Twistor Spaces and Special Holonomy

Simon Salamon King's College London

Simons Collaboration on Special Holonomy in Geometry, Analysis, and Physics Third Annual Meeting, 13 September 2019

▲□▶ ▲□▶ ★ □▶ ★ □ ▶ ● □ ● ● ● ●

Plan

1. Twistor spaces of 4-manifolds

Some background, and their role in creating special geometries.

2. A circle action on the cone $\mathbb{R}^+ \times \mathbb{CP}^3$ with G_2 holonomy

Illustrating its projection to a singular space $\mathbb{R}^6 = \mathbb{R}^3 \times \mathbb{R}^3$ à la Atiyah-Witten.

3. SU(3) structure invariant by SO(3)

Diagnosing the geometry induced by G_2 on \mathbb{R}^6 in the same example.

Parts 2 and 3 represent joint work with Bobby Acharya and Robert Bryant, naïvely inspired by the successful use by Foscolo-Haskins-Nordström of circle bundles to construct new manifolds with G_2 holonomy.

1.1 Penrose's twistor theory

is based on choosing a real form of the Klein correspondence between lines in complex projective 3-space \mathbb{CP}^3 and points in the quadric Q^4 :

The real form can be defined by a reduction

$$\mathrm{SL}(4,\mathbb{C})\supset \left\{ \begin{array}{ll} \mathrm{SU}(2,2)\simeq \mathrm{SO}(4,2) \quad \text{acting on} \quad S^3\times S^1 \quad \supset \mathbb{R}^{3,1} \\ \mathrm{SL}(2,\mathbb{H})\simeq \mathrm{SO}(5,1) \quad \text{"} \quad \mathbb{HP}^1=S^4 \ \supset \mathbb{R}^4 \\ \mathrm{SL}(4,\mathbb{R})\simeq \mathrm{SO}(3,3) \quad \text{"} \quad \mathbb{G}\mathrm{r}_2(\mathbb{R}^4) \ \supset \mathbb{R}^{2,2}. \end{array} \right.$$

In the first case, a point $p \in \mathbb{R}^{3,1}$ defines a line in a real hypersurface \mathcal{PN} of \mathbb{CP}^3 . Two such \mathbb{CP}^1 's intersect in $x \in \mathcal{PN}$ iff the points in $\mathbb{R}^{3,1}$ lie on a light ray, while a point $y \in \mathbb{CP}^3 \setminus \mathcal{PN}$ defines a 3-parameter family of light rays in $\mathbb{R}^{3,1}$.

1.2 Hopf geometry

We shall concentrate on the second case in which the fibres of

$$\mathbb{CP}^3$$
 $\pi \downarrow$
 $\mathbb{HP}^1 = S^4 \ \subset \ \mathbb{Gr}_2(\mathbb{C}^4)$

parametrize 'real' lines relative to the antilinear involution $j: \mathbb{CP}^3 \to \mathbb{CP}^3$, which acts as the antipodal map on each fibre $S^2 \cong \mathbb{CP}^1$. The fibres are complex, but they have non-trivial normal bundle $\mathcal{O}(1) \oplus \mathcal{O}(1)$.

Any point of $z \in \mathbb{CP}^3$ will induce an almost complex structure on $T_{\pi(z)}S^4$, and a complex surface will define an integrable orthogonal complex structure (OCS) on an open subset of S^4 .

Example. A plane \mathbb{CP}^2 determines a (conformally) constant OCS on $\mathbb{R}^4 = S^4 \setminus \infty$.

1.3 Associated bundles

In place of S^4 , start with any oriented Riemannian 4-manifold *M*. Its SO(4) holonomy defines a splitting

$$\Lambda^2 T^* M = \Lambda^+ \oplus \Lambda^-$$

and one can construct the 2-sphere bundle

 Λ^{-}

Each point $z \in \pi^{-1}(m)$ defines an almost complex structure on its horizontal space $H_z \cong T_m M$ (relative to the LeviCivita connection), which can be combined with (1) the natural complex structure on $V_z \cong T_z S^2$, or (2) its negative. This equips Z with almost complex structures J_1, J_2 ; the latter is never integrable but $c_1(J_2) = 0$.

