Twistor Spaces and Special Holonomy

Simon Salamon

King's College London

Simons Collaboration on
Special Holonomy in Geometry, Analysis, and Physics
Third Annual Meeting, 13 September 2019

Plan

1. Twistor spaces of 4-manifolds

Some background, and their role in creating special geometries.
2. A circle action on the cone $\mathbb{R}^{+} \times \mathbb{C P}^{3}$ with G_{2} holonomy

Illustrating its projection to a singular space $\mathbb{R}^{6}=\mathbb{R}^{3} \times \mathbb{R}^{3}$ à la Atiyah-Witten.

3. $\mathrm{SU}(3)$ structure invariant by $\mathrm{SO}(3)$

Diagnosing the geometry induced by G_{2} on \mathbb{R}^{6} in the same example.
Parts 2 and 3 represent joint work with Bobby Acharya and Robert Bryant, naïvely inspired by the successful use by Foscolo-Haskins-Nordström of circle bundles to construct new manifolds with G_{2} holonomy.

1.1 Penrose's twistor theory

is based on choosing a real form of the Klein correspondence between lines in complex projective 3 -space $\mathbb{C P}^{3}$ and points in the quadric Q^{4} :

The real form can be defined by a reduction

$$
\mathrm{SL}(4, \mathbb{C}) \supset\left\{\begin{array}{lcl}
\mathrm{SU}(2,2) \simeq \mathrm{SO}(4,2) & \text { acting on } & S^{3} \times S^{1} \supset \mathbb{R}^{3,1} \\
\mathrm{SL}(2, \mathbb{H}) \simeq \mathrm{SO}(5,1) & " & \mathbb{H} \mathbb{P}^{1}=S^{4} \supset \mathbb{R}^{4} \\
\mathrm{SL}(4, \mathbb{R}) \simeq \mathrm{SO}(3,3) & " & \mathbb{G r}_{2}\left(\mathbb{R}^{4}\right) \supset \mathbb{R}^{2,2}
\end{array}\right.
$$

In the first case, a point $p \in \mathbb{R}^{3,1}$ defines a line in a real hypersurface $\mathcal{P N}$ of $\mathbb{C P}^{3}$. Two such $\mathbb{C P}^{1}$'s intersect in $x \in \mathcal{P N}$ iff the points in $\mathbb{R}^{3,1}$ lie on a light ray, while a point $y \in \mathbb{C P}^{3} \backslash \mathcal{P N}$ defines a 3-parameter family of light rays in $\mathbb{R}^{3,1}$.

1.2 Hopf geometry

We shall concentrate on the second case in which the fibres of

parametrize 'real' lines relative to the antilinear involution $j: \mathbb{C P}^{3} \rightarrow \mathbb{C P}^{3}$, which acts as the antipodal map on each fibre $S^{2} \cong \mathbb{C P}^{1}$. The fibres are complex, but they have non-trivial normal bundle $\mathcal{O}(1) \oplus \mathcal{O}(1)$.

Any point of $z \in \mathbb{C} \mathbb{P}^{3}$ will induce an almost complex structure on $T_{\pi(z)} S^{4}$, and a complex surface will define an integrable orthogonal complex structure (OCS) on an open subset of S^{4}.

Example. A plane $\mathbb{C P}^{2}$ determines a (conformally) constant OCS on $\mathbb{R}^{4}=S^{4} \backslash \infty$.

1.3 Associated bundles

In place of S^{4}, start with any oriented Riemannian 4-manifold M. Its $S O(4)$ holonomy defines a splitting

$$
\Lambda^{2} T^{*} M=\Lambda^{+} \oplus \Lambda^{-}
$$

and one can construct the 2-sphere bundle

M.

Each point $z \in \pi^{-1}(m)$ defines an almost complex structure on its horizontal space $H_{z} \cong T_{m} M$ (relative to the LeviCivita connection), which can be combined with (1) the natural complex structure on $V_{z} \cong T_{z} S^{2}$, or (2) its negative. This equips Z with almost complex structures J_{1}, J_{2}; the latter is never integrable but $c_{1}\left(J_{2}\right)=0$.

The $\mathrm{SO}(4)$-structure on the 7 -dimensional total space Λ^{-}is compatible with the representation $\mathrm{SO}(4) \subset \mathrm{G}_{2} \subset S O(7)$.

