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Wolf spaces 1/24

These are the Riemannian symmetric spaces with a
quaternionic structure. One for each simple compact Lie group
G parametrizes subalgebras associated to a highest root in g.

Given a compact simple Lie algebra g, fix such a “minimal”
subalgebra su(2) = sp(1). The Wolf space is

G
M==,
H

where H = N(sp(1)) ={g € G: Ad(g)(sp(1)) =sp(1)}.
If G is centreless, the linear holonomy group is
H = KSp(1) C Sp(n)Sp(1).

Each tangent space T,M = H" ® H has dimension 471, and
admits almost complex structures I, ], K, no preferred choice.



Families 2/24

Two 4-dimensional examples

g4 _ S0(5) _ S5p(2)
N SO( ) T Su(2)xSu(2)
2 SUB)/Zs _ _ SU(3)
P? = CP U(Z) T Uu(1)xsu(2)”

branch out into three classical families of 4n-manifolds.

HPH _ 5P(”+1)

= Soxsp@
ne2y . SU(m+2)
Gr,(C"*) = S(U(n)xU(2))
n+4 _ SOl
Gry(R"™™) = S5t xso@”

The exceptional Lie groups G», F4, E¢, E7, Eg give Wolf spaces of
quaternionic dimension n =2, 7, 10, 16, 28.

Only Gr,(C"*2) (= Gry(R®) if n = 2) has b, > 0. The others
admit no almost complex structure even stably [GMS].



Reduced holonomy 3/24

A quaternion-Kihler (QK) manifold is a Riemannian manifold M
of dimension 4n > 8 with holonomy

H C Sp(n)Sp(1)

and not Ricci-flat. There is equality unless M is locally
isometric to a symmetric space other than HP".

A QK manifold is Einstein, so there is a dichotomy: s < 0,
0 < s. Positive QK manifolds are “nearly hyperkdhler” but
only the 4-form
3
Q= Z w; AN w;
i=1
is well defined. Sp(n)Sp(1) is the only member of Berger’s list
for which the existence of compact examples with VR # 0 is
open, though there are new complete examples with s < 0
constructed via Hessian metrics [Cortés et al].

We’ll asssume that M is compact QK with s > 0 from now on.



Twistor space 4/24

The holonomy reduction equips each tangent space T,,M with
a 2-sphere

Zm ={al +b] + cK : a®+b*+c% =1}

of almost complex structures. The associated bundle Z over M
is a complex manifold in which each fibre is a rational curve.

If M has positive scalar curvature, Z is Kdhler-Einstein; its
2-form w is the curvature of an ample line bundle L such that
L|Z, = 0(2).

The twistor space Z is locally a C* quotient of a hyperkéahler
manifold U, with fibre T*P! over M, mimicking

u c H++l/z,
l

PZn—O—l

0
HP".



Holomorphic contact structure 5/24

The symplectic form w; + iw3 on U induces a short exact
sequence

0-D-TZ-5 L0,

for which 8 € H(Z, T*Z ® L) satisfies
0£0A(de)" e H(Z, K ® L").

This defines a complex contact structure, and K = R

Locally, D = LV 2 @ m*E, where E is the instanton bundle with
fibre H" and Q) € NAY. Thus D=D*®L, andifz € Z isa
fixed point of a torus action then

L,®T;Z=C+D;,

defines a “compass” of weights (0, Vi, V—v1,...,Vy, V—Vy).



Homogeneous contact manifolds 6/24

When M*" is a Wolf space,

Z = C

KU(1)
i
G

KSp(1)

The twistor space Z can be described as

» a minimal adjoint orbit in g;

» a closed nilpotent orbit in P(g}) with L = *O(1).
All homogeneous complex contact manifolds arise in this way.
Another TDS su(2) C g will give rise to an open nilpotent
coadjoint orbit U and an incomplete QK space U/H*. E.g.,

P{A € SL(3,C) : A3 =0, A2 #£0))

is a Z3 quotient of Z(G,/SO(4) \ P?) [BK, “shared orbits”].



Fano twistor spaces 7/24

The classical twistor spaces of complex dimension 21 + 1 are
7 HP" = P2n+1
ZGrz(Cn+2) — P(T*Pwrl)
ZGr4(Rn+4) — Gr(PllefZ).

» P2+l hasindex 2n + 2 because L = O(2). Recall that a
Fano manifold of index 2n 4 2 must be P" or a quadric
Q" c P"*! [Kobayashi-Ochiai].

» P(T*P"*1) has by = 2. Any twistor space Z with b, > 1
admits a contraction Z — P"*! with fibres tangent to D
[Wisniewski].

» Gr(P!,Q"t2) parametrizes lines on the quadric. It has
b =1and Pic=2Z-L forn > 2.



