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Plan

1. Twistor spaces of 4-manifolds
Some background, and their role in creating special geometries.

2. A circle action on the cone R+×CP3 with G2 holonomy
Illustrating its projection to a singular space R6 = R3×R3 à la Atiyah-Witten.

3. SU(3) structure invariant by SO(3)
Diagnosing the geometry induced by G2 on R6 in the same example.

Parts 2 and 3 represent joint work with Bobby Acharya and Robert Bryant, naïvely
inspired by the successful use by Foscolo-Haskins-Nordström of circle bundles to
construct new manifolds with G2 holonomy.



1.1 Penrose’s twistor theory
is based on choosing a real form of the Klein correspondence between lines in
complex projective 3-space CP3 and points in the quadric Q4 :

F1,2(C4)

↙ ↘
CP3 Gr2(C4) = Q4 ⊂ CP5

π ∈ Λ2C4

π ∧ π = 0

The real form can be defined by a reduction

SL(4,C) ⊃


SU(2,2) ' SO(4,2) acting on S3×S1 ⊃ R3,1

SL(2,H) ' SO(5,1) " HP1 = S4 ⊃ R4

SL(4,R) ' SO(3,3) " Gr2(R4) ⊃ R2,2.

In the first case, a point p ∈ R3,1 defines a line in a real hypersurface PN of CP3 .
Two such CP1 ’s intersect in x ∈ PN iff the points in R3,1 lie on a light ray, while a
point y ∈ CP3 \ PN defines a 3-parameter family of light rays in R3,1 .



1.2 Hopf geometry

We shall concentrate on the second case in which the fibres of

CP3

π
y

HP1 = S4 ⊂ Gr2(C4)

parametrize ‘real’ lines relative to the antilinear involution j : CP3 → CP3, which
acts as the antipodal map on each fibre S2 ∼= CP1 . The fibres are complex, but
they have non-trivial normal bundle O(1)⊕O(1).

Any point of z ∈ CP3 will induce an almost complex structure on Tπ(z)S4, and a
complex surface will define an integrable orthogonal complex structure (OCS) on
an open subset of S4 .

Example. A plane CP2 determines a (conformally) constant OCS on R4 = S4 \∞.



1.3 Associated bundles

In place of S4, start with any oriented Riemannian 4-manifold M . Its SO(4)
holonomy defines a splitting

Λ2T ∗M = Λ+ ⊕ Λ−

and one can construct the 2-sphere bundle

Z ⊂ Λ−

π
y

M.

Each point z ∈ π−1(m) defines an almost complex structure on its horizontal
space Hz ∼= TmM (relative to the LeviCivita connection), which can be combined
with (1) the natural complex structure on Vz ∼= TzS2, or (2) its negative. This
equips Z with almost complex structures J1, J2; the latter is never integrable but
c1(J2) = 0.

The SO(4)-structure on the 7-dimensional total space Λ− is compatible with the
representation SO(4) ⊂ G2 ⊂ SO(7).



1.4 Self-duality in 4 dimensions
A local section s : U → Z determines an almost
Hermitian structure (g, Js, ωs) on M . The map s is

• J1-holomorphic iff Js is integrable
• J2-holomorphic iff (dωs)1,2 = 0
• horizontal iff Js is Kähler.

Z ⊂ Λ−

π
y

U ⊆ M .

Theorems.
J1 is integrable iff M is self-dual, i.e. its Weyl tensor satisfies W−≡ 0
[Atiyah-Hitchin-Singer].

If (Z , J1) is (compact) Kähler then M is isometric to S4 or CP2 [Besse, Hitchin].
In the latter case Z ∼= SU(3)/T 2 .

Given M4 (compact, oriented) there exists n such that M#nCP2 admits a
self-dual metric [Poon, LeBrun, Joyce; Floer, Donaldson-Friedman, Taubes].



1.5 Twistor lifts

Let Σ be a Riemann surface. An immersion

φ : Σ −→ M

can be lifted to ψ : Σ→ Z , so as to render φ∗(TσΣ) complex.

Proposition [Eells-S, Lichnerowicz]. φ is harmonic iff ψ is J2-holomorphic.

Examples. If ψ is also J1-holomorphic then φ is ‘superminimal’. Such immersions
can be constructed for any genus using Bryant’s formula

[
1, f − 1

2g df
dg , g, 1

2
df
dg

]
.

In the case M = S4 or CP2, the twistor space (Z , J2) admits a compatible ‘nearly
Kähler’ (non-standard Einstein) metric h. It follows that the cone R+ × Z admits a
Ricci-flat metric dr2 + r2h with holonomy G2 [Bär].