1.4 Self-duality in 4 dimensions

A local section s: $U \rightarrow Z$ determines an almost Hermitian structure $\left(g, J_{s}, \omega_{s}\right)$ on M. The map s is

$$
\begin{aligned}
& \quad Z \subset \Lambda^{-} \\
& U \subseteq M
\end{aligned}
$$

- J_{1}-holomorphic iff J_{s} is integrable
- J_{2}-holomorphic iff $\left(d \omega_{s}\right)^{1,2}=0$
- horizontal iff J_{s} is Kähler.

Theorems.

J_{1} is integrable iff M is self-dual, i.e. its Weyl tensor satisfies $W_{-} \equiv 0$ [Atiyah-Hitchin-Singer].

If $\left(Z, J_{1}\right)$ is (compact) Kähler then M is isometric to S^{4} or $\mathbb{C P}^{2}$ [Besse, Hitchin]. In the latter case $Z \cong \operatorname{SU}(3) / T^{2}$.

Given M^{4} (compact, oriented) there exists n such that $M \# n \mathbb{C P}^{2}$ admits a self-dual metric [Poon, LeBrun, Joyce; Floer, Donaldson-Friedman, Taubes].

1.5 Twistor lifts

Let Σ be a Riemann surface. An immersion

$$
\phi: \Sigma \longrightarrow M
$$

can be lifted to $\psi: \Sigma \rightarrow Z$, so as to render $\phi_{*}\left(T_{\sigma} \Sigma\right)$ complex.
Proposition [Eells-S, Lichnerowicz]. ϕ is harmonic iff ψ is J_{2}-holomorphic.
Examples. If ψ is also J_{1}-holomorphic then ϕ is 'superminimal'. Such immersions can be constructed for any genus using Bryant's formula $\left[1, f-\frac{1}{2} g \frac{d f}{d g}, g, \frac{1}{2} \frac{d f}{d g}\right]$.

In the case $M=S^{4}$ or $\mathbb{C P}^{2}$, the twistor space $\left(Z, J_{2}\right)$ admits a compatible 'nearly Kähler' (non-standard Einstein) metric h. It follows that the cone $\mathbb{R}^{+} \times Z$ admits a Ricci-flat metric $d r^{2}+r^{2} h$ with holonomy G_{2} [Bär].

1.6 Symplectic Calabi-Yau spaces

can be constructed from twistor spaces [Fine-Panov].
Take M to be real hyperbolic 4-space. Then Z admits a symplectic form taming J_{2} and $c_{1}\left(J_{2}\right)=0$.
Z is symplectomorphic to $\mathcal{O}(-1) \oplus \mathcal{O}(-1) \rightarrow \mathbb{C P}^{1}$,
a small resolution of the conifold $\{w x-y z=0\}$ in \mathbb{C}^{4}.

$$
Z \cong \frac{\mathrm{SO}(4,1)}{\mathrm{U}(2)}
$$

$\pi \downarrow$
\mathcal{H}^{4}.

This construction can be applied to hyperbolic orbifolds \mathcal{H}^{4} / Γ by resolving the twistor space to obtain simply-connected examples with $b_{3}=0$ (so non-Kähler) and arbitrary b_{2}. Higher dimensional twistor spaces (of even-dimensional Riemannian manifolds) provide further results.

Theorem [Bryant-S]. If M is S^{4} or $\mathbb{C P}^{2}$ then the 7-manifold Λ^{-}admits a complete metric g with holonomy equal to G_{2} and asymptotic to the cone over Z.

If r denotes norm in the fibres of Λ^{-}, one can express

$$
g=\left(r^{2}+1\right)^{-1 / 2} g_{\mathrm{ver}}+\left(r^{2}+1\right)^{1 / 2} g_{\mathrm{hor}}
$$

Over S^{4}, the associated 3-form φ on $\mathbb{R}^{+} \times \mathbb{C P}^{3}$ can be pulled back to \mathbb{C}^{4}. Then $r=R^{2}$ where $R=\sum_{i=0}^{3}\left|z_{i}\right|^{2}$ is the Euclidean norm squared, and

$$
\varphi=d\left(\left(R^{4}+1\right)^{1 / 4} \tau\right), \quad \tau=-d R \wedge \alpha_{1}+\alpha_{2} \wedge \alpha_{3}
$$

Together with a G_{2} metric over S^{3}, these were the only such AC metrics known until Foscolo-Haskins-Nordström established the existence of complete G_{2} metrics on circle bundles $M_{m, n} \rightarrow K_{\mathbb{C P}^{1} \times \mathbb{C P}^{1}}$ invariant by $\mathrm{SU}(2)^{2} \times \mathrm{U}(1)$. These include ones that are asymptotic to cones over finite quotients of $S^{3} \times S^{3}$.

