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3-forms in 7 variables and G2-structures
One way to define G2 is as G2 = Aut(O) where O is the octonions.

Define a cross-product and a G2-invariant 3-form ϕ0 on R7 = Im(O) using octonionic
multiplication and the Euclidean inner product

u × v := Im(uv)

ϕ0(u, v ,w) := 〈u × v ,w〉 = 〈uv ,w〉.

For an oriented smooth 7-manifold M and p ∈ M

Pp(M) := {ϕ ∈ Λ3T ∗pM | ι∗ϕ0 = ϕ for ι : TpM → R7}
where ι is any orientation-preserving isomorphism.

A 3-form ϕ on M is positive if ϕ is a section of P(M), i.e. ϕp ∈ Pp(M) ∀p, where P(M)
denotes the bundle over M with fibre Pp(M).

Each positive 3-form on M defines a reduction of the frame bundle FM to a principal subbundle
of FM with fibre G2, i.e. a G2-structure on M that induces the given orientation on M.

Positive 3-forms on M! (oriented) G2-structures on M.
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1st-order PDE system for G2 holonomy metrics
Holonomy/parallel tensors correspondence: Holg (M) ⊆ G2 ⊂ SO(7) implies

M7 admits a g -parallel positive 3-form ϕ. Converse?

Theorem: Let (M, ϕ, gϕ) be a G2-structure; the following are equivalent
1. Hol(gϕ) ⊆ G2 and ϕ is the induced 3-form
2. dϕ = d∗ϕ = 0, where d∗ is defined using Hodge star ∗ w.r.t. gϕ.

2 is nonlinear in ϕ: gϕ depends nonlinearly on ϕ and d∗ depends on gϕ.

By writing equation for 3-form ϕ and allowing Hol(gϕ) ⊆ G2 we obtain a PDE system: a
1st-order system of 49=(35+21-7) equations on the 35 coeffs of ϕ! It is an overdetermined
diffeomorphism-invariant system.

Elliptic approach: (singular) perturbation method due to Joyce.

All known constructions of G2-holonomy metrics on compact manifolds use this approach!

Idea: Construct a closed G2-structure ϕ with d∗ϕ sufficiently small. Condition that closed
3-form ϕ̃ = ϕ+ dη solves 2 yields a nonlinear elliptic PDE for 2-form η which is solvable by an
iteration method (η is small).

Difficulty then becomes to construct initial closed G2-structure ϕ with sufficiently small torsion:
all constructions exploit various degenerate limits.
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Difficulty then becomes to construct initial closed G2-structure ϕ with sufficiently small torsion:
all constructions exploit various degenerate limits.
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Bryant’s Laplacian flow
There is a natural flow on closed G2-structures. Solve

dϕt

dt
= ∆ϕtϕt (LF)

with initial condition ϕ0 satisfying dϕ0 = 0. (Then dϕt = 0 for all t.)

� Induced metric gt evolves under (LF) by

dgt
dt

= −2Ric(gt) + terms quadratic in torsion of ϕt

� Stationary points of (LF) are exactly torsion-free G2-structures.

� (LF) is the (upward) gradient flow for Hitchin’s volume functional vol(ϕ) when restricted to
cohomology class of ϕ0. Critical points of vol(ϕ) in [ϕ] are maxima (strict modulo diffeos).

� On a compact manifold vol(ϕt) is increasing along (LF)

� Bryant–Xu : Short-time existence & uniqueness of solutions to (LF)

� Lotay–Wei: Torsion-free G2-structures are stable under (LF).

Lotay–Wei also establish analogues of results in Ricci flow, e.g. Hamilton’s compactness
result, Shi estimates, finite-time extension result.
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Geometric flows 101
• Ideal case: Establish long-time existence & convergence of flow as t →∞ to a static solution.

e.g. Hamilton’s 3-diml spherical space form theorem: any initial metric g0 on a compact
3-manifold with Ric(g0) > 0 converges under normalized Ricci flow to an Einstein metric
Ric(g) = g (which must be a spherical space form in 3 dims).

Later influential higher diml results under other curvature pinching conditions on initial metric:
Huisken, Hamilton, Böhm-Wilking, Brendle-Schoen.

• In general long-time existence or convergence to a static solution may fail.

