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Wolf spaces 1/24

These are the Riemannian symmetric spaces with a
quaternionic structure. One for each simple compact Lie group
G parametrizes subalgebras associated to a highest root in g .

Given a compact simple Lie algebra g, fix such a “minimal”
subalgebra su(2) = sp(1) . The Wolf space is

M =
G
H

,

where H = N(sp(1)) = {g ∈ G : Ad(g)(sp(1)) = sp(1)} .

If G is centreless, the linear holonomy group is

H = KSp(1) ⊆ Sp(n)Sp(1).
Each tangent space ToM ∼= Hn ⊗H has dimension 4n, and
admits almost complex structures I, J, K, no preferred choice.



Families 2/24

Two 4-dimensional examples

S4 =
SO(5)
SO(4)

=
Sp(2)

SU(2)×SU(2)

P2 = CP2 =
SU(3)/Z3

U(2)
=

SU(3)
U(1)×SU(2)

.

branch out into three classical families of 4n-manifolds.

HPn =
Sp(n+1)

Sp(n)×Sp(1)

Gr2(Cn+2) =
SU(n+2)

S(U(n)×U(2))

Gr4(Rn+4) =
SO(n+4)

SO(n)×SO(4)
.

The exceptional Lie groups G2, F4, E6, E7, E8 give Wolf spaces of
quaternionic dimension n = 2, 7, 10, 16, 28.
Only Gr2(Cn+2) (= Gr4(R6) if n = 2) has b2 > 0. The others
admit no almost complex structure even stably [GMS].



Reduced holonomy 3/24

A quaternion-Kähler (QK) manifold is a Riemannian manifold M
of dimension 4n > 8 with holonomy

H ⊆ Sp(n)Sp(1)
and not Ricci-flat. There is equality unless M is locally
isometric to a symmetric space other than HPn .

A QK manifold is Einstein, so there is a dichotomy: s < 0,
0 < s . Positive QK manifolds are “nearly hyperkähler” but
only the 4-form

Ω =
3∑

i=1
ωi ∧ωi

is well defined. Sp(n)Sp(1) is the only member of Berger’s list
for which the existence of compact examples with ∇R 6≡ 0 is
open, though there are new complete examples with s < 0
constructed via Hessian metrics [Cortés et al].
We’ll asssume that M is compact QK with s > 0 from now on.



Twistor space 4/24

The holonomy reduction equips each tangent space TmM with
a 2-sphere

Zm = {aI + bJ + cK : a2+b2+c2 = 1}
of almost complex structures. The associated bundle Z over M
is a complex manifold in which each fibre is a rational curve.

If M has positive scalar curvature, Z is Kähler-Einstein; its
2-form ω is the curvature of an ample line bundle L such that
L |Zm ∼= O(2) .

The twistor space Z is locally a C∗ quotient of a hyperkähler
manifold U, with fibre T∗P1 over M, mimicking

U ⊂ Hn+1/Z2
↓

P2n+1

↓
HPn.



Holomorphic contact structure 5/24

The symplectic form ω2 + iω3 on U induces a short exact
sequence

0→ D→ TZ θ−→ L→ 0,

for which θ ∈ H0(Z, T∗Z⊗ L) satisfies

0 6= θ∧ (dθ)n ∈ H0(Z, κ ⊗ Ln+1).

This defines a complex contact structure, and κ ∼= Ln+1 .

Locally, D ∼= L1/2 ⊗ π∗E, where E is the instanton bundle with
fibre Hn and Ωj

i ∈
⋂
Λ1,1 . Thus D ∼= D∗ ⊗ L, and if z ∈ Z is a

fixed point of a torus action then

Lz ⊗ T∗
z Z ∼= C+ Dz

defines a “compass” of weights (0,ν1,ν−ν1, . . . ,νn,ν−νn) .



Homogeneous contact manifolds 6/24

When M4n is a Wolf space,

Z =
G

KU(1)
↓
G

KSp(1)
= M.

