connected Sum (GCS): [Braun, SSN (2018)]
Z.=CY, Z=G,xS!
* i
G ™

Field theoretic construction: Z preserves 3d A = 2. Central region
preserves 3d N = 4, but gluing retains only common 3d A = 1. Examples
of new compact Spin(7) manifolds [Braun, SSN].

Higgs bundle for Spin(7): [Heckman, Lawrie, Lin, Zoccarato]



Summary and Outlook

e (2 manifolds provide a purely geometric way of engineering gauge
theories in 4d with minimal susy.

e Local Higgs bundle model gives insights into the structure of the
gauge sector

e Future: using insights into deformations of TCS form local model, try
to construct compact G with codim 7 singularities