Long-time existence fails when we encounter finite-time singularities of the flow,
e.g. in Ricci flow when |Riem(gt)| → ∞ as t ↗ T .

e.g. Neck-pinch singularities implementing connect sum decomposition of initial 3-manifold;
modelled on shrinking cylinder S2 × R which is a simple example of a shrinking soliton.

In general need to develop a theory of finite-time singularity models:

if only ’expected’ finite-time singularities arise can hope to develop a flow with surgeries and
study its long-time behaviour, eg Ricci flow with surgery.

We don’t have any analogue of the Geometrization Conjecture to guide us in the G2 setting but
we can study solitons in the Laplacian flow.
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Solitons in the Laplacian flow
In many geometric flows solitons provide key models for singularity formation (and sometimes
singularity resolution).

A Laplacian soliton is a G2-structure ϕ, vector field X , λ ∈ R satisfying{
dϕ = 0

∆ϕϕ = λϕ+ LXϕ
(LSE)

⇔ self-similar solution of Laplacian flow

ϕt = k(t)3 f ∗ϕ, df
dt = k(t)−2X , k(t) = 1

3 (3 + 2λt)

λ < 0: shrinkers – ancient solutions, i.e. exist backwards to t = −∞
λ = 0: steady solitons – eternal solutions, i.e. exist for all time t ∈ R
λ > 0: expanders – immortal solutions, i.e. exist up to t = +∞

� Non-steady soliton ⇒ ϕ exact
� Solitons on a compact manifold are stationary or expanders
� Scaling behaviour: (ϕ,X ) a λ-soliton ⇐⇒ (k3ϕ, k−2X ) a k−2λ-soliton.
� Bryant (unpublished) has studied the local generality of Laplacian solitons using methods

from overdetermined systems of PDE.
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Laplacian soliton construction methods
No general analytic machinery to construct global solutions to (LSE). Have same problem in
Ricci flow (except in the Kähler setting.) Must study Laplacian solitons with additional
geometric structure.

� Homogeneous solitons: Quite a bit of work by Lauret, Fino & coworkers
Work has a Lie-theoretic flavour – nilpotent and solvable Lie groups

Relevance to finite-time singularity formation on say compact 1-connected manifolds M
with p1(M) 6= 0 is unclear.

� Cohomogeneity-one solitons: a Lie group acts with codimension-one generic orbit; reduces
(LSE) to nonlinear system of ODEs.

� Bundle constructions, e.g. a circle/torus bundle over base manifold with special geometry.
� Solitons with special torsion: specific to G2 case. Gavin Ball found some steady Laplacian

solitons this way.
� S1-collapsed solitons?: ? ∃ construction of S1-collapsed solitons that is related to solitons

of Lagrangian MCF in CY 3-folds?

Minimal symmetry assumption, but not clear that highly-collapsed solitons could appear as
finite-time singularity models. But (as in torsion-free case) might also suggest existence of
new non-collapsed solitons.
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Our motivation and high-level overview of results
Motivation: Construct cohomogeneity one Laplacian solitons that are potentially viable models
for finite-time singularity formation (& resolution).

Goal: Find complete G2 solitons with cohomogeneity one, specifically

• SU(3)-invariant ones on Λ2
−CP2 & • Sp(2)-invariant ones on Λ2

−S4

and understand their asymptotic geometry.

Telegraphic overview of results:
� We find complete shrinkers, steady solitons and expanders
� Shrinkers are the rarest and most rigid
� Expanders are the most abundant
� Steady solitons are intermediate between shrinkers and expanders;

our steady solitons behave very differently to steady Ricci solitons.
� Almost all our complete examples are asymptotically conical (AC); but there are complete

steady solitons with exponential volume growth that appear at the boundary of the space of
AC steady solitons.

� There are important differences between the Sp(2) and SU(3)-invariant cases.
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steady solitons with exponential volume growth that appear at the boundary of the space of
AC steady solitons. Related to scalar curvature of closed G2-structures being non-positive.

� There are important differences between the Sp(2) and SU(3)-invariant cases.
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Theorems and conjectures on Laplacian shrinkers
Theorem Shrink1
There exists an explicit complete AC shrinker with rate −1 on Λ2

−S4 and on Λ2
−CP2.

• Shrinkers are rare! Possible models for formation of conical singularities.

Theorem Shrink2
Let G be SU(3) or Sp(2). For every closed G -invariant G2-cone C there exists a unique
G -invariant shrinker AC end (i.e. need not extend to a complete AC shrinker) asymptotic to C .