The SO(4)-structure on the 7-dimensional total space Λ^- is compatible with the representation SO(4) \subset G₂ \subset SO(7).

1.4 Self-duality in 4 dimensions

A local section $s: U \to Z$ determines an almost Hermitian structure (g, J_s, ω_s) on *M*. The map *s* is

- J_1 -holomorphic iff J_s is integrable
- J_2 -holomorphic iff $(d\omega_s)^{1,2} = 0$
- horizontal iff J_s is Kähler.

Theorems.

 J_1 is integrable iff *M* is self-dual, i.e. its Weyl tensor satisfies $W_- \equiv 0$ [Atiyah-Hitchin-Singer].

If (Z, J_1) is (compact) Kähler then M is isometric to S^4 or \mathbb{CP}^2 [Besse, Hitchin]. In the latter case $Z \cong SU(3)/T^2$.

Given M^4 (compact, oriented) there exists *n* such that $M \# n \mathbb{CP}^2$ admits a self-dual metric [Poon, LeBrun, Joyce; Floer, Donaldson-Friedman, Taubes].

 $Z \subset \Lambda^-$

 π

 $U \subset M$

1.5 Twistor lifts

Let Σ be a Riemann surface. An immersion

 $\phi \colon \Sigma \longrightarrow M$

can be lifted to $\psi \colon \Sigma \to Z$, so as to render $\phi_*(T_{\sigma}\Sigma)$ complex.

Proposition [Eells-S, Lichnerowicz]. ϕ is harmonic iff ψ is J_2 -holomorphic.

Examples. If ψ is also J_1 -holomorphic then ϕ is 'superminimal'. Such immersions can be constructed for any genus using Bryant's formula $\left[1, f - \frac{1}{2}g\frac{df}{dg}, g, \frac{1}{2}\frac{df}{dg}\right]$.

In the case $M = S^4$ or \mathbb{CP}^2 , the twistor space (Z, J_2) admits a compatible 'nearly Kähler' (non-standard Einstein) metric *h*. It follows that the cone $\mathbb{R}^+ \times Z$ admits a Ricci-flat metric $dr^2 + r^2h$ with holonomy G_2 [Bär].

1.6 Symplectic Calabi-Yau spaces

can be constructed from twistor spaces [Fine-Panov].

Take *M* to be real hyperbolic 4-space. Then *Z* admits a symplectic form taming J_2 and $c_1(J_2) = 0$.

Z is symplectomorphic to $\mathcal{O}(-1) \oplus \mathcal{O}(-1) \to \mathbb{CP}^1$, a small resolution of the conifold $\{wx - yz = 0\}$ in \mathbb{C}^4 .

This construction can be applied to hyperbolic orbifolds \mathcal{H}^4/Γ by resolving the twistor space to obtain simply-connected examples with $b_3 = 0$ (so non-Kähler) and arbitrary b_2 . Higher dimensional twistor spaces (of even-dimensional Riemannian manifolds) provide further results.

1.7 G₂ holonomy

Theorem [Bryant-S]. If *M* is S^4 or \mathbb{CP}^2 then the 7-manifold Λ^- admits a complete metric *g* with holonomy equal to G_2 and asymptotic to the cone over *Z*.

If *r* denotes norm in the fibres of Λ^- , one can express

$$g = (r^2 + 1)^{-1/2} g_{\rm ver} + (r^2 + 1)^{1/2} g_{\rm hor}.$$

Over S^4 , the associated 3-form φ on $\mathbb{R}^+ \times \mathbb{CP}^3$ can be pulled back to \mathbb{C}^4 . Then $r = R^2$ where $R = \sum_{i=0}^3 |z_i|^2$ is the Euclidean norm squared, and

$$\varphi = d((\mathbf{R}^4 + 1)^{1/4}\tau), \qquad \tau = -d\mathbf{R} \wedge \alpha_1 + \alpha_2 \wedge \alpha_3.$$

Together with a G_2 metric over S^3 , these were the only such AC metrics known until Foscolo-Haskins-Nordström established the existence of complete G_2 metrics on circle bundles $M_{m,n} \to K_{\mathbb{CP}^1 \times \mathbb{CP}^1}$ invariant by $SU(2)^2 \times U(1)$. These include ones that are asymptotic to cones over finite quotients of $S^3 \times S^3$.

