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Collapsing Two general contexts.

Context 1: G,-geometry

M7 closed, oriented 7-manifold. M the moduli space of
G,-structures on M. We are interested in the “boundary”of M.
i.e. if ¢y € M what can we say about

lim(M, 61/)?

(For a subsequence i’.)
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Context 2: General Riemannian geometry

(Ni, gi) Riemannian manifolds with Ricci = 0 (say). Normalise
to Diameter= 1.

Non-collapsed case Volume(N;, g;) > v > 0. Relatively

well-understood (Cheeger-Colding ...);

Collapsing case Volumeg(N;, gj) — 0. Much current activity.
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Picture of collapsing that one might expect/hope for.

f:N—B
where dimB = k < dimN, a fibration over a dense open subset
Bo C B. Diameter of typical fibre O(¢), e — O.

© For a point b € By the rescaled limit is a
translation-invariant structure on X, x R* (X, = f~1(h)).

© The variation of the structure on Xy, as b varies over By
satisfies an equation: the “adiabatic limit”.

© There is some appropriate extension of the discussion to
the singular fibres, over B \ Bg.
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There are (at least) three things one can try to do.

© Establish that collapsing happens in this way.
@ Extract a sensible/plausible adiabiatic limit in dimension k.
© Prove reconstruction/gluing results:

adiabatic solutior= genuine solution for << 1.
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Model: Gross-Wilson (2000). Study Calabi-Yau metrics on
elliptically fibred K 3 surface. Fixed complex structure, vary
Kahler class so that volume of fibre tends to 0.

f:N—S?2=cCcpP?!

a Lefschetz fibration, 24 singular fibres with ordinary double
points. Local model for f:

2, 52
f(z1,22) = 21 + z5.
General fibres are elliptic curves, genus 1.

Bo = S?\ {24 points}.
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© Away from the singular fibres the rescaled limit is
flat 2 — torusx R?.
@ The variation of the flat structure gives a holomorphic map
w : B9 — moduli space of flat 2- tori.

Also, the limiting metric on By satisfies Ricci = p*(Qwp)
(Weil-Petersen form).

© The behaviour around the 24 critical points is modelled on
the Ooguri-Vafa metric.
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Now we go on to our main topic: collapsing co-associative
Kovalev-Lefschetz fibrations of G,-manifolds. We focus on item
(2): extraction of a sensible/plausible adiabatic limit.

Set-up. f : M7 — B for a 3-manifold B. Fibres X, = f~1(b).
LcBalink: Bp=B\L.

At a critical point, over a point of L, the model for f is
fo:C¥ xR —CxR:

f0(21a227z37t) = (Z]? + 222 =+ Z§7t)'
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Recall that a G,-structure on M can be given by a 3-form ¢
which is “positive” at each point.

Positive 3-forms
Forallv € TM,v # O:

iv(®) ANiv(ep) A ¢ > 0.

The conditions for a torsion-free G,-structure are
dp=0 ,dx5¢=0. (xxxx)

(Here x, is the * operator of the metric determined by ¢.)
We assume that the fibres X, of f are “co-associative” i.e.

élx, = 0.
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REMARK A special case is M = N x S B = S2 x St and all
data S'-invariant. Then we are studying Calabi-Yau metrics on
Lefschetz-fibred complex 3-folds.

Calabi-Yau geometry C G,-geometry.

Simon Donaldson



Kovalev’'s examples (topologically):
S% = (D7 x SY) Ug1, 51 ST x Dya.

@ Take two Lefschetz fibrations (with boundary) g; : N; — Di2,
trivial on the boundaries with fibre X.

@ Take
M = (N; x SHU (St x Np),
gluing the boundaries S x S x X by interchanging the St
factors.

@ Then g; x id and id x g glue to give a KL fibration
f:M — SS.
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One can argue that, in a collapsing sequence of this kind the
re-scaled limit over a point b € By should be given by

hyperkahler metric oy, x R®.

If wi,ws,ws € Q?(Xp) give the hyperkahler structure, the model
positive 3-form on X x R3is

3
Zwi dti — dtldtzdtg,.

i=1

The only compact hyperkahler 4-manifolds are K 3 surfaces and
tori. We restrict attention to the K3 case. Recall that, with the
cup-product form,

H2(X,) = R®%°.
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Local Torelli for K3 surfaces. The moduli of hyperkahler
structures are locally given by the “periods”

Sparfws, w,w3) € Grér(Rs’lg)-
So for a small open set U C By we have a map
py t U — Grgr(R&lg).

One can argue that the adiabatic limit of the torsion free
condition (****) is the condition that p is the Gauss map of a
parametrised maximal positive submanifold hy : U — R319,
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Terminology

“positive” submanifold in RP-9: the tangent space is a maximal
positive subspace at each point.