2.1 M-theory

Regard $\mathbb{C P}^{3}$ as the quotient of S^{7} inside $\mathbb{C}^{4}=\mathbb{H}^{2}$ by $\mathrm{U}(1)_{R}$, and $S^{4}=S^{7} / \operatorname{Sp}(1)_{R}$. We shall focus on $\mathscr{C}^{7}=\mathbb{R}^{+} \times \mathbb{C P}^{3}$, its conical metric with G_{2} holonomy, and the quotient

$$
\frac{\mathscr{C}^{7}}{\mathrm{U}(1)_{L}} \stackrel{*}{=} \frac{\mathbb{C}^{4}}{T^{2}} \cong \frac{\mathbb{C}^{2}}{\mathrm{U}(1)} \times \frac{\mathbb{C}^{2}}{\mathrm{U}(1)} \cong \mathbb{R}^{3} \times \mathbb{R}^{3}
$$

We use hyperkähler moment maps to describe the resulting projection

$$
\mathscr{C}^{7} \ni\left[z_{0}, z_{1}, z_{2}, z_{3}\right] \longmapsto(\mathbf{u}, \mathbf{v}) \in \mathbb{R}^{6}
$$

whose circle fibres collapse over $\mathbb{R}^{3} \cup \mathbb{R}^{3}$. The G_{2} metric on the cone relates to Type IIA string theory of \mathbb{R}^{6} with a singular locus $\mathbb{R}^{3} \cup \mathbb{R}^{3}$ as described by Atiyah-Witten, who state:
"details of the induced metric are unimportant".
Nonetheless, we [Acharya-Bryant-S] set out describe the $\mathrm{SU}(3)$ structure induced on \mathbb{R}^{6}, using the bivector formalism.

2.2 Gibbons-Hawking coordinates

The action of $\mathrm{U}(1)_{L}$ on \mathbb{C}^{4} covers a rotation in 2 coordinates of S^{4} :

$\mathrm{U}(1)_{\mathrm{L}}$	\subset	$\mathrm{U}(2)_{L}$	\subset	$\mathrm{Sp}(2)_{L}$
$\mathrm{SO}(2)$	\subset	$\mathrm{SO}(3) \times \mathrm{SO}(2)$	\subset	$\mathrm{SO}(5)$.

To make $\mu: \mathscr{C}^{7} \rightarrow \mathbb{R}^{6}$ explicit, observe that

$\mathrm{U}(1)_{L}$	acts on	\mathbb{C}_{0123}^{4}	with weights	$(1,1,1,1)$
$\mathrm{U}(1)_{R}$	$"$	$"$	$"$	$(1,-1,1,-1)$
$\Longrightarrow T^{2}$	acts on	$\mathbb{C}_{02}^{2} \times \mathbb{C}_{13}^{2}$	with weights	$(1,1) \times(1,1)$.

Then $\mathbf{u}=\left(u_{1}, u_{2}, u_{3}\right)$ and $\mathbf{v}=\left(v_{1}, v_{2}, v_{3}\right)$, where

$$
u_{1}=\left|z_{0}\right|^{2}-\left|z_{2}\right|^{2}, \quad u_{2}-i u_{3}=z_{0} \bar{z}_{2} ; \quad v_{1}=\left|z_{1}\right|^{2}-\left|z_{3}\right|^{2}, \quad v_{2}-i v_{3}=z_{1} \bar{z}_{3} .
$$

Moreover $R=\sum_{i=0}^{3}\left|z_{i}\right|^{2}$ equals $u+v$, where $u=|\mathbf{u}|$ and $v=|\mathbf{v}|$.

