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Introduction

G, solitons: self-similar solutions to Bryant's G, (closed) Laplacian flow.
Project: Find asymptotically conical (AC) G, solitons with cohomogeneity
one: SU(3)-invariant ones on A2 CP?; Sp(2)-invariant ones on A2 5*.

Theorem
I-parameter family of steady solitons on N2CP? asymptotic with rate —1 to
torsion-free cone (deformations of the Bryant-Salamon AC Gp-manifold).

Theorem
Explicit AC shrinker with rate —2 on N3.S* and N2.CP2.

Possible models for formation of conical singularities in Laplacian flow.

o Shrinkers are rare!
e AC steady solitons a new feature (compared to Ricci/Kahler-Ricci flow).

Theorem
1-parameter family of complete expanders on A\2.5* and on A3 CP2.

Models for how Laplacian flow can smooth out certain conical singularities.



Bryant’s Laplacian flow

Solve do;
Ead

with initial condition g satisfying dgpg = 0. (Then dy, = 0 for all t.)
m Stationary points are exactly torsion-free Gp-structures.

m Gradient flow for vol(¢p) restricted to cohomology class of ¢y.

® [nduced metric evolves by

s

i —2Ric(g:) + terms quadratic in torsion of ¢

Theorem (Bryant-Xu, Lotay-Wei)

Short-time existence and uniqueness.
Torsion-free Gy-structures are stable.

What is long term behaviour?? Expect singularities to form in finite time.
By analogy with other flows, expect solitons as models.



G, solitons

Gy-structure ¢, vector field X, A € R satisfying

dp = 0,
Ao = dp+ Lxo.
& self-similar solution of Laplacian flow

df _
dt

or = k(t)*F*p, k(t) 72X, k(t)

A > 0: expanders (immortal solutions)
A = 0: steady solitons (eternal solutions)
A < 0: shrinkers (ancient solutions)

m Non-steady soliton = ¢ exact
m Solitons on a compact manifold are stationary or expanders
® Scaling behaviour: (¢, X) is a A-soliton & (k3p, k=2X) is a k—2\-soliton.



Invariant G,-structures

Let M = CP? or S*.
A2.M has a cohomogeneity one action by G = SU(3) or Sp(2).
Complement in A2 M to zero section is Ry x ¥, for £ = SU(3)/T? or CP3.

There are wy,ws, w3 € Q3(X) and a € Q3(X) such that any closed
G-invariant Gy-structure on R} x ¥ with ||%|| =1 can be written as

¢ = (fFfw1 + ffws + ffws) A dt + Ahha, fi R, =R,
with
d(fifaf3)
dt
For Sp(2)-invariance in addition require f, = f3.

=3 (R +5+15)

Structure equations the same in both cases =
A2 5% case can be treated as a special case of A2CP? case where f, = f.



Closed G, cones

Helpful to analyse invariant G,-structures on R, X X in terms of scale and
homothety class of invariant metrics on ¥

scale g := v/ffhfs = ¢/vol(X)
h hf

)

homethety class =, =
g & &

¢ closed and homothety class constant implies g linear and ¢ conical:

w_L(% BB
dt 6

g2 g g2> - =t
with

6C1C2C3 = C12 + C22 + Cg. (*)
Note: any positive triple (c1, ¢z, ¢3) can be uniquely rescaled to satisfy (x)
~+ 2-parameter family of closed conical Gy-structures on R, x SU(3)/T2.

In other words, given homothety class on ¥, there is a unique choice of
“cone angle” to make a closed cone.



Evolution

On the face of it, the soliton condition for

9]
© = (fPwy + fPws + FFws) Adt + fifhfa, X = ums

is 2nd-order ODE system for (f1,f,f3,u) (with some constraints).
Can rewrite as a 1st-order system in 5 variables.

Tendency: if%, %,% bounded as t — oo then asymptotic to closed cone.

Rough strategy for finding AC solitons on /\il\/l = M U RyxX.
1. Solutions on (0,€) x X that extend smoothly across M at t = 07
2. Solutions for large t asymptotic to prescribed closed cone (c1, ¢z, ¢3)7

3. Do they fit together?

Picture for 1. is clearest.



Initial value problem

Understand solutions near zero section of /\2+IVI a la Eschenburg-Wang.
¢ = (ffwr + Fws + fFws) A dt + hhfa

on R, x ¥ extends to smooth Gp-structure on /\2 M iff f; is odd with
f/(0) =1, and £, and f;3 are even with m := £,(0 ) = f3(0) # 0.

Solve resulting singular initial value problem by power series.
Proposition
For each \ € R, there is

® 3 2-parameter family @, o of solutions defined for small t that extend
smoothly to a A-soliton on (neighbourhood of zero section in) NACP?;

m I-parameter subfamily @n, = pmgo also defines A-solitons on N.S*.
Two scale-invariant parameters: Am? and c.

So up to scale there are 2-parameter families of local expanders and
shrinkers on A2 CP?, and 1-parameter family of local steady solitons.