Fano contact manifolds 8/24

Let Z?'*! be a contact manifold with L ample.

Theorem [LeBrun]. A Fano contact manifold Z is a QK twistor
space if (and only if) Z admits a Kdhler-Einstein metric.

Z is homogeneous iff it is the twistor space of a Wolf space.

The KE metric is not really used in any of the classification
results. Unless Z=P?"+1,

H(Z,TZ) = H(Z,L)
is the space of infinitesimal contact automorphisms, known to
be non-zero if n < 4:




Narrowing the field 9/24

One approach is to analyse the meromorphic map

w: Z — P(H(Z,L)"),
try to prove that B = @ and construct a ladder of polarized
varieties (Z!,L) for i < n. This works for n = 2. Moreover, a

Fano contact manifold Z2**! is homogeneous if p is
generically finite [Beauville].

Theorem [LeBrun-S]. There are finitely many Fano contact
manifolds in each dimension. If by(Z) > 1 then Z = P(T*P"+1).

From now on, we may therefore assume that b>(Z) = 1.

Theorem [Buczyniski-Wisniewski-Weber]. A Fano contact
manifold is necessarily homogeneous if AutZ is reductive
of rank at least n — 2, in particular if n = 3 or 4.




Isometry rank

Let M*" denote a complete QK manifold with s > 0.

10/24

Theorem [Besse, Poon-S, BWW]. M*" is a Wolf space if n < 4,

i.e. one of eleven: HP" or GrZ(C”*Z) forn=1,2,3,4,

Gry(R"™) for n = 3,4,
or G,/SO(4).

The table shows the lower bound on the isometry rank

currently needed to infer that M*" is symmetric:

n— ‘ 34567 8 9 10 11 12 13 14 15
BWW |1 2 3 456 7 8 9 10 11 12 13
Fang |5 56 6 77 8 8 9 9 10 10 11

Bielawski [4 5 6 7 8 9 10 11 12 13 14 15 16



Part two 11/24

From now on, we suppose that Z?"*1 is a Fano contact manifold
with PicZ = Z - L, and that AutG is reductive with a maximal
torus T = (C*)".

This places one in the realm of T-varieties with relatively high
complexity 2n + 1 — r, but simplifications arise from the contact
structure TZ/D = L and the isomorphism HY(Z,L) = g.

In any case, it is often useful to extend the toric case to study
downgrading, i.e. the action of a lower-dimensional torus.

Buczynski, Wisniewski and Weber use Biatynicki-Birula’s
decomposition [BB 1973, Carrell] and localization formulae to
analyse the action of complex tori on Z. A special role is played
by fixed points that define an extreme weight or vertex.

Subsequent slides highlight a selection of their results.



Torus actions and polytopes 12/24

We suppose that Z2**! is a Fano contact manifold, PicZ =7 - L,
and that AutG is reductive with maximal T = (C*)". The latter
will have fixed components Y; C Z, points if we’re lucky.

This set-up gives rise to two polytopes in t*:

» T'(L), the convex hull of the weights of T on H°(Z,L). If
L™ is very ample then I'(L"™) is Kostant’s polytope, the
projection of an adjoint orbit to R”.

» A(L), the convex hull of the weights A of T on L, for
y € Y;. It is the image of the abelian moment mapping
[Guillemin-Sternberg, Atiyah, Brion,...].

A(L™) merely scales with m. One always has I'(L) € A(L),
equality if (for example) B = @. For a twistor space, A is a

“rotation index” on the fibre S? > y. The shape of A(L) ata
vertex is determined by the compass of weights at y.



Weight cone 13/24

Consider the example of ZP?> = SU(3)/T?> =TF :
I'(L?) is generated by the 27 weights of HO(F,L12);
A(L?) is generated the action of T2 at the 6 fixed points.

A similar picture describes a hypothetical action by SU(3) on a
singular Fano 5-fold 7> CcQnCy .



Extremal fixed points 14/24

We suppose that Z2"*1 is a Fano contact manifold, PicZ =7 - L,
and that AutG is reductive with maximal T = (C*)".

Corollary 3.8 [BWW]. If every extremal component Y C ZH has
dimension at most 3 then I'(L) = A(L).

Proof. The key point is that the restriction
H°Z, L) — H(Y,L|Y)
is surjective:
» If Y is a point it is the source of a C* action and 3 X € |L|
suchthat XNY =g.

» Ifnot, Y is Fano, h°(L|Y) > 2, and any holomorphic
section s of L|Y extends to s € H(Z, L) with weight A
matching the action on L|y.

These conclusions are based on the BB-decomposition or
similar techniques. [J



The rank 15/24

As a consequence:

Lemma 4.7 [BWW]. If r > n — 2 then I'(L) = A(L) and all
extremal fixed point components are isolated points.