1.6 Symplectic Calabi-Yau spaces

can be constructed from twistor spaces [Fine-Panov].

Take M to be real hyperbolic 4-space. Then Z admits
a symplectic form taming J2 and c1(J2) = 0.

Z is symplectomorphic to O(−1)⊕O(−1)→ CP1,
a small resolution of the conifold {wx − yz = 0} in C4 .

Z ∼=
SO(4,1)

U(2)

π
y
H4.

This construction can be applied to hyperbolic orbifolds H4/Γ by resolving the
twistor space to obtain simply-connected examples with b3 = 0 (so non-Kähler)
and arbitrary b2 . Higher dimensional twistor spaces (of even-dimensional
Riemannian manifolds) provide further results.



1.7 G2 holonomy

Theorem [Bryant-S]. If M is S4 or CP2 then the 7-manifold Λ− admits a complete
metric g with holonomy equal to G2 and asymptotic to the cone over Z .

If r denotes norm in the fibres of Λ−, one can express

g = (r2 + 1)−1/2gver + (r2 + 1)1/2ghor.

Over S4, the associated 3-form ϕ on R+×CP3 can be pulled back to C4 . Then
r = R2 where R =

∑3
i=0 |zi |2 is the Euclidean norm squared, and

ϕ = d
(
(R4 + 1)1/4τ

)
, τ = −dR ∧ α1 + α2 ∧ α3.

Together with a G2 metric over S3, these were the only such AC metrics known
until Foscolo-Haskins-Nordström established the existence of complete G2
metrics on circle bundles Mm,n → KCP1×CP1 invariant by SU(2)2×U(1). These
include ones that are asymptotic to cones over finite quotients of S3×S3 .



2.1 M-theory
Regard CP3 as the quotient of S7 inside C4 = H2 by U(1)R, and S4 = S7/Sp(1)R .
We shall focus on C 7 = R+ × CP3, its conical metric with G2 holonomy, and the
quotient

C 7

U(1)L

∗
=

C4

T 2
∼=

C2

U(1)
× C2

U(1)
∼= R3×R3.

We use hyperkähler moment maps to describe the resulting projection

C 7 3 [z0, z1, z2, z3] 7−→ (u,v) ∈ R6,

whose circle fibres collapse over R3 ∪ R3 . The G2 metric on the cone relates to
Type IIA string theory of R6 with a singular locus R3 ∪ R3 as described by
Atiyah-Witten, who state:

“details of the induced metric are unimportant”.
Nonetheless, we [Acharya-Bryant-S] set out describe the SU(3) structure induced
on R6, using the bivector formalism.



2.2 Gibbons-Hawking coordinates
The action of U(1)L on C4 covers a rotation in 2 coordinates of S4 :

U(1)L ⊂ U(2)L ⊂ Sp(2)L
↓

SO(2) ⊂ SO(3)× SO(2) ⊂ SO(5).

To make µ : C 7 → R6 explicit, observe that

U(1)L acts on C4
0123 with weights (1, 1, 1, 1)

U(1)R " " " (1,−1,1,−1)

=⇒ T 2 acts on C2
02×C2

13 with weights (1,1)× (1,1).

Then u = (u1,u2,u3) and v = (v1, v2, v3), where

u1 = |z0|2 − |z2|2, u2 − iu3 = z0z2; v1 = |z1|2 − |z3|2, v2 − iv3 = z1z3.

Moreover R =
∑3

i=0 |zi |2 equals u + v , where u = |u| and v = |v|.



2.3 Eguchi-Hanson sheets
Provided m ∈ R3 is non-zero, the hyperkähler quotient

{z ∈ C4 : u− v = m}
U(1)R

⊂ C 7

can be identified with T ∗S2 endowed with a metric k of holonomy SU(2). It has a
triholomorphic action by U(1)L with moment map u.

Its image in R6 acquires the harmonic function

V =
1
|u|

+
1

|u−m|
,

used to recover k = V−1Θ2 + V geuc . Each
diagonal represents {(u,v) ∈ R6 : u− v = m}.