The twistor space Z can be described as
I a minimal adjoint orbit in g;
I a closed nilpotent orbit in P(g∗c ) with L ∼= ι∗O(1) .

All homogeneous complex contact manifolds arise in this way.

Another TDS su(2) ⊂ g will give rise to an open nilpotent
coadjoint orbit U and an incomplete QK space U/H∗ . E.g.,

P({A ∈ SL(3,C) : A3 = 0, A2 6= 0})
is a Z3 quotient of Z(G2/SO(4) \ P2) [BK, “shared orbits”].



Fano twistor spaces 7/24

The classical twistor spaces of complex dimension 2n + 1 are

ZHPn = P2n+1

ZGr2(Cn+2) = P(T∗Pn+1)

ZGr4(Rn+4) = Gr(P1,Qn+2).

I P2n+1 has index 2n + 2 because L = O(2) . Recall that a
Fano manifold of index 2n + 2 must be Pn or a quadric
Qn ⊂ Pn+1 [Kobayashi-Ochiai].

I P(T∗Pn+1) has b2 = 2. Any twistor space Z with b2 > 1
admits a contraction Z→ Pn+1 with fibres tangent to D
[Wiśniewski].

I Gr(P1,Qn+2) parametrizes lines on the quadric. It has
b2 = 1 and Pic = Z · L for n > 2.



Fano contact manifolds 8/24

Let Z2n+1 be a contact manifold with L ample.

Theorem [LeBrun]. A Fano contact manifold Z is a QK twistor
space if (and only if) Z admits a Kähler-Einstein metric.

Z is homogeneous iff it is the twistor space of a Wolf space.
The KE metric is not really used in any of the classification
results. Unless Z=P2n+1 ,

H0(Z, TZ)
∼=−→ H0(Z, L)

is the space of infinitesimal contact automorphisms, known to
be non-zero if n 6 4:

n 1 2 3 4 5 · · ·
h0(L) > 4 6 5 8 ?



Narrowing the field 9/24

One approach is to analyse the meromorphic map

µ : Z −→ P(H0(Z, L)∗),
try to prove that B = ∅ and construct a ladder of polarized
varieties (Zi, L) for i < n . This works for n = 2. Moreover, a
Fano contact manifold Z2n+1 is homogeneous if µ is
generically finite [Beauville].

Theorem [LeBrun-S]. There are finitely many Fano contact
manifolds in each dimension. If b2(Z) > 1 then Z ∼= P(T∗Pn+1) .

From now on, we may therefore assume that b2(Z) = 1.

Theorem [Buczyński-Wiśniewski-Weber]. A Fano contact
manifold is necessarily homogeneous if Aut Z is reductive
of rank at least n − 2, in particular if n = 3 or 4.



Isometry rank 10/24

Let M4n denote a complete QK manifold with s > 0.

Theorem [Besse, Poon-S, BWW]. M4n is a Wolf space if n 6 4,
i.e. one of eleven: HPn or Gr2(Cn+2) for n = 1, 2, 3, 4,
Gr4(Rn+4) for n = 3, 4,
or G2/SO(4) .

The table shows the lower bound on the isometry rank
currently needed to infer that M4n is symmetric:

n→ 3 4 5 6 7 8 9 10 11 12 13 14 15

BWW 1 2 3 4 5 6 7 8 9 10 11 12 13
Fang 5 5 6 6 7 7 8 8 9 9 10 10 11

Bielawski 4 5 6 7 8 9 10 11 12 13 14 15 16



Part two 11/24

From now on, we suppose that Z2n+1 is a Fano contact manifold
with Pic Z = Z · L, and that Aut G is reductive with a maximal
torus T = (C∗)r .

This places one in the realm of T-varieties with relatively high
complexity 2n + 1 − r, but simplifications arise from the contact
structure TZ/D ∼= L and the isomorphism H0(Z, L) ∼= g .

In any case, it is often useful to extend the toric case to study
downgrading, i.e. the action of a lower-dimensional torus.