2.3 Eguchi-Hanson sheets

Provided $\mathbf{m} \in \mathbb{R}^{3}$ is non-zero, the hyperkähler quotient

$$
\frac{\left\{\mathbf{z} \in \mathbb{C}^{4}: \mathbf{u}-\mathbf{v}=\mathbf{m}\right\}}{\mathrm{U}(1)_{R}} \subset \mathscr{C}^{7}
$$

can be identified with $T^{*} S^{2}$ endowed with a metric k of holonomy $\operatorname{SU}(2)$. It has a triholomorphic action by $\mathrm{U}(1)_{\mathrm{L}}$ with moment map \mathbf{u}.

Its image in \mathbb{R}^{6} acquires the harmonic function

$$
V=\frac{1}{|\mathbf{u}|}+\frac{1}{|\mathbf{u}-\mathbf{m}|},
$$

used to recover $k=V^{-1} \Theta^{2}+V g_{\text {euc }}$. Each diagonal represents $\left\{(\mathbf{u}, \mathbf{v}) \in \mathbb{R}^{6}: \mathbf{u}-\mathbf{v}=\mathbf{m}\right\}$.

2.4 Rotation of the 4-sphere

Consider again the reduction to $\mathrm{SO}(3) \times \mathrm{SO}(2)$:

$$
\begin{aligned}
& \mathscr{C}^{7}=\mathbb{R}^{+} \times \mathbb{C P}^{3} \\
& \pi \\
& \downarrow^{4} \\
& S^{4} \subset \mathbb{R}^{2} \oplus \mathbb{R}^{3}
\end{aligned}
$$

Let

- $\mathbb{S}^{1}=S^{4} \cap \mathbb{R}^{2}$ be the fixed point set for the action of $\mathrm{SO}(3)$
- $\mathbb{S}^{2}=S^{4} \cap \mathbb{R}^{3}$ be the fixed point set for the action of $\mathrm{SO}(2)$.

View $S^{4} \backslash \mathbb{S}^{1}$ as a trivial disk bundle over \mathbb{S}^{2}, whose boundaries are fused into \mathbb{S}^{1}. If X is the Killing field generated by $\mathrm{SO}(2)$, then

$$
x^{b}=\left(1-s^{2}\right) d t,
$$

where $t: S^{4} \backslash \mathbb{S}^{2} \rightarrow[0,2 \pi)$ is 'longitude' and $s: S^{4} \rightarrow[0,1]$ is sine of 'latitude'. In fact, s represents the radius in \mathbb{R}^{3} under the projection $S^{4} \subset \mathbb{R}^{5} \rightarrow \mathbb{R}^{3}$:

2.5 Reduced twistor fibration

Orthogonal projection $\mathbb{R}^{5} \longrightarrow \mathbb{R}^{3}$ identifies $S^{4} / \mathrm{SO}(2)$ with the closed unit ball \bar{D}^{3} whose boundary is effectively \mathbb{S}^{2}.

Proposition. The projection $\mathscr{C}^{7} / \mathrm{U}(1)_{L} \rightarrow \bar{D}^{3}$ is given by

$$
(\mathbf{u}, \mathbf{v}) \longmapsto \frac{\mathbf{u}+\mathbf{v}}{u+v}=\frac{1}{R}(\mathbf{u}+\mathbf{v})
$$

and $s=|\mathbf{u}+\mathbf{v}| / R$ equals the radius in \bar{D}^{3}.
Examples.

- (\mathbf{u}, \mathbf{v}) arises from a point of \mathbb{S}^{1} iff $\mathbf{u}+\mathbf{v}=\mathbf{0}$ (implying $u=v$).
- (\mathbf{u}, \mathbf{v}) maps into \mathbb{S}^{2} (equivalently $s=1$) iff \mathbf{u} and \mathbf{v} are aligned.

2.6 Two quadrics

help to interpret the preceding geometry. Set

$$
\begin{aligned}
& Q_{+}=\left\{\left[z_{0}, z_{1}, z_{2}, z_{3}\right] \in \mathbb{C P}^{3}: z_{0} \bar{z}_{3}-\bar{z}_{1} z_{2}=0\right\} \\
& Q_{-}=\left\{\left[z_{0}, z_{1}, z_{2}, z_{3}\right] \in \mathbb{C P}^{3}: z_{0} z_{1}+z_{2} z_{3}=0\right\}
\end{aligned}
$$

These subvarieties are both $\operatorname{SU}(2)$ invariant, and arise from points of \mathbb{R}^{6} where \mathbf{u}, \mathbf{v} are aligned (respectively, anti-aligned):

$$
\mu\left(\mathbb{R}^{+} \times Q_{ \pm}\right)=\{(\mathbf{u}, \mathbf{v}): \mathbf{u} \cdot \mathbf{v}= \pm \mathbf{u v}\}
$$