2.1 M-theory

Regard \mathbb{CP}^3 as the quotient of S^7 inside $\mathbb{C}^4 = \mathbb{H}^2$ by $U(1)_R$, and $S^4 = S^7/Sp(1)_R$. We shall focus on $\mathscr{C}^7 = \mathbb{R}^+ \times \mathbb{CP}^3$, its conical metric with G_2 holonomy, and the quotient

$$\frac{\mathscr{C}^7}{\mathrm{U}(1)_L} \stackrel{*}{=} \frac{\mathbb{C}^4}{T^2} \cong \frac{\mathbb{C}^2}{\mathrm{U}(1)} \times \frac{\mathbb{C}^2}{\mathrm{U}(1)} \cong \mathbb{R}^3 \times \mathbb{R}^3.$$

We use hyperkähler moment maps to describe the resulting projection

$$\mathscr{C}^7 \ni [z_0, z_1, z_2, z_3] \longmapsto (\mathbf{u}, \mathbf{v}) \in \mathbb{R}^6,$$

whose circle fibres collapse over $\mathbb{R}^3 \cup \mathbb{R}^3$. The G_2 metric on the cone relates to Type IIA string theory of \mathbb{R}^6 with a singular locus $\mathbb{R}^3 \cup \mathbb{R}^3$ as described by Atiyah-Witten, who state:

"details of the induced metric are unimportant".

Nonetheless, we [Acharya-Bryant-S] set out describe the SU(3) structure induced on \mathbb{R}^6 , using the bivector formalism.

2.2 Gibbons-Hawking coordinates

The action of $U(1)_L$ on \mathbb{C}^4 covers a rotation in 2 coordinates of S^4 :

$$\begin{array}{rcl} \mathrm{U}(1)_{\mathrm{L}} & \subset & \mathrm{U}(2)_{\mathrm{L}} & \subset & \mathrm{Sp}(2)_{\mathrm{L}} \\ \mathrm{SO}(2) & \subset & \mathrm{SO}(3) \times \mathrm{SO}(2) & \subset & \mathrm{SO}(5). \end{array}$$

To make $\mu \colon \mathscr{C}^7 \to \mathbb{R}^6$ explicit, observe that

$$\begin{array}{cccc} \mathrm{U}(1)_L & \text{acts on} & \mathbb{C}^4_{0123} & \text{with weights} & (1, 1, 1, 1) \\ \mathrm{U}(1)_R & " & " & (1, -1, 1, -1) \\ \Longrightarrow & \mathcal{T}^2 & \text{acts on} & \mathbb{C}^2_{02} \times \mathbb{C}^2_{13} & \text{with weights} & (1, 1) \times (1, 1). \end{array}$$

Then $\mathbf{u} = (u_1, u_2, u_3)$ and $\mathbf{v} = (v_1, v_2, v_3)$, where

 $u_1 = |z_0|^2 - |z_2|^2$, $u_2 - iu_3 = z_0\overline{z}_2$; $v_1 = |z_1|^2 - |z_3|^2$, $v_2 - iv_3 = z_1\overline{z}_3$.

Moreover $R = \sum_{i=0}^{3} |z_i|^2$ equals u + v, where $u = |\mathbf{u}|$ and $v = |\mathbf{v}|$.