Buczyński, Wiśniewski and Weber use Białynicki-Birula’s
decomposition [BB 1973, Carrell] and localization formulae to
analyse the action of complex tori on Z . A special role is played
by fixed points that define an extreme weight or vertex.

Subsequent slides highlight a selection of their results.



Torus actions and polytopes 12/24

We suppose that Z2n+1 is a Fano contact manifold, Pic Z = Z · L,
and that Aut G is reductive with maximal T = (C∗)r . The latter
will have fixed components Yi ⊂ Z, points if we’re lucky.

This set-up gives rise to two polytopes in t∗ :
I Γ(L), the convex hull of the weights of T on H0(Z, L) . If

Lm is very ample then Γ(Lm) is Kostant’s polytope, the
projection of an adjoint orbit to Rr .

I ∆(L), the convex hull of the weights λ of T on Ly for
y ∈ Yi . It is the image of the abelian moment mapping
[Guillemin-Sternberg, Atiyah, Brion,. . . ].

∆(Lm) merely scales with m . One always has Γ(L) ⊆ ∆(L),
equality if (for example) B = ∅ . For a twistor space, λ is a
“rotation index” on the fibre S2 3 y . The shape of ∆(L) at a
vertex is determined by the compass of weights at y .



Weight cone 13/24

Consider the example of ZP2 = SU(3)/T2 = F :
Γ(L2) is generated by the 27 weights of H0(F, L2);
∆(L2) is generated the action of T2 at the 6 fixed points.

A similar picture describes a hypothetical action by SU(3) on a
singular Fano 5-fold Z5 ⊂ Q2 ∩ C3 ⊂ P7 .



Extremal fixed points 14/24

We suppose that Z2n+1 is a Fano contact manifold, Pic Z = Z · L,
and that Aut G is reductive with maximal T = (C∗)r .

Corollary 3.8 [BWW]. If every extremal component Y ⊂ ZH has
dimension at most 3 then Γ(L) = ∆(L) .

Proof. The key point is that the restriction

H0(Z, L)→ H0(Y, L |Y)
is surjective:

I If Y is a point it is the source of a C∗ action and ∃X ∈ |L|
such that X ∩ Y = ∅ .

I If not, Y is Fano, h0(L |Y) > 2, and any holomorphic
section s of L|Y extends to ŝ ∈ H0(Z, L) with weight λ
matching the action on L | y .

These conclusions are based on the BB-decomposition or
similar techniques. �

Moreover, each vertex gives rise to a unique fixed point
component.



The rank 15/24

As a consequence:

Lemma 4.7 [BWW]. If r > n − 2 then Γ(L) = ∆(L) and all
extremal fixed point components are isolated points.

Proof. Construct a chain of i-dimensional faces of ∆(L) that
determine subtori

T = Tr ) Tr−1 ) · · · ) T1

and extremal fixed-point components

Y0 ( Y1 ( · · · ( Yr−1

(with Yi ⊂ ZTr−i ) of increasing dimensions. The last is isotropic,
so

dim Yr−1 6 1
2 dim D = n ⇒ dim Y0 6 3.

Moreover, h0(Y0, L|Y0) is the multiplicity of a root in g, i.e. 1,
which forces Y to be a point. �



The automorphism group 16/24

Proposition 4.8 [BWW]. If r > n − 2 then G is simple.

Proof. We know that Γ(L) = ∆(L) . The former arises from the
roots of g . The latter spans the same dimension as ∆(Lm), i.e. r
(if Lm is very ample), so G is semisimple.

If (for example) G = G1 × G2 then ∆(L) = Conv〈R1 ∪ R2〉
contains vertices u1, u2 and (unless G1, G2 are of type A1, C),
u2 − u1 must be a weight for the action of H on D∗

y . But then so
is −u1 implying that u1 − au2 ∈ ∆(L) with a > 0, contradiction.

A refined argument is needed for the other cases in which
1
2(u1 + u2) lies in the root lattice. �

From now on, we assume that r > n − 2.