While $\pi\left(Q_{+}\right)=\mathbb{S}^{2}$ (making it obvious that $Q_{+} \approx S^{2} \times S^{2}$), the holomorphic one Q_{-} double covers

$$
S^{4} \backslash \mathbb{S}^{1} \cong \mathbb{R}^{4} \backslash \mathbb{R} \cong S^{2} \times \mathcal{H}^{2}
$$

encoding the scalar flat Kähler metric [Pontecorvo, S-Viaclovsky]. It is the locus of points in $\mathbb{C P}^{3}$ for which the $U(1)_{L}$ orbits are horizontal over S^{4}.

2.7 Coassociative subvarieties

The defining function for Q_{+}equals

$$
z_{0} \bar{z}_{3}-\bar{z}_{1} z_{2}=a e^{i t}
$$

where $a=2 \sqrt{u v-\mathbf{u} \cdot \mathbf{v}}$ so that $(a / R)^{2}=1-s^{2}$. Both a and t are invariants for the action of $S O(3)$, as are u and v because $S O(3)$ acts diagonally on $(\mathbf{u}, \mathbf{v}) \in \mathbb{R}^{6}$.

By general principles, any 3-dimensional $S O(3)$ orbit is contained in a unique coassociative subvariety V of the G_{2} manifold \mathscr{C}^{7} (so $\left.\varphi\right|_{v \equiv 0 \text {). For the chosen }}$ $\mathrm{SO}(3)$, the resulting family has been described by Karigiannis-Lotay. Our task was to interpret this using \mathbf{u} and \mathbf{v}.

An $S O(3)$ orbit will intersect a twistor fibre S^{2} of fixed radius over $p \in S^{4} \backslash \mathbb{S}^{1}$ in a parallel circle at 'height' $h \in[-1,1]$ relative to the poles defined by Q_{-}. Define another $S O(3)$ invariant

$$
b=u^{2}-v^{2}=R(u-v)=\operatorname{sh} R^{2}
$$

2.8 Coassociatives (continued)

Sphere radius, $R^{2}=\frac{a^{2}}{1-s^{2}}$
Circle radius, $R^{2} \sqrt{1-h^{2}}=\frac{\sqrt{a^{4} s^{2}-b^{2}\left(1-s^{2}\right)^{2}}}{s\left(1-s^{2}\right)}$.
Theorem [KL, ABS]. Setting a, b constant and (if $s<1$) t constant defines a coassociative submanifold of \mathscr{C}^{7} diffeomorphic to $T^{*} S^{2}$ unless $a=b=0$.

A fibre over $p \in S^{2}$ is shown for $(a, b, t)=\left(\frac{1}{2}, \frac{1}{4}, 0\right)$:
$a=0$ gives coassociatives over \mathbb{S}^{2}, while $b=0(a \neq 0)$ gives equators all the way to the twistor fibres over \mathbb{S}^{1}.

3.1 The induced metric

Let h be the conical metric on \mathscr{C}^{7} with holonomy G_{2}. We seek the metric g induced on $\mathbb{R}^{6} \backslash\left(\mathbb{R}^{3} \cup \mathbb{R}^{3}\right)$ by setting

$$
h=\mu^{*} g+N \Theta^{2}
$$

where $\Theta=(X\lrcorner h) / N$ is the connection 1-form, and $N=h(X, X)=6 u v-2 \mathbf{u} \cdot \mathbf{v}$ measures the size of the circle fibres. This makes μ a Riemannian submersion.

Theorem [ABS].

$$
g=\frac{1}{2} d R^{2}+\frac{1}{2}|d \mathbf{u}+d \mathbf{v}|^{2}+\frac{2}{N}|u d \mathbf{v}-v d \mathbf{u}|^{2}+\frac{1}{2 N} \Gamma_{+}^{2}-\frac{1}{4 N} \Gamma_{-}^{2},
$$

where

$$
\begin{aligned}
& \Gamma_{+}=u d v+v d u-\mathbf{u} \cdot d \mathbf{v}-\mathbf{v} \cdot d \mathbf{u}, \\
& \Gamma_{-}=u d v-v d u+\mathbf{u} \cdot d \mathbf{v}-\mathbf{v} \cdot d \mathbf{u} .
\end{aligned}
$$

Example. If $u \mathbf{v}= \pm v \mathbf{u}$ then $\Gamma_{ \pm}=0$ (and $N=4 u v$ or $8 u v$).

