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Introduction

G2 solitons: self-similar solutions to Bryant’s G2 (closed) Laplacian flow.

Project: Find asymptotically conical (AC) G2 solitons with cohomogeneity
one: SU(3)-invariant ones on Λ2

+CP2; Sp(2)-invariant ones on Λ2
+S

4.

Theorem
1-parameter family of steady solitons on Λ2

+CP2 asymptotic with rate −1 to
torsion-free cone (deformations of the Bryant-Salamon AC G2-manifold).

Theorem
Explicit AC shrinker with rate −2 on Λ2

+S
4 and Λ2

+CP2.

Possible models for formation of conical singularities in Laplacian flow.

• Shrinkers are rare!

• AC steady solitons a new feature (compared to Ricci/Kähler-Ricci flow).

Theorem
1-parameter family of complete expanders on Λ2

+S
4 and on Λ2

+CP2.

Models for how Laplacian flow can smooth out certain conical singularities.



Bryant’s Laplacian flow

Solve dϕt

dt
= ∆ϕtϕt

with initial condition ϕ0 satisfying dϕ0 = 0. (Then dϕt = 0 for all t.)

� Stationary points are exactly torsion-free G2-structures.

� Gradient flow for vol(ϕ) restricted to cohomology class of ϕ0.

� Induced metric evolves by

dgt
dt

= −2Ric(gt) + terms quadratic in torsion of ϕt

Theorem (Bryant-Xu, Lotay-Wei)

Short-time existence and uniqueness.
Torsion-free G2-structures are stable.

What is long term behaviour?? Expect singularities to form in finite time.
By analogy with other flows, expect solitons as models.



G2 solitons

G2-structure ϕ, vector field X , λ ∈ R satisfying{
dϕ = 0,

∆ϕϕ = λϕ+ LXϕ.

⇔ self-similar solution of Laplacian flow

ϕt = k(t)3f ∗ϕ,
df

dt
= k(t)−2X , k(t) =

3 + 2λt

3

λ > 0: expanders (immortal solutions)
λ = 0: steady solitons (eternal solutions)
λ < 0: shrinkers (ancient solutions)

� Non-steady soliton ⇒ ϕ exact

� Solitons on a compact manifold are stationary or expanders

� Scaling behaviour: (ϕ,X ) is a λ-soliton⇔ (k3ϕ, k−2X ) is a k−2λ-soliton.



Invariant G2-structures

Let M = CP2 or S4.
Λ2
+M has a cohomogeneity one action by G = SU(3) or Sp(2).

Complement in Λ2
+M to zero section is R+ × Σ, for Σ = SU(3)/T 2 or CP3.

There are ω1, ω2, ω3 ∈ Ω2(Σ) and α ∈ Ω3(Σ) such that any closed
G -invariant G2-structure on R+ × Σ with ‖ ∂∂t ‖ = 1 can be written as

ϕ = (f 21 ω1 + f 22 ω2 + f 23 ω3) ∧ dt + f1f2f3α, fi : R+ → R+

with
d(f1f2f3)

dt
= 1

2 (f 21 + f 22 + f 23 ).

For Sp(2)-invariance in addition require f2 = f3.

Structure equations the same in both cases ⇒
Λ2
+S

4 case can be treated as a special case of Λ2
+CP2 case where f2 = f3.



Closed G2 cones

Helpful to analyse invariant G2-structures on R+ × Σ in terms of scale and
homothety class of invariant metrics on Σ:

scale g := 3
√

f1f2f3 = 6
√
vol(Σ)

homethety class
f1
g
,
f2
g
,
f3
g

ϕ closed and homothety class constant implies g linear and ϕ conical:

dϕ = 0 ⇒ dg

dt
=

1

6

(
f 21
g2

+
f 22
g2

+
f 23
g2

)
⇒ fi = ci t

with
6c1c2c3 = c21 + c22 + c23 . (∗)

Note: any positive triple (c1, c2, c3) can be uniquely rescaled to satisfy (∗)
 2-parameter family of closed conical G2-structures on R+ × SU(3)/T 2.

In other words, given homothety class on Σ, there is a unique choice of
“cone angle” to make a closed cone.



Evolution

On the face of it, the soliton condition for

ϕ = (f 21 ω1 + f 22 ω2 + f 23 ω3) ∧ dt + f1f2f3α, X = u
∂

∂t

is 2nd-order ODE system for (f1,f2,f3,u) (with some constraints).
Can rewrite as a 1st-order system in 5 variables.

Tendency: if f1
g ,

f2
g ,

f3
g bounded as t →∞ then asymptotic to closed cone.

Rough strategy for finding AC solitons on Λ2
+M = M t R+×Σ.

1. Solutions on (0, ε)× Σ that extend smoothly across M at t = 0?

2. Solutions for large t asymptotic to prescribed closed cone (c1, c2, c3)?

3. Do they fit together?

Picture for 1. is clearest.



Initial value problem

Understand solutions near zero section of Λ2
+M à la Eschenburg-Wang.

ϕ = (f 21 ω1 + f 22 ω2 + f 23 ω3) ∧ dt + f1f2f3α

on R+ × Σ extends to smooth G2-structure on Λ2
+M iff f1 is odd with

f ′1 (0) = 1, and f2 and f3 are even with m := f2(0) = f3(0) 6= 0.

Solve resulting singular initial value problem by power series.

Proposition

For each λ ∈ R, there is

� a 2-parameter family ϕm,c of solutions defined for small t that extend
smoothly to a λ-soliton on (neighbourhood of zero section in) Λ2

+CP2;

� 1-parameter subfamily ϕm = ϕm,0 also defines λ-solitons on Λ2
+S

4.