2.3 Eguchi-Hanson sheets

Provided $\mathbf{m} \in \mathbb{R}^3$ is non-zero, the hyperkähler quotient

$$\frac{\{\mathbf{z}\in\mathbb{C}^4:\mathbf{u}-\mathbf{v}=\mathbf{m}\}}{\mathrm{U}(1)_R}\ \subset\ \mathscr{C}^7$$

can be identified with T^*S^2 endowed with a metric *k* of holonomy SU(2). It has a triholomorphic action by U(1)_L with moment map **u**.

Its image in \mathbb{R}^6 acquires the harmonic function

$$V = \frac{1}{|\mathbf{u}|} + \frac{1}{|\mathbf{u} - \mathbf{m}|},$$

used to recover $k = V^{-1}\Theta^2 + Vg_{euc}$. Each diagonal represents $\{(\mathbf{u}, \mathbf{v}) \in \mathbb{R}^6 : \mathbf{u} - \mathbf{v} = \mathbf{m}\}.$

2.4 Rotation of the 4-sphere

Consider again the reduction to $SO(3) \times SO(2)$:

$$egin{array}{rcl} \mathscr{C}^7 &=& \mathbb{R}^+ imes \mathbb{CP}^3 \ \pi & igcup & & \ \mathscr{S}^4 &\subset& \mathbb{R}^2 \oplus \mathbb{R}^3 \end{array}$$

Let

- $\mathbb{S}^1 = S^4 \cap \mathbb{R}^2$ be the fixed point set for the action of $\mathrm{SO}(3)$
- $\mathbb{S}^2 = S^4 \cap \mathbb{R}^3$ be the fixed point set for the action of SO(2).

View $S^4 \setminus S^1$ as a trivial disk bundle over S^2 , whose boundaries are fused into S^1 . If *X* is the Killing field generated by SO(2), then

$$X^{\flat} = (1 - s^2) dt,$$

where $t: S^4 \setminus S^2 \to [0, 2\pi)$ is 'longitude' and $s: S^4 \to [0, 1]$ is sine of 'latitude'. In fact, *s* represents the radius in \mathbb{R}^3 under the projection $S^4 \subset \mathbb{R}^5 \to \mathbb{R}^3$:

2.5 Reduced twistor fibration

Orthogonal projection $\mathbb{R}^5 \longrightarrow \mathbb{R}^3$ identifies $S^4/SO(2)$ with the closed unit ball \overline{D}^3 whose boundary is effectively \mathbb{S}^2 .

Proposition. The projection $\mathscr{C}^7/\mathrm{U}(1)_L \to \overline{D}^3$ is given by

$$(\mathbf{u},\mathbf{v})\longmapsto \frac{\mathbf{u}+\mathbf{v}}{u+v}=\frac{1}{R}(\mathbf{u}+\mathbf{v}),$$

and $s = |\mathbf{u} + \mathbf{v}|/R$ equals the radius in \overline{D}^3 .

Examples.

- (\mathbf{u}, \mathbf{v}) arises from a point of \mathbb{S}^1 iff $\mathbf{u} + \mathbf{v} = \mathbf{0}$ (implying u = v).
- (\mathbf{u}, \mathbf{v}) maps into \mathbb{S}^2 (equivalently s = 1) iff \mathbf{u} and \mathbf{v} are aligned.

2.6 Two quadrics

help to interpret the preceding geometry. Set

$$\begin{array}{rcl} Q_+ & = & \{[z_0, z_1, z_2, z_3] \in \mathbb{CP}^3 : z_0 \overline{z}_3 - \overline{z}_1 z_2 = 0\} \\ Q_- & = & \{[z_0, z_1, z_2, z_3] \in \mathbb{CP}^3 : z_0 z_1 + z_2 z_3 = 0\}. \end{array}$$

These subvarieties are both SU(2) invariant, and arise from points of \mathbb{R}^6 where **u**, **v** are aligned (respectively, anti-aligned):

$$\mu(\mathbb{R}^+ \times Q_{\pm}) = \{(\mathbf{u}, \mathbf{v}) : \mathbf{u} \cdot \mathbf{v} = \pm uv\}.$$

While $\pi(Q_+) = \mathbb{S}^2$ (making it obvious that $Q_+ \approx S^2 \times S^2$), the holomorphic one Q_- double covers

$$S^4 \setminus \mathbb{S}^1 \cong \mathbb{R}^4 \setminus \mathbb{R} \cong S^2 imes \mathcal{H}^2,$$

encoding the scalar flat Kähler metric [Pontecorvo, S-Viaclovsky]. It is the locus of points in \mathbb{CP}^3 for which the U(1)_L orbits are horizontal over S^4 .