3.2 Two-dimensional quadrants

The formula for g simplifies on certain subvarieties of \mathbb{R}^{6}. Consider the negative quadrant

$$
\mathscr{L}^{2}=\{(\mathbf{u}, \mathbf{v})=(0,0, u ; 0,0,-v), u, v>0\} \subset \mathbb{R}^{2}
$$

Corollary. The restriction of g to \mathscr{L}^{2} equals

$$
\left(1+\frac{v}{2 u}\right) d u^{2}+d u d v+\left(1+\frac{u}{2 v}\right) d v^{2}
$$

and is locally Euclidean, i.e. $K \equiv 0$.
\mathscr{L}^{2} is in fact superminimal, being the projection of (a cone over an open subset of) a horizontal projective line $\mathbb{C P}^{1}$ inside $Q_{-} \subset \mathbb{C P}^{3}$. We shall see that it is also \mathbb{J}-holomorphic, where \mathbb{J} is the induced almost complex structure on \mathbb{R}^{6}.

3.3 Three-dimensional slices

Extend \mathscr{L}^{2} to

$$
\mathscr{L}^{3}=\{(0, u \sin \theta, u \cos \theta ; 0,-v \sin \theta, v \cos \theta)\}
$$

so that $\mathbf{u} \cdot \mathbf{v}=u v \cos 2 \theta$, and set

$$
u=R \cos ^{2}\left(\frac{1}{2} \phi\right), \quad v=R \cos ^{2}\left(\frac{1}{2} \phi\right)
$$

so that $u+v=R$ and $b=R^{2} \cos \phi$. The orbits of $\mathrm{SO}(3)$ on \mathbb{R}^{6} are parametrized by u, v, θ, so \mathscr{L}^{3} is a slice to the orbits (expressed symmetrically in \mathbf{u}, \mathbf{v}).

Corollary. The restriction of g to \mathscr{L}^{3} equals

$$
d R^{2}+\frac{1}{2} R^{2}\left[d \theta^{2}+\frac{1}{4}(3-\cos 2 \theta) d \phi^{2}\right]
$$

This is isometric to a cone over a surface of revolution, illustrated next.

3.4 Slices (continued)

Let $P=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0\end{array}\right) \in \mathrm{SO}(3)$.
Then \mathscr{L}^{3} is the cone over the blue surface, and $P \cdot \mathscr{L}^{3}$ the cone over the yellow surface. Together these patches close up topologically to define a torus \mathscr{T} and $\mu^{-1}(\mathscr{T})$ is a cone over $S^{1} \times S^{2}$.

Relative to the metric g, vectors in the respective the singular \mathbb{R}^{3} axes meet at an angle of

$$
\frac{1}{2} \pi \leqslant \pi \sqrt{\frac{3}{8}-\frac{1}{8} \cos \theta} \leqslant \frac{1}{\sqrt{2}} \pi
$$

3.5 The symplectic form

Recall that $\mu: \mathscr{C}^{7}=\mathbb{R}^{+} \times \mathbb{C P}^{3} \longrightarrow \mathbb{R}^{6}$, and that $R=u+v=|\mathbf{u}|+|\mathbf{v}|$. An almost Kähler structure on \mathbb{R}^{6} is defined by scaling g so that the symplectic form

$$
\sigma=X\lrcorner \varphi
$$

has constant norm. Here X is the Killing field generating $\mathrm{U}(1)_{L}$.
Theorem. The vectors $\mathbf{p}=\mathbf{u}+\mathbf{v}$ and $\mathbf{q}=R(\mathbf{u}-\mathbf{v})$ furnish Darboux coordinates:

$$
\sigma=-\frac{1}{2} \sum_{i=1}^{3} d p_{i} \wedge d q_{i}
$$

Note that σ extends to $\mathbb{R}^{3} \cup \mathbb{R}^{3}$ and is non-degenerate on $\mathbb{R}^{6} \backslash \mathbf{0}$. The projections $(\mathbf{u}, \mathbf{v}) \mapsto R^{1 / 2} \mathbf{u}$ and $(\mathbf{u}, \mathbf{v}) \mapsto R^{1 / 2} \mathbf{v}$ also have Lagrangian fibres.

