Collapsing co-associative fibrations

Simon Donaldson¹

¹Simons Centre for Geometry and Physics, Stony Brook

September 13, 2017

Simon Donaldson Collapsing co-associative fibrations

PLAN

- Collapsing fibrations.
- • Digression: deforming singularities;
 - Digression: boundary value problem

Collapsing Two general contexts.

Context 1: *G*₂-geometry

 M^7 closed, oriented 7-manifold. \mathcal{M} the moduli space of G_2 -structures on M. We are interested in the "boundary" of \mathcal{M} . *i.e.* if $\phi_i \in \mathcal{M}$ what can we say about

 $\lim_{i'} (M, \phi_{i'})?$

(For a subsequence i'.)

Context 2: General Riemannian geometry

 (N_i, g_i) Riemannian manifolds with Ricci = 0 (say). Normalise to Diameter = 1.

Non-collapsed case $Volume(N_i, g_i) \ge \nu > 0$. Relatively well-understood (Cheeger-Colding ...);

Collapsing case Volume(N_i, g_i) \rightarrow 0. Much current activity.

Picture of collapsing that one might expect/hope for.

$$f: N \to B$$

where dimB = $k < \dim N$, a fibration over a dense open subset $B_0 \subset B$. Diameter of typical fibre $O(\epsilon)$, $\epsilon \to 0$.

- For a point $b \in B_0$ the rescaled limit is a translation-invariant structure on $X_b \times \mathbf{R}^k$ $(X_b = f^{-1}(b))$.
- 2 The variation of the structure on X_b as *b* varies over B_0 satisfies an equation: the "adiabatic limit".
- Some appropriate extension of the discussion to the singular fibres, over B \ B₀.

There are (at least) three things one can try to do.

- Establish that collapsing happens in this way.
- Extract a sensible/plausible adiabiatic limit in dimension k.
- Prove reconstruction/gluing results:

adiabatic solution \Rightarrow genuine solution for $\epsilon \ll 1$.

Model: Gross-Wilson (2000). Study Calabi-Yau metrics on elliptically fibred *K*3 surface. Fixed complex structure, vary Kähler class so that volume of fibre tends to 0.

$$f: N \to S^2 = \mathbf{CP}^1$$

a *Lefschetz fibration*, 24 singular fibres with ordinary double points. Local model for *f*:

$$f(z_1, z_2) = z_1^2 + z_2^2.$$

General fibres are elliptic curves, genus 1.

$$B_0 = S^2 \setminus \{24 \text{ points}\}.$$

Away from the singular fibres the rescaled limit is

flat 2 – torus $\times \mathbb{R}^2$

 $\mu: B^0 \to \text{moduli space of flat } 2 - \text{tori.}$

Also, the limiting metric on B_0 satisfies Ricci = $\mu^*(\Omega_{WP})$ (Weil-Petersen form).

The behaviour around the 24 critical points is modelled on the Ooguri-Vafa metric.

Now we go on to our main topic: *collapsing co-associative Kovalev-Lefschetz fibrations* of G_2 -manifolds. We focus on item (2): extraction of a sensible/plausible adiabatic limit.

Set-up. $f: M^7 \to B$ for a 3-manifold *B*. Fibres $X_b = f^{-1}(b)$.

$$L \subset B$$
 a link: $B_0 = B \setminus L$.

At a critical point, over a point of *L*, the model for *f* is $f_0: \mathbf{C}^3 \times \mathbf{R} \to \mathbf{C} \times \mathbf{R}$:

$$f_0(z_1, z_2, z_3, t) = (z_1^2 + z_2^2 + z_3^2, t).$$

Recall that a G_2 -structure on M can be given by a 3-form ϕ which is "positive" at each point.

Positive 3-forms For all $v \in TM$, $v \neq 0$:

 $i_{\mathsf{V}}(\phi) \wedge i_{\mathsf{V}}(\phi) \wedge \phi > 0.$

The conditions for a torsion-free G_2 -structure are

$$d\phi = 0$$
 , $d *_{\phi} \phi = 0$. (* * **)

(Here $*_{\phi}$ is the * operator of the metric determined by ϕ .) We assume that the fibres X_b of f are "co-associative" i.e. $\phi|_{X_b} = 0$. **REMARK** A special case is $M = N \times S^1$, $B = S^2 \times S^1$ and all data S^1 -invariant. Then we are studying *Calabi-Yau metrics on Lefschetz-fibred complex 3-folds*.

