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PLAN

Collapsing fibrations.
1 Digression: deforming singularities;
2 Digression: boundary value problem
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Collapsing Two general contexts.

Context 1: G2-geometry
M7 closed, oriented 7-manifold. M the moduli space of
G2-structures on M. We are interested in the “boundary”of M.
i.e. if φi ∈ M what can we say about

lim
i ′

(M, φi ′)?

(For a subsequence i ′.)
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Context 2: General Riemannian geometry

(Ni , gi) Riemannian manifolds with Ricci = 0 (say). Normalise
to Diameter= 1.

Non-collapsed case Volume(Ni , gi) ≥ ν > 0. Relatively
well-understood (Cheeger-Colding . . . );

Collapsing case Volume(Ni , gi) → 0. Much current activity.

Simon Donaldson Collapsing co-associative fibrations



Picture of collapsing that one might expect/hope for.

f : N → B

where dimB = k < dimN, a fibration over a dense open subset
B0 ⊂ B. Diameter of typical fibre O(ε), ε → 0.

1 For a point b ∈ B0 the rescaled limit is a
translation-invariant structure on Xb × Rk (Xb = f−1(b)).

2 The variation of the structure on Xb as b varies over B0

satisfies an equation: the “adiabatic limit”.
3 There is some appropriate extension of the discussion to

the singular fibres, over B \ B0.
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There are (at least) three things one can try to do.

1 Establish that collapsing happens in this way.
2 Extract a sensible/plausible adiabiatic limit in dimension k .
3 Prove reconstruction/gluing results:

adiabatic solution⇒ genuine solution forε << 1.
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Model: Gross-Wilson (2000). Study Calabi-Yau metrics on
elliptically fibred K 3 surface. Fixed complex structure, vary
Kähler class so that volume of fibre tends to 0.

f : N → S2 = CP1

a Lefschetz fibration, 24 singular fibres with ordinary double
points. Local model for f :

f (z1, z2) = z2
1 + z2

2 .

General fibres are elliptic curves, genus 1.

B0 = S2 \ {24 points}.
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1 Away from the singular fibres the rescaled limit is

flat 2− torus× R2.

2 The variation of the flat structure gives a holomorphic map

μ : B0 → moduli space of flat 2− tori.

Also, the limiting metric on B0 satisfies Ricci = μ∗(ΩWP)
(Weil-Petersen form).

3 The behaviour around the 24 critical points is modelled on
the Ooguri-Vafa metric.
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Now we go on to our main topic: collapsing co-associative
Kovalev-Lefschetz fibrations of G2-manifolds. We focus on item
(2): extraction of a sensible/plausible adiabatic limit.

Set-up. f : M7 → B for a 3-manifold B. Fibres Xb = f−1(b).

L ⊂ B a link: B0 = B \ L.

At a critical point, over a point of L, the model for f is
f0 : C3 × R → C × R:

f0(z1, z2, z3, t) = (z2
1 + z2

2 + z2
3 , t).
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Recall that a G2-structure on M can be given by a 3-form φ
which is “positive” at each point.

Positive 3-forms
For all v ∈ TM, v 6= 0:

iv (φ) ∧ iv (φ) ∧ φ > 0.

The conditions for a torsion-free G2-structure are

dφ = 0 , d ∗φ φ = 0. (∗ ∗ ∗∗)

(Here ∗φ is the ∗ operator of the metric determined by φ.)
We assume that the fibres Xb of f are “co-associative” i.e.
φ|Xb

= 0.

Simon Donaldson Collapsing co-associative fibrations



REMARK A special case is M = N × S1, B = S2 × S1 and all
data S1-invariant. Then we are studying Calabi-Yau metrics on
Lefschetz-fibred complex 3-folds.

Calabi-Yau geometry ⊂ G2-geometry.
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Kovalev’s examples (topologically):

S3 = (D2
1 × S1) ∪S1×S1 S1 × D22.

Take two Lefschetz fibrations (with boundary) gi : Ni → D2
i ,

trivial on the boundaries with fibre X .

Take
M = (N1 × S1) ∪ (S1 × N2),

gluing the boundaries S1 × S1 × X by interchanging the S1

factors.

Then g1 × id and id × g2 glue to give a KL fibration
f : M → S3.

Simon Donaldson Collapsing co-associative fibrations



Simon Donaldson Collapsing co-associative fibrations



One can argue that, in a collapsing sequence of this kind the
re-scaled limit over a point b ∈ B0 should be given by

hyperk̈ahler metric onXb × R3.

If ω1, ω2, ω3 ∈ Ω2(Xb) give the hyperkähler structure, the model
positive 3-form on Xb × R3 is

3∑

i=1

ωi dti − dt1dt2dt3.

The only compact hyperkähler 4-manifolds are K 3 surfaces and
tori. We restrict attention to the K3 case. Recall that, with the
cup-product form,

H2(Xb) = R3,19.
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Local Torelli for K3 surfaces. The moduli of hyperkähler
structures are locally given by the “periods”

Span(ω1, ω2, ω3) ∈ Gr+3 (R3,19).

So for a small open set U ⊂ B0 we have a map

μU : U → Gr+3 (R3,19).