Proof. Construct a chain of i-dimensional faces of A(L) that
determine subtori
T=T"2T"'!2...2T
and extremal fixed-point components
Yocylc...cy-!
(with Y; ¢ ZTri) of increasing dimensions. The last is isotropic,

SO
dimY ! < jdimD=#n = dimY° <3.

Moreover, hi°(Y?, L|yo) is the multiplicity of arootin g, i.e. 1,
which forces Y to be a point. [



The automorphism group 16/24

Proposition 4.8 [BWW]. If r > n — 2 then G is simple.

Proof. We know that I'(L) = A(L). The former arises from the
roots of g. The latter spans the same dimension as A(L™), i.e. r
(if L™ is very ample), so G is semisimple.

If (for example) G = G; x Gy then A(L) = Conv(R; U Ryp)
contains vertices 11,1y and (unless G, G, are of type Ay, C),

uy — up must be a weight for the action of H on D;. But then so
is —u; implying that u; —aup; € A(L) with a > 0, contradiction.

A refined argument is needed for the other cases in which
%(ul + uy) lies in the root lattice. [

From now on, we assume that r > n — 2.



Eliminating E and F 17/24

If Z =ZM is a twistor space, then the maximal torus T will fix
me Mandso T C Sp(n)Sp(1). Thus r < n+ 1 = rank(HP").

We assume n — 2 < r, so that I'(L) = A(L), extreme fixed points
are isolated and G = AutZ is simple.

Lemma. If G is one of Fy, E¢, E7, Eg, then dim Z = 2n + 1 is at
least that of the homogeneous space, contrary to assumption:

G—>HF4‘E6‘E7‘E8‘
n>H7\10\16\28\

Proof. The (odd) complex dimension of Z
exceeds the number of edges emanating
from a vertex of the root polytope I'(L).
That suffices for E,. For F; one needs
to add interior pointing arrows to 6 short
roots and the origin:




The case of Sp(n)=C, 18/24

Illustrated for n = 2:

Midpoints of edges are also roots for this group, and each is the
image of a P? (rather than a P!). But this would imply a weight
vector in T,Z exiting the “contact domain”, contradiction.



A model for Z7 19/24

T3 actson R” =R?®R?*®R*® R and on Z (Gr4(R7). In the root
polytope for SO(7) = Bs, there are 12 fixed points, all extreme:

Let T? be a subtorus with LA orthogonal to a long diagonal.



Reduction to G, 20/24

The resulting moment map is the diagram for both the action of
Gy on Gr(P!,Q°), and on a hypothetical non-homogeneous Z’ .
Arrows represent weights on T;Z at an extreme fixed point y
with target within the diamond-shaped contact domain.



The inner compass 21/24

This time the arrows represent weights on TyZ at an inner fixed
point x, and they all have multiplicity 1. One deduces that
there is again a unique fixed point for each such weight, exactly
as in the homogeneous case, and none at the origin.



Localization 22 /24

For an arbitrary G, action on 77 the fixed points and their
compass weights are all completely determined.

In general, suppose that (Z,L) is a polarized variety acted
upon by T = (C*)’, such that:

» T has isolated fixed points v, ..., vk,

> ), is the weight on L, as used to define A(L),

> v;; are the weights on T, Z.
Theorem [Atiyah-Bott]. Given aweight A = (ay,...,a,), set
i

Ay
]_[t . Then X*(Z,L) ZH 7

When (Z, L) is Fano, this equivariant Euler characteristic yields
H°(Z,L) as a T-module.



G, acting on Z’ 23/24

For G; acting on a Fano contact 7-fold Z, the fixed points and
the weights (A;, v;;) are all completely determined from the
diagram within the polytope I'(L) = A(L). Localization yields

Conclusion. The character of H’(Z,L) = g, equals

1
T 1+t + 2st + 252t + s3t + 25°#2 + 35°#2
P e g L D AL g L o L |

Setting s =t = 1 gives h°(L) = 21, contradiction!

In fact, the numerical data coincides with that for the action of
G, CSO(7) on ZGr(P',Q°). The case AutZ’ = SU(3) is
similar, though for Z more work is needed to eliminate the
possibility of fixed-point components of dimension 1.

Analysis of groups of type A, B, D remains!



What next? 24/24

» Interpret the fixed point analysis by means of Morse
theory directly on the QK manifold M.

» Itis conceivable that H(Z, L) is non-zero for higher
dimensional Fano contact manifolds using as yet unknown
inequalities on characteristic numbers, as in the
hyperkéhler case.

» But a simple group with r > 3 on Z!! requires h°(L) > 15,
which seems out of reach.

» Do all Fano contact manifolds admit a Kdhler-Einstein
metric?



