Complete non-compact manifolds with holonomy G2 and ALC asymptotics

Lorenzo Foscolo

University College London

joint with Mark Haskins and Johannes Nordström

Annual Meeting, Simons Collaboration on Special Holonomy, Simons Foundation, Sep 8-9 2022
The asymptotic geometry of ALC manifolds

- (Σ^{n-2}, g_Σ) closed connected \rightsquigarrow cone $C(\Sigma) = \mathbb{R}_+ \times \Sigma$, $g_C = dr^2 + r^2 g_\Sigma$
- $\pi : N^{n-1} \to \Sigma$ principal circle bundle, connection θ, $\ell > 0$ ($\ell = 1$)
 $$BC(\Sigma) = \mathbb{R}_+ \times N, \quad g_{BC} = dr^2 + r^2 g_\Sigma + \ell^2 \theta^2$$
- $\text{Isom}(N)/\text{Isom}^+(N) = \langle \iota \rangle$ standard involution $\iota^* \theta = -\theta$
The asymptotic geometry of ALC manifolds

- \((\Sigma^{n-2}, g_\Sigma)\) closed connected \(\rightsquigarrow\) cone \(C(\Sigma) = \mathbb{R}_+ \times \Sigma,\) \(g_C = dr^2 + r^2 g_\Sigma\)
- \(\pi: N^{n-1} \to \Sigma\) principal circle bundle, connection \(\theta, \ell > 0\) \((\ell = 1)\)
 \[BC(\Sigma) = \mathbb{R}_+ \times N, \quad g_{BC} = dr^2 + r^2 g_\Sigma + \ell^2 \theta^2\]
- \(\text{Isom}(N)/\text{Isom}^+(N) = \langle \iota \rangle\) standard involution \(\iota^* \theta = -\theta\)

Definition: \((M^n, g)\) complete non-cpct 1-ended is \textbf{ALC} of cyclic/dihedral type asymptotic to \(BC(\Sigma)\) with rate \(\nu < 0\) if \(\exists\) diffeo/double cover

\[f : (R, \infty) \times N \to M \setminus K \quad \text{such that} \quad |\nabla^k (g_{BC} - f^* g)| = O(r^{\nu-k}).\]
The asymptotic geometry of ALC manifolds

- (Σ^{n-2}, g_Σ) closed connected \rightsquigarrow cone $C(\Sigma) = \mathbb{R}_+ \times \Sigma$, $g_C = dr^2 + r^2 g_\Sigma$
- $\pi : N^{n-1} \to \Sigma$ principal circle bundle, connection θ, $\ell > 0$ ($\ell = 1$)

 \[BC(\Sigma) = \mathbb{R}_+ \times N, \quad g_{BC} = dr^2 + r^2 g_\Sigma + \ell^2 \theta^2 \]

- $\text{Isom}(N)/\text{Isom}^+(N) = \langle \iota \rangle$ standard involution $\iota^* \theta = -\theta$

Definition: (M^n, g) complete non-cpct 1-ended is ALC of cyclic/dihedral type asymptotic to $BC(\Sigma)$ with rate $\nu < 0$ if \exists diffeo/double cover

\[f : (R, \infty) \times N \to M \setminus K \quad \text{such that} \quad |\nabla^k(g_{BC} - f^*g)| = O(r^{\nu-k}). \]

Example: 4d ALF hyperkähler metrics via the Gibbons–Hawking Ansatz

\[g_m = \left(m + \sum_{i=1}^n \frac{1}{2|x - a_i|} \right) dx \cdot dx + \left(m + \sum_{i=1}^n \frac{1}{2|x - a_i|} \right)^{-1} \theta^2 \]
G₂–manifolds and Calabi–Yau 3-folds

- smooth 7-manifold M endowed with a **G₂–structure** φ
 - φ a positive 3-form

 $$\frac{1}{6}(u \lrcorner \varphi) \wedge (v \lrcorner \varphi) \wedge \varphi = g_\varphi(u, v) \text{vol}_{g_\varphi}$$

 (M, φ) is a **G₂–manifold** if $d \varphi = 0 = d * \varphi$

 $\Rightarrow \text{Hol}(g_\varphi) \subseteq G_2$ and $\text{Ric}(g_\varphi) = 0$

- smooth 6-manifold B endowed with an **SU(3)–structure** (ω, Ω)
 - ω a non-degenerate 2-form
 - Ω a complex volume form \rightsquigarrow almost complex structure J
 - compatibility: $\omega \wedge \Omega = 0$ and $4 \omega^3 = 3 \Omega \wedge \overline{\Omega} \rightsquigarrow$ Riemannian metric $g_{\omega, \Omega}$

 (B, ω, Ω) is a **Calabi–Yau 3-fold** (CY) if $d\omega = 0 = d\Omega$

- (B, ω, Ω) CY 3-fold $\rightarrow M=B \times S^1$, $\varphi = dt \wedge \omega + \text{Re}\Omega$ **G₂–manifold**
Infinitely many ALC G2 manifolds