Eliminating E and F 17/24

If Z = ZM is a twistor space, then the maximal torus T will fix
m ∈M and so T ⊂ Sp(n)Sp(1) . Thus r 6 n + 1 = rank(HPn) .
We assume n − 2 6 r , so that Γ(L) = ∆(L), extreme fixed points
are isolated and G = Aut Z is simple.

Lemma. If G is one of F4, E6, E7, E8, then dim Z = 2n + 1 is at
least that of the homogeneous space, contrary to assumption:

G→ F4 E6 E7 E8

n > 7 10 16 28

Proof. The (odd) complex dimension of Z
exceeds the number of edges emanating
from a vertex of the root polytope Γ(L) .
That suffices for Er . For F4 one needs
to add interior pointing arrows to 6 short
roots and the origin:



The case of Sp(n)=Cn 18/24

Illustrated for n = 2:

Midpoints of edges are also roots for this group, and each is the
image of a P2 (rather than a P1 ). But this would imply a weight
vector in TzZ exiting the “contact domain”, contradiction.



A model for Z7 19/24

T3 acts on R7 = R2⊕R2⊕R2⊕R and on ZGr4(R7) . In the root
polytope for SO(7) = B3, there are 12 fixed points, all extreme:

Let T2 be a subtorus with LA orthogonal to a long diagonal.



Reduction to G2 20/24

The resulting moment map is the diagram for both the action of
G2 on Gr(P1,Q5), and on a hypothetical non-homogeneous Z7 .
Arrows represent weights on T∗

y Z at an extreme fixed point y
with target within the diamond-shaped contact domain.



The inner compass 21/24

This time the arrows represent weights on TxZ at an inner fixed
point x, and they all have multiplicity 1. One deduces that
there is again a unique fixed point for each such weight, exactly
as in the homogeneous case, and none at the origin.



Localization 22/24

For an arbitrary G2 action on Z7, the fixed points and their
compass weights are all completely determined.

In general, suppose that (Z, L) is a polarized variety acted
upon by T = (C∗)r, such that:

I T has isolated fixed points y1, . . . , yk ,
I λi is the weight on Lyi as used to define ∆(L) ,
I νi,j are the weights on TyiZ .

Theorem [Atiyah-Bott]. Given a weight λ = (a1, . . . , ar), set

tλ =
r∏

k=1
tak
k . Then χT(Z, L) =

k∑
i=1

tλi∏
j
(1 − tνi,j)

.

When (Z, L) is Fano, this equivariant Euler characteristic yields
H0(Z, L) as a T -module.



G2 acting on Z7 23/24

For G2 acting on a Fano contact 7-fold Z, the fixed points and
the weights (λi,νi,j) are all completely determined from the
diagram within the polytope Γ(L) = ∆(L) . Localization yields

Conclusion. The character of H0(Z, L) ∼= g2 equals

1
s3t2

[
1 + t + 2st + 2s2t + s3t + 2s2t2 + 3s3t2

+2s4t2 + s3t3 + 2s4t3 + 2s5t3 + s6t3 + s6t4
]
.

Setting s = t = 1 gives h0(L) = 21, contradiction!

In fact, the numerical data coincides with that for the action of
G2 ⊂SO(7) on ZGr(P1,Q5). The case Aut Z7 ∼= SU(3) is
similar, though for Z9 more work is needed to eliminate the
possibility of fixed-point components of dimension 1.
Analysis of groups of type A, B, D remains!



What next? 24/24

I Interpret the fixed point analysis by means of Morse
theory directly on the QK manifold M .

I It is conceivable that H0(Z, L) is non-zero for higher
dimensional Fano contact manifolds using as yet unknown
inequalities on characteristic numbers, as in the
hyperkähler case.

I But a simple group with r > 3 on Z11 requires h0(L) > 15,
which seems out of reach.

I Do all Fano contact manifolds admit a Kähler-Einstein
metric?