Two scale-invariant parameters: λm2 and c .
So up to scale there are 2-parameter families of local expanders and
shrinkers on Λ2

+CP2, and 1-parameter family of local steady solitons.



Expanders

Theorem
For λ > 0, each ϕm extends to a complete solution with f2 = f3, and

fi
t
→ ci

for (c1, c2, c2) a closed cone with c1 ≤ c2.

So this gives 1-parameter families of expanders on both Λ2
+S

4 and Λ2
+CP2.

Expectations

- These solitons are all AC, with rate −2

- 1-1 correspondence with closed cones such that c1 < c2:
any closed cone with c2 = c3 on “one side” of the torsion-free cone
( 1
2 ,

1
2 ,

1
2 ) is the AC end of a unique expander

Conjecture

For λ > 0, an open subfamily of ϕm,c (but not all) extend to complete
solutions, defining 2-parameter family of AC solitons on Λ2

+CP2.



Stability/rigidity of AC ends

Given λ > 0 and any closed cone (c1, c2, c3), we expect:

- There is a 2-parameter family of solutions defined for large t asymptotic
to the given cone.

- Difference between two solutions is of order exp(−λ6 t
2) ∗ polynomial.

- If c2 = c3, then a 1-parameter subfamily has f2 = f3.

Flow lines of this 4-parameter family of solutions fill open subset of
5-dimensional phase space, so AC expander ends are stable.

For λ < 0, for each closed cone (c1, c2, c3) there is a unique solution defined
for large t asymptotic to the given cone; shrinker ends are rigid.

(For λ = 0, only possible asymptotic cone is Bryant-Salamon cone
c1 = c2 = c3 = 1

2 .)



Shrinkers: consequences of AC end rigidity

Heuristic for λ < 0:

Invariant shrinkers on R+ × SU(3)/T 2 are flow lines in 5-dim phase space.
In 4-dimensional space of flow lines
� 2-dimensional submanifold extends across zero section CP2 ⊂ Λ2

+CP2

� 2-dimensional submanifold has AC behaviour

Expect transverse intersections  finitely many AC shrinkers on Λ2
+CP2.

Similarly, restricting attention to solutions with f2 = f3:

2-dimensional space of flow lines; 1-dim submanifold extends over special
orbit; 1-dim submanifold has AC behaviour.

Expect transverse intersections  finitely many AC shrinkers on Λ2
+S

4.

In fact, can spot one explicit solution! For λ = −1

f1 = t, f 22 = f 23 = 9
4 + 1

4 t
2, u =

t

3
+

4t

9 + t2
.

AC with rate −2 to cone (1, 12 ,
1
2 ).



Steady solitons

Significant qualitative differences from λ 6= 0:

Near special orbit, only a 1-parameter family of solutions up to scale.
Unique one with f2 = f3: static soliton from Bryant-Salamon AC G2-mfd.

Theorem
No non-stationary steady solitons on Λ2

+S
4.

Decoupling

� For λ = 0, the flow can be separated into evolution of scale g and
evolution of 4 scale-normalised variables.

� Unique fixed point for the scale-normalised flow is the torsion-free cone;
It is a stable fixed point.

Theorem
There exists a 1-parameter family (up to scale) of AC steady solitons on
Λ2
+CP2 all asymptotic to the torsion-free cone over SU(3)/T 2; the family

includes steady solitons with arbitrarily small torsion.



Comparison with other flows: the steady case

• All known steady solitons in Ricci flow have sub-Euclidean volume growth:
◦ the Bryant soliton; Appleton’s resolutions of (some of) its quotients.
◦ Bryant soliton known to appear in a finite-time singularity of RF.

◦ known Kähler examples have at most half-dimensional volume growth
(Cao, Conlon–Deruelle). Not seen in finite-time singular behaviour of KRF.

• Our steady AC G2 solitons most closely resemble Joyce-Lee-Tsui’s (JLT)
translating solitons in Lagrangian mean curvature flow (LMCF).

◦ Joyce conjectures JLT translating solitons can appear in finite-time
singularities of LMCF if Floer homology is obstructed.
◦ Speculate that our steady G2 solitons can also arise as finite-time
singularities of Laplacian flow on a compact 7-manifold.

(Our 2-parameter family of AC G2 expanders on Λ2
+CP2 resembles JLT’s

family of exact Maslov-zero LMCF expanders asymptotic to pairs of
transverse Lagrangian 3-planes).



Comparison with other flows: shrinkers

Ricci flow: One obvious significant difference: absence of compact shrinkers
in G2 flow; associated with positive curvature in RF, whereas scalar
curvature is non-positive for closed G2-structures.

General theory for noncompact complete shrinkers in RF is well-developed:

◦ their properties are a hybrid of those of positively curved Einstein manifolds
and spaces with non-negative Ricci, e.g. at most Euclidean volume growth.

◦ AC (gradient) shrinkers are extremely rigid–manifestation of parabolic
backwards uniqueness phenomenon, also seen in MCF.

◦ AC end behaviour of our (highly symmetric) G2 shrinkers some indication
such strong rigidity also holds for AC G2 (gradient?) shrinkers.

LMCF: self-shrinkers exist and do occur but not in the Maslov-zero
(graded) setting. Q: Is there any natural condition to impose in the G2

setting that would rule out our AC shrinkers on Λ2
+S

4 and Λ2
+CP2?

KRF: Feldman-Ilmanen-Knopf (FIK) constructed symmetric ALE Kähler
shrinkers; simplest FIK shrinker does appear as a finite-time blowup of KRF
on 1-point blowup of CP2 and is associated with blowing down the point.