Theorem

- $(B, g_{CY}, \omega, \Omega)$ AC Calabi–Yau 3-fold
- $M \to B$ principal circle bundle with $c_1(M) \cup [\omega] = 0 \in H^4(B)$
- $\implies S^1$–invariant ALC G2–metric g_{ϵ} on $M \forall \epsilon \ll 1$
- with collapse with bounded curvature $(M, g_{\epsilon}) \xrightarrow{\epsilon \to 0} (B, g_{CY})$

\[
\varphi = \epsilon \theta \wedge \omega + h^3 \frac{1}{4} \text{Re} \Omega,
\]
\[
\ast \varphi = -\epsilon \theta \wedge h^3 \frac{1}{4} \text{Im} \Omega + \frac{1}{2} h \omega^2 \quad g = \sqrt{h} g_B + \epsilon^2 h^{-1} \theta^2
\]
\[
d\omega = 0, \quad d \left(h^3 \frac{1}{4} \text{Re} \Omega \right) + \epsilon d\theta \wedge \omega = 0,
\]
\[
d \left(h^4 \frac{1}{4} \text{Im} \Omega \right) = 0, \quad \frac{1}{2} dh \wedge \omega^2 - \epsilon h^4 d\theta \wedge \text{Im} \Omega = 0.
\]
The moduli space of ALC G_2 metrics

Theorem (Joyce)
The moduli space of torsion-free G_2 structures on a closed smooth 7-manifold M is a smooth manifold of dimension $b_3(M)$ and the map

$\varphi \mapsto ([\varphi], [\star \varphi]) \in H^3(M) \times H^4(M)$ induces a Lagrangian immersion.
The moduli space of ALC G2 metrics

Theorem (Joyce)
The moduli space of torsion-free G_2 structures on a closed smooth 7-manifold M is a smooth manifold of dimension $b_3(M)$ and the map

$$\varphi \mapsto ([\varphi], [\ast \varphi]) \in H^3(M) \times H^4(M)$$

induces a Lagrangian immersion.

The **model** $BC(\Sigma)$ for an ALC G_2 manifold

- Σ is a Sasaki–Einstein 5-manifold
 - \rightsquigarrow conical CY structure $\omega_C = d(\frac{1}{2} r^2 \eta)$, Ω_C on $C(\Sigma)$
- Hermitian–Yang–Mills connection θ: $d \theta \wedge \omega^2_C = 0 = d \theta \wedge \Omega_C$

model **closed** positive 3-form

$$\varphi_{BC} = \theta \wedge \omega_C + \text{Re} \Omega_C - \frac{1}{2} r^2 \eta \wedge d \theta$$

\rightsquigarrow consider torsion-free ALC G_2 structures φ with $\varphi = \varphi_{BC} + O(r^{-1-\delta})$
Theorem

The moduli space of torsion-free ALC G_2 structures on M^7 of rate $\nu < -1$ is a smooth manifold with tangent space at φ the space $H^3_\nu(M, g_\varphi)$ of closed and g_φ–coclosed 3-forms with $O(r^\nu)$ decay.

Similar deformation theory in non-compact AC setting studied by Karigiannis–Lotay in 2020

Assume $H^3_\nu \longrightarrow H^3(M) \times H^4(M)$ is an immersion

- ν sufficiently close to -3
- Σ is a regular Sasaki-Einstein 5-manifold

Consequences:

- **continuous symmetries** (isometries that preserve the G_2 structure) of $BC(\Sigma)$ extend to symmetries of $M \twoheadrightarrow$ circle symmetry of cyclic ALC G_2 manifolds

 cf. classification of 4d ALF hyperkähler spaces of cyclic type (Minerbe)

- (M, φ) cyclic ALC and $BC(\Sigma) \rightarrow C(\Sigma)$ flat circle bundle \Rightarrow $\text{Hol}(g_\varphi) \subsetneq G_2$

 $\gamma = \text{harmonic 1-form dual to Killing field generating circle action}$

\[\|d\gamma\|^2_{L^2} = -\int_M d\gamma \wedge d\gamma \wedge \varphi = 0 \implies \nabla \gamma = 0 \]
Dihedral ALC manifolds?