3.6 The SU(3) structure

This is determined by g and the $\operatorname{SL}(3, \mathbb{C})$ structure encoded in a complex volume form ψ. From the theory of stable forms, ψ is determined by the closed 3 -form

$$
\operatorname{Re} \Psi=X\lrcorner(* \varphi)
$$

which will involve the function $N=h(X, X)=6 u v-2 \mathbf{u} \cdot \mathbf{v}$.
Proposition. $8 u v \operatorname{Re} \Psi=\frac{1}{6} v\left(N+4 v^{2}\right)\{d \mathbf{u}, d \mathbf{u}, d \mathbf{u}\}$
$-v\left(4 u^{2}+3 u v+\mathbf{u} \cdot \mathbf{v}\right)\{d \mathbf{v}, d \mathbf{u}, d \mathbf{u}\}$
$+((u+2 v) \mathbf{v} \cdot d \mathbf{v}+v \mathbf{u} \cdot d \mathbf{v}) \wedge\{\mathbf{u}, d \mathbf{u}, d \mathbf{u}\}$
$+(v \mathbf{u} \cdot d \mathbf{v}-u \mathbf{v} \cdot d \mathbf{v}) \wedge\{\mathbf{v}, d \mathbf{u}, d \mathbf{u}\}$

+ terms interchanging \mathbf{u} and \mathbf{v}
This is the closest we can get to an explicit description of the (non-integrable) almost complex structure \mathbb{J} on \mathbb{R}^{6}, as there are no easy expressions for $(1,0)$ forms.

3.7 Pseudo holomorphic surfaces

Proposition. The linear subvariety

$$
\mathscr{L}^{4}=\left\{\left(0, u_{2}, u_{3} ; 0, v_{2}, v_{3}\right), u v \neq 0\right\}
$$

is \mathbb{J}-holomorphic for the induced $\mathrm{SU}(3)$ structure on \mathbb{R}^{6}.
Applying $\mathrm{SO}(3)$, there will be a family of such subvarieties (parametrized by $\mathbb{R} \mathbb{P}^{2}$) that exhaust \mathbb{R}^{6}. Any two intersect in a \mathbb{J}-holomorphic curve, isomorphic to \mathscr{L}^{2}.

Unlike the case of standard $\mathbb{C}^{3}=\mathbb{R}^{3} \oplus \mathrm{~J} \mathbb{R}^{3}$, we cannot extend this $\mathbb{R} \mathbb{P}^{2}$ to $\mathbb{G r}_{2}\left(\mathbb{C}^{3}\right)$.
The action of $\mathrm{SO}(3)$ on \mathbb{C}^{3} has been used to construct invariant Kähler-Einstein metrics on $\mathbb{C P}^{2}$ minus the conic curve $u=v$ with cone angle lying in $\left(\frac{1}{2} \pi, 2 \pi\right.$] [C. Li, Dancer-Strachan] and associated Calabi-Yau cones.

3.8 Conclusion

We have analysed a quotient of nearly Kähler $\mathbb{C P}^{3}$ and its G_{2} cone by $U(1)$. It is convenient to work on \mathbb{C}^{4} and (via the Gibbons-Hawking ansatz) identify the quotient with $\mathbb{C}^{4} / T^{2} \cong \mathbb{R}^{6}$. In the holomorphic setting, all the formulae are simpler and related to the Kähler quotient

$$
\mathbb{C P}^{3} / / \mathrm{U}(1) \cong \mathbb{C P}^{1} \times \mathbb{C P}^{1}
$$

For G_{2}, we can easily describe the symplectic form and also the curvature 2-form $F=d \Theta$ of μ, but pinning \mathbb{J} down is more difficult. Some modification is necessary when starting with the complete G_{2} metric on $\Lambda^{-} T^{*} S^{4}$.

There remains the motivating conjecture that $\mathbb{R}^{+} \times \mathbb{W}_{\mathbb{C}} \mathbb{P}_{p, p, q, q}^{3}$ carries a metric with holonomy G_{2} [Acharya-Witten]. The constructions can be generalized to a circle acting with different weights on \mathbb{C}^{4}, or actions on other G_{2} manifolds, though this study will involve real invariant theory outside the familiar hyperkähler setting.