Calabi-Yau geometry $\subset G_2$ -geometry.

Kovalev's examples (topologically):

$$S^3 = (D_1^2 \times S^1) \cup_{S^1 \times S^1} S^1 \times D_{22}.$$

- Take two Lefschetz fibrations (with boundary) $g_i : N_i \rightarrow D_i^2$, trivial on the boundaries with fibre *X*.
- Take

$$M = (N_1 \times S^1) \cup (S^1 \times N_2),$$

gluing the boundaries $S^1 \times S^1 \times X$ by interchanging the S^1 factors.

• Then $g_1 \times id$ and $id \times g_2$ glue to give a KL fibration $f: M \to S^3$.

One can argue that, in a collapsing sequence of this kind the re-scaled limit over a point $b \in B_0$ should be given by

hyperkähler metric on $X_b \times \mathbf{R}^3$.

If $\omega_1, \omega_2, \omega_3 \in \Omega^2(X_b)$ give the hyperkähler structure, the model positive 3-form on $X_b \times \mathbf{R}^3$ is

$$\sum_{i=1}^{3} \omega_i \, dt_i - dt_1 dt_2 dt_3.$$

The only compact hyperkähler 4-manifolds are K3 surfaces and tori. We restrict attention to the K3 case. Recall that, with the cup-product form,

$$H^2(X_b) = \mathbf{R}^{3,19}.$$

Local Torelli for K3 surfaces. The moduli of hyperkähler structures are locally given by the "periods"

$$\operatorname{Span}(\omega_1,\omega_2,\omega_3)\in\operatorname{Gr}_3^+(\mathsf{R}^{3,19})$$

So for a small open set $U \subset B_0$ we have a map

$$\mu_U: U \to \operatorname{Gr}_3^+(\mathbf{R}^{3,19}).$$

One can argue that the adiabatic limit of the torsion free condition (****) is the condition that μ is the Gauss map of a parametrised *maximal positive submanifold* $h_U: U \to \mathbb{R}^{3,19}$.

Terminology "positive" submanifold in $\mathbf{R}^{p,q}$: the tangent space is a maximal positive subspace at each point. "maximal" positive submanifold in $\mathbf{R}^{p,q}$: stationary for the volume functional.

c.f Hitchin's variational characterisation of the torsion-free condition for G_2 structures.

Remark

If $\mu : U \to \operatorname{Gr}_3^+(\mathbf{R}^{3,19})$ is the Gauss map of a maximal positive submanifold then the classical equations of submanifold theory give:

- μ is a *harmonic* map;
- The induced Ricci curvature is

$$\operatorname{Ricci} = \mu^*(\boldsymbol{g}_{\operatorname{Gr}}).$$

Construction of h_U .

Over $f^{-1}(U)$ we can write $\phi = d\sigma$. By the co-associative condition ($\phi|_{X_b} = 0$) the restriction of σ to each fibre is a closed 2-form. Then we define

$$h_U(b) = [\sigma|_{X_b}] \in H^2(X_b).$$

This map h_U is independent of the choice of σ , up to the addition of a constant.

Global formulation

The cohomology along the fibres gives a sheaf $\mathcal{V} = R^2 f_*(\mathbf{R})$ over *B*. The Leray spectral sequence gives a a natural map $H^3(M) \to H^1(B, \mathcal{V})$ and the image of $[\phi]$ gives a class $\chi \in H^1(B; \mathcal{V})$.

Over $B_0 \subset B$ the sheaf \mathcal{V} can be viewed as a flat vector bundle V with fibre $\mathbb{R}^{3,19}$. The monodromy around a small circle linking L is the reflection r_{δ} in a vanishing cycle δ :

$$r_{\delta}(\alpha) = \alpha + (\delta \cdot \alpha)\delta$$
.

This means that if (B, L) is regarded as an orbifold, V extends to a flat orbifold vector bundle over B.

The class $\chi \in H^1(B; \mathcal{V})$ defines a lift of *V* to a flat affine orbifold bundle V_{χ} .

The global version of the map h_U is a section *h* of V_{χ} .