• The space of G -invariant G2-cones is 1-dimensional for G = Sp(2) and 2-dimensional for
G = SU(3). So previous theorem yields continuous families of AC shrinker ends.

Shrinker Conjectures
(i) The explicit Sp(2)-invariant AC shrinker on Λ2

−S4 is the unique complete AC Sp(2)-invariant
shrinker.
(ii) The explicit Sp(2)-invariant AC shrinker on Λ2

−S4 is the unique complete AC shrinker
asymptotic to an Sp(2)-invariant closed G2-cone, i.e. we assume symmetry only of the cone not
of the AC shrinker.
(iii) There are only finitely many complete SU(3)-invariant AC shrinkers.

So MOST AC shrinker ends from Thm Shrink2 SHOULDN’T extend to complete AC shrinkers.
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Theorems and conjectures on Laplacian expanders
Theorem Expand1
(i) There exists a 1-parameter family of complete Sp(2)-invariant AC expanders with rate −1
on Λ2

−S4 and a 1-parameter family of SU(3)× Z2-invariant AC expanders on Λ2
−CP2.

(ii) Every Sp(2)-invariant closed G2-cone ’on one side’ of the torsion-free cone arises as the
asymptotic cone of a unique (up to scale) complete AC Sp(2)-invariant expander.

• AC expanders give models for how Laplacian flow can smooth out certain conical singularities.

Theorem Expand2
Let G be SU(3) or Sp(2) and k be the dimension of the space of G -invariant closed G2-cones.

∃ a k-diml family of G -invariant AC expander ends asymptotic to any closed G -invariant
G2-cone; the difference between two such AC expanders is of order exp(−λ6 t

2)× polynomial,
where λ > 0 is the dilation constant of the expander.

Expander Conjectures
(i) There is a 2-parameter family of complete SU(3)-invariant AC expanders on Λ2

−CP2.
(ii) The set of asymptotic cones of complete SU(3)-invariant AC expanders is a proper open
subset of the 2-diml space of all SU(3)-invariant closed G2-cones.

We have a precise conjecture for what this proper open subset should be.
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Sp(2)-invariant singularity formation
In other geometric flows, often there exists an AC shrinker and an AC expander that share a
common (asymptotic) cone; combining them yields a ‘weak solution’ to the flow that is singular
only at the time instant t = 0 where the common cone appears.

Feldman-Ilmanen-Knopf (FIK) called this ‘flowing through the singularity’.

e.g. in Kähler-Ricci flow there is such an AC shrinker (due to FIK) / AC expander (due to Cao)
pair for blowing-down a (−1) curve in a Kähler surface

No-Flow-Through Theorem
There is no complete Sp(2)-invariant AC expander whose cone coincides with the cone of the
explicit AC Sp(2)-invariant shrinker on Λ2

−S4.

We conjecture the result holds without the Sp(2)-invariance assumption on the AC expander.

Obvious questions this raises:
1. Does the explicit AC Sp(2)-invariant shrinker arise as the singularity model for a finite-time

singularity of Laplacian flow for some closed G2-structure on a compact 7-manifold?
2. If yes to Q1 how should we continue Laplacian flow past this singularity?

Should we consider a singular version of Laplacian flow where the conical singularity persists
but can vary within the set of closed G2-cones?

How does the bulk geometry drive the evolution of the conical singularity?

• We expect different behaviour for the explicit SU(3)-invariant AC shrinker on Λ2
−CP2!
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SU(3)-invariant steady Laplacian solitons
Theorem Steady
There exists (up to scale) a 1-parameter family of complete SU(3)-invariant steady solitons on
Λ2
−CP2 parameterised by s ∈ [−1, 1].

(i) For s = 0 it is the standard SU(3)-invariant torsion-free AC G2 structure on Λ2
−CP2.

(ii) For ±s ∈ (0, 1) it is a nontrivial steady soliton asymptotic with rate −1 to the unique
SU(3)-invariant torsion-free cone.

(iii) For s = ±1 it is an explicit nontrivial steady soliton with exponential volume growth.

Asymptotically this steady soliton has constant negative scalar curvature and approaches a flat
T 2-bundle over the sinh-cone over (CP2, gFS) where gFS denotes the Fubini-Study metric.

(The sinh-cone of CP2 is a noncompact Einstein 5-manifold with negative Einstein constant.)