2.7 Coassociative subvarieties

The defining function for Q_+ equals

$$z_0\overline{z}_3-\overline{z}_1z_2=ae^{it},$$

where $a = 2\sqrt{uv - \mathbf{u} \cdot \mathbf{v}}$ so that $(a/R)^2 = 1 - s^2$. Both *a* and *t* are invariants for the action of *SO*(3), as are *u* and *v* because SO(3) acts diagonally on $(\mathbf{u}, \mathbf{v}) \in \mathbb{R}^6$.

By general principles, any 3-dimensional SO(3) orbit is contained in a unique coassociative subvariety V of the G_2 manifold \mathscr{C}^7 (so $\varphi|_V \equiv 0$). For the chosen SO(3), the resulting family has been described by Karigiannis-Lotay. Our task was to interpret this using **u** and **v**.

An SO(3) orbit will intersect a twistor fibre S^2 of fixed radius over $p \in S^4 \setminus S^1$ in a parallel circle at 'height' $h \in [-1, 1]$ relative to the poles defined by Q_- . Define another SO(3) invariant

$$b = u^2 - v^2 = R(u - v) = shR^2.$$

2.8 Coassociatives (continued)

Sphere radius, $R^2 = \frac{a^2}{1-s^2}$ Circle radius, $R^2 \sqrt{1-h^2} = \frac{\sqrt{a^4 s^2 - b^2 (1-s^2)^2}}{s(1-s^2)}$.

Theorem [KL, ABS]. Setting *a*, *b* constant and (if s < 1) *t* constant defines a coassociative submanifold of \mathscr{C}^7 diffeomorphic to T^*S^2 unless a = b = 0.

A fibre over $p \in S^2$ is shown for $(a, b, t) = (\frac{1}{2}, \frac{1}{4}, 0)$:

a = 0 gives coassociatives over \mathbb{S}^2 , while b = 0 ($a \neq 0$) gives equators all the way to the twistor fibres over \mathbb{S}^1 .

3.1 The induced metric

Let *h* be the conical metric on \mathscr{C}^7 with holonomy G_2 . We seek the metric *g* induced on $\mathbb{R}^6 \setminus (\mathbb{R}^3 \cup \mathbb{R}^3)$ by setting

$$h=\mu^*g+N\Theta^2,$$

where $\Theta = (X \sqcup h)/N$ is the connection 1-form, and $N = h(X, X) = 6uv - 2\mathbf{u} \cdot \mathbf{v}$ measures the size of the circle fibres. This makes μ a Riemannian submersion.

Theorem [ABS].

$$g = \frac{1}{2} dR^{2} + \frac{1}{2} |d\mathbf{u} + d\mathbf{v}|^{2} + \frac{2}{N} |u d\mathbf{v} - v d\mathbf{u}|^{2} + \frac{1}{2N} \Gamma_{+}^{2} - \frac{1}{4N} \Gamma_{-}^{2},$$

where

$$\Gamma_+ = u \, d\mathbf{v} + \mathbf{v} \, d\mathbf{u} - \mathbf{u} \cdot d\mathbf{v} - \mathbf{v} \cdot d\mathbf{u},$$

$$\Gamma_- = u \, d\mathbf{v} - \mathbf{v} \, d\mathbf{u} + \mathbf{u} \cdot d\mathbf{v} - \mathbf{v} \cdot d\mathbf{u}.$$

Example. If $u\mathbf{v} = \pm v\mathbf{u}$ then $\Gamma_{\pm} = 0$ (and N = 4uv or 8uv).