“maximal” positive submanifold in RP-9: stationary for the
volume functional.

c.f Hitchin’s variational characterisation of the torsion-free
condition for G, structures.
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Remark
If o : U — Grj (R®19) is the Gauss map of a maximal positive
submanifold then the classical equations of submanifold theory
give:

@ 1 is a harmonic map;

@ The induced Ricci curvature is

Ricci = 1" (dar)-
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Construction of hy.

Over f~1(U) we can write ¢ = do. By the co-associative
condition (¢|x, = 0) the restriction of o to each fibre is a closed
2-form. Then we define

hy(b) = [o]x,] € H*(Xb).

This map hy is independent of the choice of o, up to the
addition of a constant.
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Global formulation

The cohomology along the fibres gives a sheaf V = R?f,(R)
over B. The Leray spectral sequence gives a a natural map
H3(M) — H1(B,V) and the image of [¢] gives a class

X € Hl(B; V).

Over By C B the sheaf V can be viewed as a flat vector bundle
V with fibre R%°. The monodromy around a small circle linking
L is the reflection rs in a vanishing cycle §:

rs(a) = a+ (8.a)0.

This means that if (B, L) is regarded as an orbifold, V extends
to a flat orbifold vector bundle over B.

The class x € H1(B; V) defines a lift of V to a flat affine orbifold
bundle V,,.

The global version of the map hy is a section h of V,..
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There is a global version of the condition that the image defines
a maximal positive submanifold. Around a point of L we are
studying solutions with “branch points” as in classical minimal
surface theory.

Model: in R® = C x R the graph of the multivalued function
Re(z%/2).
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Now we arrive at precise questions.

Given such an orbifold bundle  V, does it admit a maximal
positive section? Is the solution unique up to

diffeomorphism?

These questions make sense, independent of the existence of
any M etc. But we hope that they should be related to existence
and unigueness questions for torsion-free G,-structures.
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Going back to the REMARK we have versions of these
questions in the Calabi-Yau 3-fold setting.
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The fibres over L carry singular Calabi-Yau metrics, with
singularities modelled on C2/ + 1.

Yang Li (2017): There is a Calabi-Yau metric on C® with tangent
cone at infinity

(Cz/il) x C

(With subsequent more general results of Székelyhidi,
Conlon-Rochon.)

One expects that Li's metric (times R) gives the model for the
behaviour of the collapsing sequence around the critical points
of f.
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Digression 1; deformations of singularities

For the “maximal positive section” set-up to be a sensible
adiabatic limit of the G, equations (****) one needs to have a
Fredholm deformation theory. Away from L this is standard (the
linearised equation is a Laplace-type equation for a normal
vector field). The problem is to incorporate deformations of the
singular set (work in progress).

Very similar questions arise in the study of singular solutions of
the G,-instanton equation. (Yuanqgi Wang, work in progress).
Here we have a 1-dimensional submanifold ' ¢ M? and a
connection defined over M \ I with singularity modelled on a
singular Hermitian Yang-Mills connection over C3\ {0},
corresponding to a reflexive sheaf on 2 (cf. Bando-Siu).
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Recall our REMARK. There has been much recent progress in
understanding such singular solutions in gauge theory, and the
relation to algebraic geometry. (Jacob-Walpuski, Chen-Sun).

ALSO to singular solutions of equations of Seiberg-Witten type
over 3-manifolds (Taubes, Haydys, Walpuski, Doan), which are
related to G,-geometry via a programme of Haydys-Walpuski.
Takahashi obtains a Fredholm deformation problem for some
solutions of this kind.
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Digression 2; boundary-value problems

The “indefinite Plateau problem”.

Suppose that a submanifold ¥~ ¢ RP-9 is the boundary of
some positive submanifold, is it the boundary of a maximal
positive submanifold?

(Bartnik-Simon(1982) Yes, ifg = 1.)
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One would like to see this question (with (p,q) = (3,19) as the
adiabatic limit of an existence question for torsion-free
G,-structures. Given M” compact with boundary and a closed
positive form p on M is there a solution ¢ of the G,-equations
(%) with plom = p ?

(A motivation for this is to get interesting PDE and analysis
problems without complicated geometry and topology.)
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Necessary foundations: a Fredholm theory for this boundary
value problem.

The linearised equation can be set up as follows.

Recall that on a G,-manifold there is a decomposition

N2 =N2 @ A%,
On the other hand on the boundary there is a decomposition
N = Ny @ Nju-

These are related as follows. The boundary oM has an SU(3)
structure so there is an 8-dimensional summand

1,1 2
Ng™ C Aom

- . . 2
and this lies in A7,.
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Now we have the PDE equation, for sections «, p of A2,
Aa=p
with boundary conditions
alomg = 0,d"alom = 0.

(Here p is given and « is to be found.)

This is a linear elliptic boundary value problem and leads to a
Fredholm theory for the nonlinear problem (cf. work of Fine,
Lotay & Singer for hyperkahler 4-manifolds).
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