Remarks:
• Any complete Sp(2)-invariant steady soliton must be a trivial steady soliton.

• AC steady solitons a new feature compared to Ricci/Kähler-Ricci flow.

• the asymptotic behaviour of the explicit steady soliton is impossible for steady Ricci solitons
because they have scalar curvature S ≥ 0.

• Understanding complete SU(3)-invariant steady solitons is also useful for proving results
about complete SU(3)-invariant expanders, e.g. via blow-down arguments.
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Closed invariant G2-structures on Λ2
−M

4 \M
For M = CP2 or S4:

� Λ2
−M has a cohomogeneity one action by G = SU(3) or Sp(2)

� Λ2
−M \M is diffeomorphic to R+ × Σ, for Σ = SU(3)/T 2 or CP3

Any closed G -invariant G2-structure ϕ on R+ × Σ can be written as
ϕ = (f 21 ω1 + f 22 ω2 + f 23 ω3) ∧ dt + f1f2f3 α = ωf ∧ dt + ReΩf

where ω1, ω2, ω3 ∈ Ω2(Σ) and α ∈ Ω3(Σ) are G -invariant forms on Σ and fi : R+ → R+ satisfy

(f1f2f3)′ = 1
2 (f 21 + f 22 + f 23 ) (#)

For Sp(2)-invariance in addition we require f2 = f3. Structure equations for ωi , α the same in
both cases ⇒ Λ2

−S4 case can be treated as a special case of Λ2
−CP2 case where f2 = f3.

Discrete symmetries for G = SU(3): When fj = fk for j 6= k metric on the corresponding
principal orbit has an extra free isometric Z2-action, which does NOT preserve the SU(3)
structure (ωf ,Ωf ). When f1 = f2 = f3 the orbit has an additional free isometric action of the
symmetric group S3, and the subgroup A3 < S3 preserves (ωf ,Ωf ).

(#)⇒ d
dt (f1f2f3)1/3 ≥ 1

2 i.e. volume grows at least like t7.
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The soliton equations and their local solutions
The torsion τ of a closed G2-structure ϕ is the 2-form (of type 14) s.t.

d(∗ϕ) = τ ∧ ϕ.
In our G -invariant setting the torsion of ϕf is τ =

∑
τiωi where ωi are the G -invariant 2-forms

on Σ and
τi = (f 2i )′ +

f 2i
f1f2f3

(
2f 2i −

∑
f 2i

)
. (1)

The soliton condition for (ϕf ,X = u ∂
∂t , λ) is the (mixed-order) ODE system

2(f1f2f3)′ = f 21 + f 22 + f 23 , (2a)

(τi − uf 2i )′ = λf 2i , for i = 1, 2, 3, (2b)

τ1 + τ2 + τ3 = u(f 21 + f 22 + f 23 ) + 2λf1f2f3. (2c)

We can rewrite (2) as a real analytic 1st-order system in the 6 variables (fi , τi ) and the type 14
condition on τ imposes the algebraic condition

∑
τi f

2
j f

2
k = 0.

Then u is determined algebraically from (f , τ) by equation (2c).

⇒ ∃ a 4-diml family of SU(3)-invariant solitons & 2-diml family of Sp2-invariant solitons.

In the steady case λ = 0 the action of scaling reduces these parameter counts by 1.
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Smooth extension over the zero section of Λ2
−M

4

Understand solutions defined near zero section of Λ2
−M that extend smoothly over it.

Proposition
� For each λ ∈ R, there is a 2-parameter family ϕb,c of solutions defined for small t that

extend smoothly to a λ-soliton on (nhd of zero section in) Λ2
−CP2;

� the 1-parameter subfamily ϕb = ϕb,0 also defines λ-solitons on Λ2
−S4.

Two scale-invariant parameters: λb2 and c . So up to scale:

• 2-parameter families of smoothly-closing expanders/shrinkers on Λ2
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Proof sketch of Theorem Steady
1. Decoupling

� For λ = 0, the ODEs can be separated into evolution of scale g and evolution of 4
scale-normalised variables.

� Unique fixed point for scale-normalised flow is torsion-free cone; it is a stable fixed point.

2. Smoothly-closing solutions

� Near special orbit CP2, ∃ a 1-parameter family of solutions ϕc up to scale.
� Unique one with f2 = f3: static soliton from Bryant–Salamon AC G2-mfd has c = 0.