2.4 Rotation of the 4-sphere
Consider again the reduction to SO(3)× SO(2):

C 7 = R+×CP3

π
y
S4 ⊂ R2 ⊕ R3

Let
• S1 = S4 ∩ R2 be the fixed point set for the action of SO(3)

• S2 = S4 ∩ R3 be the fixed point set for the action of SO(2).
View S4 \ S1 as a trivial disk bundle over S2, whose boundaries are fused into S1 .
If X is the Killing field generated by SO(2), then

X [ = (1− s2)dt ,

where t : S4 \ S2 → [0,2π) is ‘longitude’ and s : S4 → [0,1] is sine of ‘latitude’.
In fact, s represents the radius in R3 under the projection S4 ⊂ R5 → R3 :



2.5 Reduced twistor fibration

Orthogonal projection R5 −→ R3 identifies
S4/SO(2) with the closed unit ball D

3
whose

boundary is effectively S2 .

Proposition. The projection C 7/U(1)L → D
3

is given by

(u,v) 7−→ u + v
u + v

=
1
R

(u + v),

and s = |u + v|/R equals the radius in D
3
.

Examples.
• (u,v) arises from a point of S1 iff u + v = 0 (implying u = v ).
• (u,v) maps into S2 (equivalently s = 1) iff u and v are aligned.



2.6 Two quadrics

help to interpret the preceding geometry. Set

Q+ = {[z0, z1, z2, z3] ∈ CP3 : z0z3 − z1z2 = 0}
Q− = {[z0, z1, z2, z3] ∈ CP3 : z0z1 + z2z3 = 0}.

These subvarieties are both SU(2) invariant, and arise from points of R6 where
u,v are aligned (respectively, anti-aligned):

µ(R+ ×Q±) = {(u,v) : u ·v = ±uv}.

While π(Q+) = S2 (making it obvious that Q+ ≈ S2×S2), the holomorphic one Q−
double covers

S4 \ S1 ∼= R4 \ R ∼= S2 ×H2,

encoding the scalar flat Kähler metric [Pontecorvo, S-Viaclovsky]. It is the locus of
points in CP3 for which the U(1)L orbits are horizontal over S4 .



2.7 Coassociative subvarieties
The defining function for Q+ equals

z0z3 − z1z2 = aeit ,

where a = 2
√

uv − u ·v so that (a/R)2 = 1− s2 . Both a and t are invariants for
the action of SO(3), as are u and v because SO(3) acts diagonally on (u,v) ∈ R6 .

By general principles, any 3-dimensional SO(3) orbit is contained in a unique
coassociative subvariety V of the G2 manifold C 7 (so ϕ|V ≡ 0). For the chosen
SO(3), the resulting family has been described by Karigiannis-Lotay. Our task was
to interpret this using u and v.

An SO(3) orbit will intersect a twistor fibre S2 of fixed radius over p ∈ S4 \ S1 in a
parallel circle at ‘height’ h ∈ [−1,1] relative to the poles defined by Q− . Define
another SO(3) invariant

b = u2 − v2 = R(u − v) = shR2.



2.8 Coassociatives (continued)

Sphere radius, R2 = a2

1−s2

Circle radius, R2
√

1− h2 =

√
a4s2−b2(1−s2)2

s(1−s2)
.

Theorem [KL,ABS]. Setting a,b constant and (if s < 1)
t constant defines a coassociative submanifold of C 7

diffeomorphic to T ∗S2 unless a = b = 0.

A fibre over p ∈ S2 is shown
for (a,b, t) = (1

2 ,
1
4 ,0):

S1 p S2

a = 0 gives coassociatives
over S2, while b = 0 (a 6= 0)
gives equators all the way
to the twistor fibres over S1 .



3.1 The induced metric

Let h be the conical metric on C 7 with holonomy G2 . We seek the metric g
induced on R6 \ (R3 ∪ R3) by setting

h = µ∗g + N Θ2,

where Θ = (X y h)/N is the connection 1-form, and N = h(X ,X ) = 6uv − 2u ·v
measures the size of the circle fibres. This makes µ a Riemannian submersion.

Theorem [ABS].
g = 1

2dR2 + 1
2

∣∣du + dv
∣∣2 + 2

N

∣∣udv− v du
∣∣2 + 1

2N Γ2
+ − 1

4N Γ2
−,

where
Γ+ = udv + v du − u ·dv− v ·du,
Γ− = udv − v du + u ·dv− v ·du.

Example. If uv = ±vu then Γ± = 0 (and N = 4uv or 8uv ).



3.2 Two-dimensional quadrants

The formula for g simplifies on certain subvarieties of R6 . Consider the negative
quadrant

L 2 = {(u,v) = (0,0,u; 0,0,−v), u, v > 0} ⊂ R2.

Corollary. The restriction of g to L 2 equals(
1 +

v
2u

)
du2 + dudv +

(
1 +

u
2v

)
dv2

and is locally Euclidean, i.e. K ≡ 0.