3.2 **Two-dimensional quadrants**

The formula for g simplifies on certain subvarieties of \mathbb{R}^6 . Consider the negative quadrant

$$\mathscr{L}^2 = \{(\mathbf{u}, \mathbf{v}) = (0, 0, u; 0, 0, -v), \ u, v > 0\} \subset \mathbb{R}^2.$$

Corollary. The restriction of g to \mathcal{L}^2 equals

$$\left(1+\frac{v}{2u}\right)du^2+du\,dv+\left(1+\frac{u}{2v}\right)dv^2$$

and is locally Euclidean, i.e. $K \equiv 0$.

 \mathscr{L}^2 is in fact superminimal, being the projection of (a cone over an open subset of) a horizontal projective line \mathbb{CP}^1 inside $Q_- \subset \mathbb{CP}^3$. We shall see that it is also \mathbb{J} -holomorphic, where \mathbb{J} is the induced almost complex structure on \mathbb{R}^6 .

3.3 Three-dimensional slices

Extend \mathscr{L}^2 to

$$\mathscr{L}^{3} = \{ (\mathbf{0}, \boldsymbol{u} \sin \theta, \boldsymbol{u} \cos \theta; \ \mathbf{0}, -\boldsymbol{v} \sin \theta, \boldsymbol{v} \cos \theta) \}.$$

so that $\mathbf{u} \cdot \mathbf{v} = u\mathbf{v} \cos 2\theta$, and set

$$u = R\cos^2(\frac{1}{2}\phi), \quad v = R\cos^2(\frac{1}{2}\phi)$$

so that u + v = R and $b = R^2 \cos \phi$. The orbits of SO(3) on \mathbb{R}^6 are parametrized by u, v, θ , so \mathscr{L}^3 is a slice to the orbits (expressed symmetrically in \mathbf{u}, \mathbf{v}).

Corollary. The restriction of g to \mathcal{L}^3 equals

$$dR^2 + \frac{1}{2}R^2 \left[d\theta^2 + \frac{1}{4}(3 - \cos 2\theta)d\phi^2 \right].$$

This is isometric to a cone over a surface of revolution, illustrated next.

3.4 Slices (continued)

Let
$$P = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix} \in SO(3).$$

Then \mathscr{L}^3 is the cone over the blue surface, and $P \cdot \mathscr{L}^3$ the cone over the yellow surface. Together these patches close up topologically to define a torus \mathscr{T} and $\mu^{-1}(\mathscr{T})$ is a cone over $S^1 \times S^2$.

Relative to the metric g, vectors in the respective the singular \mathbb{R}^3 axes meet at an angle of

$$\frac{1}{2}\pi \leqslant \pi \sqrt{\frac{3}{8} - \frac{1}{8}\cos\theta} \leqslant \frac{1}{\sqrt{2}}\pi.$$

3.5 The symplectic form

Recall that $\mu: \mathscr{C}^7 = \mathbb{R}^+ \times \mathbb{CP}^3 \longrightarrow \mathbb{R}^6$, and that $R = u + v = |\mathbf{u}| + |\mathbf{v}|$. An almost Kähler structure on \mathbb{R}^6 is defined by scaling g so that the symplectic form

$$\sigma = \mathbf{X} \lrcorner \varphi$$

has constant norm. Here X is the Killing field generating $U(1)_L$.

Theorem. The vectors $\mathbf{p} = \mathbf{u} + \mathbf{v}$ and $\mathbf{q} = R(\mathbf{u} - \mathbf{v})$ furnish Darboux coordinates:

$$\sigma = -rac{1}{2}\sum_{i=1}^{3}dp_{i}\wedge dq_{i}$$

Note that σ extends to $\mathbb{R}^3 \cup \mathbb{R}^3$ and is non-degenerate on $\mathbb{R}^6 \setminus \mathbf{0}$. The projections $(\mathbf{u}, \mathbf{v}) \mapsto R^{1/2}\mathbf{u}$ and $(\mathbf{u}, \mathbf{v}) \mapsto R^{1/2}\mathbf{v}$ also have Lagrangian fibres.