1 & 2: Stability of fixed point and continuous dependence of smoothly-closing solutions on c
⇒ persistence of AC asymptotics for c sufficiently small.
3. The explicit solution
Numerical simulations suggested critical value ccrit of c at which AC asymptotics terminated.
Inspection of power series solutions for ccrit led to initial guess for explicit solution.
4. Trapping by the explicit solution
Evolution of a quantity G suggested by the explicit solution (G is constant on it) guarantees
that for any c < ccrit the smoothly-closing solution ϕc is complete and has AC asymptotics.



Shrinkers: consequences of AC end rigidity (Thm Shrink2)
Heuristic for λ < 0: Invariant shrinkers on R+ × SU(3)/T 2 are flow lines in 5-dim phase space.
In 4-dimensional space of flow lines

� Proposition ⇒ a 2-dimensional submanifold of solutions extend across zero section
CP2 ⊂ Λ2

−CP2

� Thm Shrink2 ⇒ a 2-dimensional submanifold of solutions has AC behaviour

Expect transverse intersections  finitely many AC shrinkers on Λ2
−CP2.

Similarly, restricting attention to solutions with f2 = f3:

� 2-dimensional space of flow lines;
� 1-dim submanifold extends over special orbit; 1-dim submanifold has AC behaviour.

Expect transverse intersections  finitely many AC shrinkers on Λ2
−S4.

In fact, can spot one explicit solution!

Theorem Shrink1: For λ = −1

f1 = t, f 22 = f 23 = 9
4 + 1

4 t
2, u =

t

3
+

4t

9 + t2

is an AC shrinker with rate −1 asymptotic to the cone (1, 12 ,
1
2 ).

Conjecture: This is the unique Sp2-invariant AC shrinker on Λ2
−S4.
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Thanks for your attention!



Bonus slides!



Expectations about SU(3)-invariant expanders.
Conjecture
(i) There is a 2-parameter family of complete SU(3)-invariant expanders on Λ2

−CP2 asymptotic
to a closed non-torsion free SU(3)-invariant G2-cone.

(ii) The set of possible asymptotic cones of complete SU(3)-invariant expanders on Λ2
−CP2

(with singular orbit type CP2
1 , ı.e. f1 → 0 as t → 0) is a proper connected open subset of the

2-dimensional space of all closed SU(3)-invariant G2-cones; it is bounded by those cones with
f1 = f2 or f1 = f3, i.e. cones that possess either of the two possible extra Z2-isometries that
differ from the extra asymptotic Z2-isometry present close to the singular orbit CP2

1 .

Corollary
There are two distinct complete AC SU(3)-invariant expanders on Λ2

−CP2 asymptotic to the
cone of the explicit SU(3)-invariant shrinker on Λ2

−CP2 constructed in Theorem Shrink1. They
differ by their singular orbit types: CP2

2 and CP2
3 (versus CP2

1 ).

⇒ In the SU(3)-invariant case we CAN ’flow through the singularity’: there is a ’weak solution’
to Laplacian flow obtained by using the explicit SU(3)-invariant AC shrinker for t < 0, the cone
for t = 0 and either of the two compatible AC expanders for t > 0.

We clearly don’t have a unique weak solution in this case.



Constructing invariant non-steady AC ends
The problem of constructing an invariant non-steady soliton AC end asymptotic to a given
closed invariant cone can be written as another singular initial value problem (SIVP) for the
first-order ODE system: this time the SIVP is irregular.

Theorem 1 For any λ 6= 0, ∃ a ! formal power series solution P in t−1 determined by the cone;
∃ a solution of the ODE system that is smooth in a nhd of t = +∞ and whose Taylor series is
P.

Theorem 2 For λ < 0, for each closed cone (c1, c2, c3) there is a unique AC shrinker defined
for large t asymptotic to the given cone.

⇒ invariant AC shrinker ends are rigid.

Theorem 3 Given λ > 0 and any closed cone (c1, c2, c3)

� ∃ a 2-parameter family of AC soliton ends asymptotic to the given cone.
� Difference between two solutions is of order exp(−λ6 t

2) ∗ polynomial.
� If c2 = c3, then a 1-parameter subfamily has f2 = f3.