Biquard–Minerbe: 4d ALF hyperkähler spaces of dihedral type
- dihedral **ALF orbifold** Taub–NUT/Γ
 - Taub–NUT metric on \(\mathbb{R}^4\): \((1 + |x|^{-1}) \, dx \cdot dx + (1 + |x|^{-1})^{-1} \theta^2, \, d\theta = \text{vol}_{S^2}\)
 - \(\Gamma = \) binary dihedral group acting on Taub–NUT as a hyperkähler symmetry
- desingularize by gluing in an **ALE** metric asymptotic to \(\mathbb{R}^4/\Gamma\) at \(\infty\)

Want an *applicable* **G**\(_2\) **analogue** of this construction
- **conically singular** ALC **G**\(_2\) space \((M_0, \varphi_0)\)
 - singular points \(p_1, \ldots, p_k\) modelled on **G**\(_2\) cones \(C(N_1), \ldots, C(N_k)\)
- **asymptotically conical** **G**\(_2\) manifolds \((M_i, \varphi_i)\) asymptotic to \(C(N_i)\) at \(\infty\)

Similar desingularization in compact **G**\(_2\) setting studied by Karigiannis in 2009
An example of a dihedral ALC G_2 manifold

Theorem

- ALC G_2 metric on $M_0 = \mathbb{R}_+ \times S^3 \times S^3$ with conical singularity modelled on C
- AC G_2 manifolds $M_{m,n}$ for all $m, n \in \mathbb{Z}_{>0}$ coprime asymptotic to $C/\mathbb{Z}_2^{(n+m)}$ with rate -3

Symmetries

- Symmetries of ALC G_2 metric: $SU(2)^2 \times N$, $N = U(1) \times \mathbb{Z}_2$
 - Cyclic $\mathbb{Z}_4 \subset U(1) \subset N$
 - Dihedral $1 \to \mathbb{Z}_2 \to \mathbb{Z}_4 \to \mathbb{Z}_2 \to 1$ in $1 \to U(1) \to N \to \mathbb{Z}_2 \to 1$

- Symmetries of G_2 cone C: $SU(2)^2 \times SU(2)$ so $C/\mathbb{Z}_4^{cyclic} \simeq C/\mathbb{Z}_4^{dihedral}$
 - \rightsquigarrow use $M_{1,1}$ to desingularise $M_0/\mathbb{Z}_4^{cyclic}$ and $M_0/\mathbb{Z}_4^{dihedral}$

\Rightarrow existence of **dihedral ALC G_2 manifolds**
Desingularizing conically singular $ALC \ G_2$ spaces

Theorem

- (M_0, φ_0) conically singular $ALC \ G_2$ space with singularities $\{p_i\}_{i=1}^k$ modelled on cones $C(N_1), \ldots, C(N_k)$
- AC G_2 manifold (M_i, φ_i) asymptotic to $C(N_i)$ with rate $\nu_i \leq -3$
- **Topological conditions**
 - $([\varphi_1|_{\partial M_1}], \ldots, [\varphi_k|_{\partial M_k}])$ lies in the image of
 \[
 H^3(M_0) \to \bigoplus_{i=1}^k H^3(N_i) \oplus H^3(\partial_\infty M_0) \to \bigoplus_{i=1}^k H^3(N_i)
 \]
 - $([*\varphi_1|_{\partial M_1}], \ldots, [*\varphi_k|_{\partial M_k}], 0)$ lies in the image of
 \[
 H^4(M_0) \to \bigoplus_{i=1}^k H^4(N_i) \oplus H^4(\partial_\infty M_0)
 \]

\Rightarrow existence $ALC \ G_2$ desingularizations (M, φ_t) of (M_0, φ_0) for $t \ll 1$.
Ingredients of the proof

- \((M_i, \varphi_i)\) AC \(G_2\) manifold asymptotic to \(C(N_i)\) with rate \(\nu_i \leq -3\)

\[
\varphi_i = \varphi_C + \xi_i + d\zeta_i, \quad [\xi_i] \in H^3(\partial M_i)
\]

\[
*\varphi_i = *\varphi_C + \eta_i - *\xi_i + d\theta_i, \quad [\eta_i] \in H^4(\partial M_i)
\]

- Necessary topological conditions guarantee existence of closed (and coclosed) forms \(\xi_0\) and \(\zeta_0\) extending \(\xi_i\) and \(\zeta_i\) to \(M_0\)

\(\rightsquigarrow\) **closed** \(G_2\) structure \(\varphi'_t\) on \(M = M_0 \amalg \bigsqcup_i M_i\) with **small torsion** \(|d^*\varphi'_t| \ll 1\)

- Joyce: look for torsion-free \(G_2\) structure \(\varphi'_t + d\sigma\) via iteration scheme

\[
\triangle \sigma_j = d^* \chi_{j-1}
\]

- In non-compact ALC setting
 - Require \(\varphi'_t\) to have small and **decaying** torsion

\[
d\chi = 0, \quad d^*\chi = d^*\varphi'_t, \quad \|\chi\|_{L^2} + \|d^*\chi\|_{C^0} \ll 1
\]

- double indicial root \(-2\) for \(\triangle : \Omega^2 \to \Omega^2\) on a 6d cone

\(\rightsquigarrow\) can solve \(\triangle \sigma_j = d^* \chi_{j-1}\) with \(d\sigma_j \in L^2\) but non-optimal decay for \(\sigma_j\)