There is a global version of the condition that the image defines a maximal positive submanifold. Around a point of L we are studying solutions with "branch points" as in classical minimal surface theory.

Model: in $\mathbf{R}^3 = \mathbf{C} \times \mathbf{R}$ the graph of the multivalued function $\operatorname{Re}(z^{3/2})$.

Now we arrive at precise questions.

Given such an orbifold bundle V_{χ} does it admit a maximal positive section? Is the solution unique up to diffeomorphism?

These questions make sense, independent of the existence of any M etc. But we hope that they should be related to existence and uniqueness questions for torsion-free G_2 -structures.

Going back to the REMARK we have versions of these questions in the Calabi-Yau 3-fold setting.

The fibres over *L* carry singular Calabi-Yau metrics, with singularities modelled on $\mathbf{C}^2 / \pm 1$. Yang Li (2017): There is a Calabi-Yau metric on \mathbf{C}^3 with tangent cone at infinity

$$\left(\mathbf{C}^{2}/\pm\mathbf{1}
ight) imes\mathbf{C}$$

(With subsequent more general results of Székelyhidi, Conlon-Rochon.)

One expects that Li's metric (times \mathbf{R}) gives the model for the behaviour of the collapsing sequence around the critical points of *f*.

Digression 1; deformations of singularities

For the "maximal positive section" set-up to be a sensible adiabatic limit of the G_2 equations (****) one needs to have a Fredholm deformation theory. Away from *L* this is standard (the linearised equation is a Laplace-type equation for a normal vector field). The problem is to incorporate deformations of the singular set (work in progress).

Very similar questions arise in the study of singular solutions of the G_2 -*instanton equation*. (Yuanqi Wang, work in progress). Here we have a 1-dimensional submanifold $\Gamma \subset M^7$ and a connection defined over $M \setminus \Gamma$ with singularity modelled on a singular Hermitian Yang-Mills connection over $\mathbb{C}^3 \setminus \{0\}$, corresponding to a reflexive sheaf on 3 (cf. Bando-Siu).

Recall our REMARK. There has been much recent progress in understanding such singular solutions in gauge theory, and the relation to algebraic geometry. (Jacob-Walpuski, Chen-Sun).

ALSO to singular solutions of equations of Seiberg-Witten type over 3-manifolds (Taubes, Haydys, Walpuski, Doan), which are related to G_2 -geometry via a programme of Haydys-Walpuski. Takahashi obtains a Fredholm deformation problem for some solutions of this kind.

Digression 2; boundary-value problems

The "indefinite Plateau problem".

Suppose that a submanifold $\Sigma^{p-1} \subset \mathbf{R}^{p,q}$ is the boundary of some positive submanifold, is it the boundary of a maximal positive submanifold?

(Bartnik-Simon(1982) Yes, if q = 1.)

One would like to see this question (with (p, q) = (3, 19) as the adiabatic limit of an existence question for torsion-free G_2 -structures. Given M^7 compact with boundary and a closed positive form ρ on ∂M is there a solution ϕ of the G_2 -equations (****) with $\phi|_{\partial M} = \rho$?

(A motivation for this is to get interesting PDE and analysis problems without complicated geometry and topology.)

Necessary foundations: a Fredholm theory for this boundary value problem.

The linearised equation can be set up as follows. Recall that on a G_2 -manifold there is a decomposition

$$\Lambda^2 = \Lambda^2_7 \oplus \Lambda^2_{14}.$$

On the other hand on the boundary there is a decomposition

$$\Lambda^2 = \Lambda^2_{\partial M} \oplus \Lambda^1_{\partial M}.$$

These are related as follows. The boundary ∂M has an SU(3) structure so there is an 8-dimensional summand

$$\Lambda_0^{1,1} \subset \Lambda_{\partial M}^2$$

and this lies in Λ^2_{14} .

Now we have the PDE equation, for sections α , ρ of Λ_{14}^2 :

$$\Delta \alpha = \rho$$

with boundary conditions

$$\alpha|_{\partial M,\mathbf{8}} = \mathbf{0}, \mathbf{d}^* \alpha|_{\partial M} = \mathbf{0}.$$

(Here ρ is given and α is to be found.) This is a linear elliptic boundary value problem and leads to a Fredholm theory for the nonlinear problem (cf. work of Fine, Lotay & Singer for hyperkähler 4-manifolds).