3.6 The SU(3) structure

This is determined by g and the $SL(3, \mathbb{C})$ structure encoded in a complex volume form Ψ . From the theory of stable forms, Ψ is determined by the closed 3-form

 $\operatorname{Re}\Psi=X\lrcorner(*\varphi),$

which will involve the function $N = h(X, X) = 6uv - 2\mathbf{u} \cdot \mathbf{v}$.

Proposition.
$$8uv \operatorname{Re} \Psi = \frac{1}{6}v(N+4v^2)\{d\mathbf{u}, d\mathbf{u}, d\mathbf{u}\} - v(4u^2+3uv+\mathbf{u}\cdot\mathbf{v})\{d\mathbf{v}, d\mathbf{u}, d\mathbf{u}\} + ((u+2v)\mathbf{v}\cdot d\mathbf{v} + v\mathbf{u}\cdot d\mathbf{v}) \wedge \{\mathbf{u}, d\mathbf{u}, d\mathbf{u}\} + (v\mathbf{u}\cdot d\mathbf{v} - u\mathbf{v}\cdot d\mathbf{v}) \wedge \{\mathbf{v}, d\mathbf{u}, d\mathbf{u}\} + terms interchanging \mathbf{u} and \mathbf{v}$$

This is the closest we can get to an explicit description of the (non-integrable) almost complex structure \mathbb{J} on \mathbb{R}^6 , as there are no easy expressions for (1,0) forms.

3.7 Pseudo holomorphic surfaces

Proposition. The linear subvariety

$$\mathscr{L}^{4} = \{(0, u_{2}, u_{3}; 0, v_{2}, v_{3}), uv \neq 0\}$$

is \mathbb{J} -holomorphic for the induced SU(3) structure on \mathbb{R}^6 .

Applying SO(3), there will be a family of such subvarieties (parametrized by \mathbb{RP}^2) that exhaust \mathbb{R}^6 . Any two intersect in a \mathbb{J} -holomorphic curve, isomorphic to \mathscr{L}^2 .

Unlike the case of standard $\mathbb{C}^3 = \mathbb{R}^3 \oplus J\mathbb{R}^3$, we cannot extend this \mathbb{RP}^2 to $\mathbb{G}r_2(\mathbb{C}^3)$.

The action of SO(3) on \mathbb{C}^3 has been used to construct invariant Kähler-Einstein metrics on \mathbb{CP}^2 minus the conic curve u = v with cone angle lying in $(\frac{1}{2}\pi, 2\pi]$ [C. Li, Dancer-Strachan] and associated Calabi-Yau cones.

3.8 Conclusion

We have analysed a quotient of nearly Kähler \mathbb{CP}^3 and its G_2 cone by U(1). It is convenient to work on \mathbb{C}^4 and (via the Gibbons-Hawking ansatz) identify the quotient with $\mathbb{C}^4/T^2 \cong \mathbb{R}^6$. In the holomorphic setting, all the formulae are simpler and related to the Kähler quotient

 $\mathbb{CP}^3/\!/\,U(1)\,\cong\,\mathbb{CP}^1\times\mathbb{CP}^1.$

For G_2 , we can easily describe the symplectic form and also the curvature 2-form $F = d\Theta$ of μ , but pinning \mathbb{J} down is more difficult. Some modification is necessary when starting with the complete G_2 metric on $\Lambda^- T^*S^4$.

There remains the motivating conjecture that $\mathbb{R}^+ \times \mathbb{WCP}^3_{p,p,q,q}$ carries a metric with holonomy G_2 [Acharya-Witten]. The constructions can be generalized to a circle acting with different weights on \mathbb{C}^4 , or actions on other G_2 manifolds, though this study will involve real invariant theory outside the familiar hyperkähler setting.