L 2 is in fact superminimal, being the projection of (a cone over an open subset of)
a horizontal projective line CP1 inside Q− ⊂ CP3 . We shall see that it is also
J-holomorphic, where J is the induced almost complex structure on R6 .



3.3 Three-dimensional slices

Extend L 2 to

L 3 = {(0,u sin θ,u cos θ; 0, −v sin θ, v cos θ)}.

so that u ·v = uv cos 2θ, and set

u = R cos2(1
2φ), v = R cos2(1

2φ)

so that u + v = R and b = R2 cosφ. The orbits of SO(3) on R6 are parametrized
by u, v , θ, so L 3 is a slice to the orbits (expressed symmetrically in u,v).

Corollary. The restriction of g to L 3 equals

dR2 + 1
2R2[dθ2 + 1

4(3− cos 2θ)dφ2].
This is isometric to a cone over a surface of revolution, illustrated next.



3.4 Slices (continued)

Let P =

 1 0 0
0 0 −1
0 1 0

∈ SO(3).

Then L 3 is the cone over the blue surface, and
P ·L 3 the cone over the yellow surface. Together
these patches close up topologically to define a
torus T and µ−1(T ) is a cone over S1 × S2 .

Relative to the metric g, vectors in the respective
the singular R3 axes meet at an angle of

1
2π 6 π

√
3
8 −

1
8 cos θ 6 1√

2
π.



3.5 The symplectic form

Recall that µ : C 7 = R+×CP3 −→ R6, and that R = u + v = |u|+ |v|. An almost
Kähler structure on R6 is defined by scaling g so that the symplectic form

σ = X y ϕ

has constant norm. Here X is the Killing field generating U(1)L .

Theorem. The vectors p = u + v and q = R(u−v) furnish Darboux coordinates:

σ = −1
2

3∑
i=1

dpi ∧ dqi .

Note that σ extends to R3 ∪ R3 and is non-degenerate on R6 \ 0. The projections
(u,v) 7→ R1/2u and (u,v) 7→ R1/2v also have Lagrangian fibres.



3.6 The SU(3) structure

This is determined by g and the SL(3,C) structure encoded in a complex volume
form Ψ. From the theory of stable forms, Ψ is determined by the closed 3-form

ReΨ = X y (∗ϕ),

which will involve the function N = h(X ,X ) = 6uv − 2u ·v.

Proposition. 8uv ReΨ = 1
6v(N + 4v2){du,du,du}
−v(4u2 + 3uv + u ·v){dv,du,du}
+
(
(u + 2v)v ·dv + vu ·dv

)
∧ {u,du,du}

+(vu ·dv− uv ·dv) ∧ {v,du,du}
+ terms interchanging u and v

This is the closest we can get to an explicit description of the (non-integrable)
almost complex structure J on R6, as there are no easy expressions for (1,0)
forms.



3.7 Pseudo holomorphic surfaces

Proposition. The linear subvariety

L 4 = {(0,u2,u3; 0, v2, v3), uv 6= 0}

is J-holomorphic for the induced SU(3) structure on R6 .

Applying SO(3), there will be a family of such subvarieties (parametrized by RP2)
that exhaust R6 . Any two intersect in a J-holomorphic curve, isomorphic to L 2 .

Unlike the case of standard C3 = R3⊕ JR3, we cannot extend this RP2 to Gr2(C3).

The action of SO(3) on C3 has been used to construct invariant Kähler-Einstein
metrics on CP2 minus the conic curve u = v with cone angle lying in (1

2π,2π]
[C. Li, Dancer-Strachan] and associated Calabi-Yau cones.



3.8 Conclusion

We have analysed a quotient of nearly Kähler CP3 and its G2 cone by U(1). It is
convenient to work on C4 and (via the Gibbons-Hawking ansatz) identify the
quotient with C4/T 2 ∼= R6 . In the holomorphic setting, all the formulae are simpler
and related to the Kähler quotient

CP3//U(1) ∼= CP1 × CP1.

For G2, we can easily describe the symplectic form and also the curvature 2-form
F = dΘ of µ, but pinning J down is more difficult. Some modification is necessary
when starting with the complete G2 metric on Λ−T ∗S4 .

There remains the motivating conjecture that R+×WCP3
p,p,q,q carries a metric with

holonomy G2 [Acharya-Witten]. The constructions can be generalized to a circle
acting with different weights on C4, or actions on other G2 manifolds, though this
study will involve real invariant theory outside the familiar hyperkähler setting.