Expanders

Theorem
For A > 0, each ¢, extends to a complete solution with f, = f3, and

fl'.
— — C
t
for (¢1, &2, &2) a closed cone with ¢; < c,.
So this gives 1-parameter families of expanders on both /\iS4 and /\3_(CP2.

Expectations

- These solitons are all AC, with rate —2

- 1-1 correspondence with closed cones such that ¢; < c:
any closed cone with ¢c; = ¢3 on “one side” of the torsion-free cone
(%, %, %) is the AC end of a unique expander

Conjecture

For A > 0, an open subfamily of pm . (but not all) extend to complete

solutions, defining 2-parameter family of AC solitons on A2 CP?.



Stability /rigidity of AC ends

Given A > 0 and any closed cone (¢, ¢, ¢3), we expect:

- There is a 2-parameter family of solutions defined for large t asymptotic
to the given cone.

- Difference between two solutions is of order exp(—%t2) x polynomial.
- If ¢ = c3, then a 1-parameter subfamily has f, = f;.

Flow lines of this 4-parameter family of solutions fill open subset of
5-dimensional phase space, so AC expander ends are stable.

For A < 0, for each closed cone (cy, ¢, ¢3) there is a unique solution defined
for large t asymptotic to the given cone; shrinker ends are rigid.

(For A =0, only possible asymptotic cone is Bryant-Salamon cone
C1:C2:C3:%.)



Shrinkers: consequences of AC end rigidity

Heuristic for A < 0:

Invariant shrinkers on R x SU(3)/T? are flow lines in 5-dim phase space.
In 4-dimensional space of flow lines

® 2-dimensional submanifold extends across zero section CP? C A2 CP?
m 2-dimensional submanifold has AC behaviour

Expect transverse intersections ~~ finitely many AC shrinkers on /\i(CP2.

Similarly, restricting attention to solutions with f, = f3:

2-dimensional space of flow lines; 1-dim submanifold extends over special
orbit; 1-dim submanifold has AC behaviour.

Expect transverse intersections ~ finitely many AC shrinkers on A2 §*.
In fact, can spot one explicit solution! For A\ = —1

t 4t

_ 2 _ g2 _ 9 1,2 _

fl—ta f2_f3—z+zt, U—§+m

AC with rate —2 to cone (1,1, 1).



Steady solitons

Significant qualitative differences from \ # 0:

Near special orbit, only a 1-parameter family of solutions up to scale.
Unique one with f, = f3: static soliton from Bryant-Salamon AC G,-mfd.

Theorem
No non-stationary steady solitons on N\3.5*.

Decoupling

®m For A =0, the flow can be separated into evolution of scale g and
evolution of 4 scale-normalised variables.

m Unique fixed point for the scale-normalised flow is the torsion-free cone;
It is a stable fixed point.

Theorem

There exists a 1I-parameter family (up to scale) of AC steady solitons on
A2.CP? all asymptotic to the torsion-free cone over SU(3)/T?; the family
includes steady solitons with arbitrarily small torsion.



Comparison with other flows: the steady case

e All known steady solitons in Ricci flow have sub-Euclidean volume growth:
o the Bryant soliton; Appleton’s resolutions of (some of) its quotients.

o Bryant soliton known to appear in a finite-time singularity of RF.

o known Kahler examples have at most half-dimensional volume growth
(Cao, Conlon—Deruelle). Not seen in finite-time singular behaviour of KRF.

e Our steady AC G, solitons most closely resemble Joyce-Lee-Tsui's (JLT)
translating solitons in Lagrangian mean curvature flow (LMCF).

o Joyce conjectures JLT translating solitons can appear in finite-time
singularities of LMCF if Floer homology is obstructed.

o Speculate that our steady G; solitons can also arise as finite-time
singularities of Laplacian flow on a compact 7-manifold.

(Our 2-parameter family of AC G, expanders on /\iCP2 resembles JLT's
family of exact Maslov-zero LMCF expanders asymptotic to pairs of
transverse Lagrangian 3-planes).



Comparison with other flows: shrinkers

Ricci flow: One obvious significant difference: absence of compact shrinkers
in G, flow; associated with positive curvature in RF, whereas scalar
curvature is non-positive for closed G,-structures.

General theory for noncompact complete shrinkers in RF is well-developed:

o their properties are a hybrid of those of positively curved Einstein manifolds
and spaces with non-negative Ricci, e.g. at most Euclidean volume growth.
o AC (gradient) shrinkers are extremely rigid—manifestation of parabolic
backwards uniqueness phenomenon, also seen in MCF.

o AC end behaviour of our (highly symmetric) G, shrinkers some indication
such strong rigidity also holds for AC G, (gradient?) shrinkers.

LMCEF: self-shrinkers exist and do occur but not in the Maslov-zero
(graded) setting. Q: Is there any natural condition to impose in the G,
setting that would rule out our AC shrinkers on A2 5% and A2 CP??

KRF: Feldman-limanen-Knopf (FIK) constructed symmetric ALE Kahler
shrinkers; simplest FIK shrinker does appear as a finite-time blowup of KRF
on 1-point blowup of CP? and is associated with blowing down the point.