Flow lines of this 4=(2+2)-parameter family of solutions fill an open subset of 5-dimensional
phase space. ⇒ invariant AC expander ends are stable.
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Closed invariant G2 cones
Helpful to analyse invariant G2-structures on R+ × Σ in terms of scale and homothety class of
invariant metrics on Σ:

scale g := 3
√
f1f2f3 = 6

√
vol(Σ)

homethety class
f1
g
,
f2
g
,
f3
g

ϕ closed and homothety class constant implies g linear and ϕ conical:

dϕ = 0 ⇒ dg

dt
=

1

6

(
f 21
g2

+
f 22
g2

+
f 23
g2

)
⇒ fi = ci t

with
6c1c2c3 = c21 + c22 + c23 . (∗)

Note: any positive triple (c1, c2, c3) can be uniquely rescaled to satisfy (∗)
 2-parameter family of closed conical G2-structures on R+ × SU(3)/T 2.

In other words: given a homothety class on Σ, there is a unique choice of “cone angle”
that makes it a closed cone.
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Understanding completeness

Q: Which of these invariant solitons extends to a complete AC solution?

Tendency:

If f1
g ,

f2
g ,

f3
g remain bounded as t →∞ then asymptotic to closed cone.

Rough strategy for finding AC solitons on Λ2
−M = M t R+×Σ.

1. Solutions on (0, ε)× Σ that extend smoothly across M at t = 0?

2. Solutions for large t asymptotic to prescribed closed cone (c1, c2, c3)?

3. Do solutions from 1 and 2 fit together?
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Comparison with other flows: the steady case

• All known steady solitons in Ricci flow have sub-Euclidean volume growth:
◦ the Bryant soliton; Appleton’s resolutions of (some of) its quotients.
◦ Bryant soliton known to appear in a finite-time singularity of RF.

◦ known Kähler examples have at most half-dimensional volume growth (Cao,
Conlon–Deruelle). Not seen in finite-time singular behaviour of KRF.

• Our steady AC G2 solitons most closely resemble Joyce-Lee-Tsui’s (JLT) translating solitons
in Lagrangian mean curvature flow (LMCF).

◦ Joyce conjectures JLT translating solitons can appear in finite-time singularities of LMCF if
Floer homology is obstructed.
◦ Speculate that our steady G2 solitons can also arise as finite-time singularities of Laplacian
flow on a compact 7-manifold.

(Our 2-parameter family of AC G2 expanders on Λ2
−CP2 resembles JLT’s family of exact

Maslov-zero LMCF expanders asymptotic to pairs of transverse Lagrangian 3-planes).
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Comparison with other flows: shrinkers
Ricci flow: One obvious significant difference: absence of compact shrinkers in G2 flow;
associated with positive curvature in RF, whereas scalar curvature is non-positive for closed
G2-structures.

General theory for noncompact complete shrinkers in RF is well-developed:

◦ their properties are a hybrid of those of positively curved Einstein manifolds and spaces with
non-negative Ricci, e.g. at most Euclidean volume growth.

◦ AC (gradient) shrinkers are extremely rigid–manifestation of parabolic backwards uniqueness
phenomenon, also seen in MCF.

◦ AC end behaviour of our (highly symmetric) G2 shrinkers some indication such strong rigidity
also holds for AC G2 (gradient?) shrinkers.

LMCF: self-shrinkers exist and do occur but not in the Maslov-zero (graded) setting. Q: Is
there any natural condition to impose in the G2 setting that would rule out our AC shrinkers on
Λ2
+S4 and Λ2

+CP2?

KRF: Feldman-Ilmanen-Knopf (FIK) constructed symmetric ALE Kähler shrinkers; simplest FIK
shrinker does appear as a finite-time blowup of KRF on 1-point blowup of CP2 and is
associated with blowing down the point.
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Expanders
Theorem (C)

For λ > 0, each ϕm extends to a complete solution with f2 = f3, and
fi
t
→ ci

for (c1, c2, c2) a closed cone with c1 ≤ c2. These expanders are all smoothly asymptotic with
rate −1 to a unique invariant closed G2-cone.

This gives 1-parameter families of expanders on both Λ2
−S4 and Λ2

−CP2.

Very Strong Expectation

� 1-1 correspondence with closed cones such that c1 < c2:

i.e. any closed cone with c2 = c3 on “one side” of the torsion-free cone ( 1
2 ,

1
2 ,

1
2 ) is the AC

end of a unique expander

Conjecture

For λ > 0, an open subfamily of ϕm,c (but not all) extend to complete solutions, defining a
2-parameter family of AC solitons on Λ2

−CP2.
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