One can argue that the adiabatic limit of the torsion free
condition (****) is the condition that μ is the Gauss map of a
parametrised maximal positive submanifold hU : U → R3,19.
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Terminology
“positive” submanifold in Rp,q: the tangent space is a maximal
positive subspace at each point.
“maximal” positive submanifold in Rp,q: stationary for the
volume functional.

c.f Hitchin’s variational characterisation of the torsion-free
condition for G2 structures.
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Remark
If μ : U → Gr+3 (R3,19) is the Gauss map of a maximal positive
submanifold then the classical equations of submanifold theory
give:

μ is a harmonic map;

The induced Ricci curvature is

Ricci = μ∗(gGr).
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Construction of hU .
Over f−1(U) we can write φ = dσ. By the co-associative
condition (φ|Xb

= 0) the restriction of σ to each fibre is a closed
2-form. Then we define

hU(b) = [σ|Xb
] ∈ H2(Xb).

This map hU is independent of the choice of σ, up to the
addition of a constant.
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Global formulation
The cohomology along the fibres gives a sheaf V = R2f∗(R)
over B. The Leray spectral sequence gives a a natural map
H3(M) → H1(B,V) and the image of [φ] gives a class
χ ∈ H1(B;V).
Over B0 ⊂ B the sheaf V can be viewed as a flat vector bundle
V with fibre R3,19. The monodromy around a small circle linking
L is the reflection rδ in a vanishing cycle δ:

rδ(α) = α + (δ.α)δ.

This means that if (B, L) is regarded as an orbifold, V extends
to a flat orbifold vector bundle over B.
The class χ ∈ H1(B;V) defines a lift of V to a flat affine orbifold
bundle Vχ.
The global version of the map hU is a section h of Vχ.
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There is a global version of the condition that the image defines
a maximal positive submanifold. Around a point of L we are
studying solutions with “branch points” as in classical minimal
surface theory.
Model: in R3 = C × R the graph of the multivalued function
Re(z3/2).
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Now we arrive at precise questions.
Given such an orbifold bundle Vχ does it admit a maximal
positive section? Is the solution unique up to
diffeomorphism?
These questions make sense, independent of the existence of
any M etc. But we hope that they should be related to existence
and uniqueness questions for torsion-free G2-structures.
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Going back to the REMARK we have versions of these
questions in the Calabi-Yau 3-fold setting.
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The fibres over L carry singular Calabi-Yau metrics, with
singularities modelled on C2/ ± 1.
Yang Li (2017): There is a Calabi-Yau metric on C3 with tangent
cone at infinity (

C2/ ± 1
)
× C

.
(With subsequent more general results of Székelyhidi,
Conlon-Rochon.)
One expects that Li’s metric (times R) gives the model for the
behaviour of the collapsing sequence around the critical points
of f .
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Digression 1; deformations of singularities
For the “maximal positive section” set-up to be a sensible
adiabatic limit of the G2 equations (****) one needs to have a
Fredholm deformation theory. Away from L this is standard (the
linearised equation is a Laplace-type equation for a normal
vector field). The problem is to incorporate deformations of the
singular set (work in progress).
Very similar questions arise in the study of singular solutions of
the G2-instanton equation. (Yuanqi Wang, work in progress).
Here we have a 1-dimensional submanifold Γ ⊂ M7 and a
connection defined over M \ Γ with singularity modelled on a
singular Hermitian Yang-Mills connection over C3 \ {0},
corresponding to a reflexive sheaf on 3 (cf. Bando-Siu).
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Recall our REMARK. There has been much recent progress in
understanding such singular solutions in gauge theory, and the
relation to algebraic geometry. (Jacob-Walpuski, Chen-Sun).

ALSO to singular solutions of equations of Seiberg-Witten type
over 3-manifolds (Taubes, Haydys, Walpuski, Doan), which are
related to G2-geometry via a programme of Haydys-Walpuski.
Takahashi obtains a Fredholm deformation problem for some
solutions of this kind.
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Digression 2; boundary-value problems
The “indefinite Plateau problem”.
Suppose that a submanifold Σp−1 ⊂ Rp,q is the boundary of
some positive submanifold, is it the boundary of a maximal
positive submanifold?
(Bartnik-Simon(1982) Yes, if q = 1.)
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One would like to see this question (with (p, q) = (3, 19) as the
adiabatic limit of an existence question for torsion-free
G2-structures. Given M7 compact with boundary and a closed
positive form ρ on ∂M is there a solution φ of the G2-equations
(****) with φ|∂M = ρ ?
(A motivation for this is to get interesting PDE and analysis
problems without complicated geometry and topology.)
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Necessary foundations: a Fredholm theory for this boundary
value problem.
The linearised equation can be set up as follows.
Recall that on a G2-manifold there is a decomposition

Λ2 = Λ2
7 ⊕ Λ2

14.

On the other hand on the boundary there is a decomposition

Λ2 = Λ2
∂M ⊕ Λ1

∂M .

These are related as follows. The boundary ∂M has an SU(3)
structure so there is an 8-dimensional summand

Λ1,1
0 ⊂ Λ2

∂M

and this lies in Λ2
14.
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Now we have the PDE equation, for sections α, ρ of Λ2
14:

Δα = ρ

with boundary conditions

α|∂M,8 = 0, d∗α|∂M = 0.

(Here ρ is given and α is to be found.)
This is a linear elliptic boundary value problem and leads to a
Fredholm theory for the nonlinear problem (cf. work of Fine,
Lotay & Singer for hyperkähler 4-manifolds).
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