Automorphisms of Fano contact manifolds

Simon Salamon Special Holonomy in Geometry, Analysis, and Physics Duke University, 13 April 2018

> reporting on results of J. Buczyński, J.A. Wiśniewski, A. Weber arXiv:1802.05002

Wolf spaces

These are the Riemannian symmetric spaces with a quaternionic structure. One for each simple compact Lie group G parametrizes subalgebras associated to a highest root in \mathfrak{g} .

Given a compact simple Lie algebra \mathfrak{g} , fix such a "minimal" subalgebra $\mathfrak{su}(2) = \mathfrak{sp}(1)$. The Wolf space is

$$M = \frac{G}{H}$$

where $H = N(\mathfrak{sp}(1)) = \{g \in G : \operatorname{Ad}(g)(\mathfrak{sp}(1)) = \mathfrak{sp}(1)\}.$

If *G* is centreless, the linear holonomy group is

 $H = KSp(1) \subseteq Sp(n)Sp(1).$

Each tangent space $T_{o}M \cong \mathbb{H}^{n} \otimes \mathbb{H}$ has dimension 4n, and admits almost complex structures *I*, *J*, *K*, no preferred choice.

Families

Two 4-dimensional examples

$$S^{4} = \frac{SO(5)}{SO(4)} = \frac{Sp(2)}{SU(2) \times SU(2)}$$
$$\mathbb{P}^{2} = \mathbb{CP}^{2} = \frac{SU(3)/\mathbb{Z}_{3}}{U(2)} = \frac{SU(3)}{U(1) \times SU(2)}.$$

branch out into three classical families of 4n-manifolds.

$$\mathbb{HP}^{n} = \frac{Sp(n+1)}{Sp(n) \times Sp(1)}$$
$$\mathbb{Gr}_{2}(\mathbb{C}^{n+2}) = \frac{SU(n+2)}{S(U(n) \times U(2))}$$
$$\mathbb{Gr}_{4}(\mathbb{R}^{n+4}) = \frac{SO(n+4)}{SO(n) \times SO(4)}.$$

The exceptional Lie groups G_2 , F_4 , E_6 , E_7 , E_8 give Wolf spaces of quaternionic dimension n = 2, 7, 10, 16, 28. Only $\mathbb{G}r_2(\mathbb{C}^{n+2})$ (= $\mathbb{G}r_4(\mathbb{R}^6)$ if n = 2) has $b_2 > 0$. The others admit no almost complex structure even stably [GMS].

Reduced holonomy

A *quaternion-Kähler* (QK) manifold is a Riemannian manifold *M* of dimension $4n \ge 8$ with holonomy

 $H \subseteq Sp(n)Sp(1)$

and not Ricci-flat. There is equality unless *M* is locally isometric to a symmetric space other than \mathbb{HP}^n .

A QK manifold is Einstein, so there is a dichotomy: s < 0, 0 < s. Positive QK manifolds are "nearly hyperkähler" but only the 4-form

$$\Omega = \sum_{i=1}^{3} \omega_i \wedge \omega_i$$

is well defined. Sp(n)Sp(1) is the only member of Berger's list for which the existence of compact examples with $\nabla R \neq 0$ is open, though there are new complete examples with s < 0constructed via Hessian metrics [Cortés et al].

We'll asssume that *M* is compact QK with s > 0 from now on.

Twistor space

The holonomy reduction equips each tangent space $T_m M$ with a 2-sphere

$$Z_m = \{aI + bJ + cK : a^2 + b^2 + c^2 = 1\}$$

of almost complex structures. The associated bundle *Z* over *M* is a complex manifold in which each fibre is a rational curve.

If *M* has positive scalar curvature, *Z* is Kähler-Einstein; its 2-form ω is the curvature of an ample line bundle *L* such that $L | Z_m \cong O(2)$.

The twistor space *Z* is locally a \mathbb{C}^* quotient of a hyperkähler manifold *U*, with fibre $T^*\mathbb{P}^1$ over *M*, mimicking

$$U \subset \mathbb{H}^{n+1}/\mathbb{Z}_2$$
 \downarrow
 \mathbb{P}^{2n+1}
 \downarrow
 \mathbb{HP}^n

Holomorphic contact structure

The symplectic form $\omega_2 + i\omega_3$ on *U* induces a short exact sequence

$$0 \to D \to TZ \xrightarrow{\theta} L \to 0,$$

for which $\theta \in H^0(Z, T^*Z \otimes L)$ satisfies

$$0 \neq \theta \land (d\theta)^n \in H^0(Z, \, \mathsf{K} \otimes L^{n+1}).$$

This defines a complex contact structure, and $\overline{\kappa} \cong L^{n+1}$.

Locally, $D \cong L^{1/2} \otimes \pi^* E$, where *E* is the instanton bundle with fibre \mathbb{H}^n and $\Omega_i^j \in \bigcap \Lambda^{1,1}$. Thus $D \cong D^* \otimes L$, and if $z \in Z$ is a fixed point of a torus action then

$$L_z \otimes T_z^* Z \cong \mathbb{C} + D_z$$

defines a "compass" of weights $(0, v_1, v - v_1, \dots, v_n, v - v_n)$.

Homogeneous contact manifolds

When M^{4n} is a Wolf space, $Z = -\frac{G}{KU(1)}$

The twistor space Z can be described as

- ► a minimal adjoint orbit in g;
- a closed nilpotent orbit in $\mathbb{P}(\mathfrak{g}_c^*)$ with $L \cong \iota^* \mathfrak{O}(1)$.

All homogeneous complex contact manifolds arise in this way.

 $\frac{G}{KSp(1)} = M.$

Another TDS $\mathfrak{su}(2) \subset \mathfrak{g}$ will give rise to an open nilpotent coadjoint orbit U and an incomplete QK space U/\mathbb{H}^* . E.g., $\mathbb{P}(\{A \in SL(3, \mathbb{C}) : A^3 = 0, A^2 \neq 0\})$ is a \mathbb{Z}_3 quotient of $Z(G_2/SO(4) \setminus \mathbb{P}^2)$ [BK, "shared orbits"].

Fano twistor spaces

The classical twistor spaces of complex dimension 2n + 1 are

 $\overline{Z} \mathbb{HP}^{n} = \mathbb{P}^{2n+1}$ $Z \mathbb{G}r_{2}(\mathbb{C}^{n+2}) = \mathbb{P}(T^{*}\mathbb{P}^{n+1})$ $Z \mathbb{G}r_{4}(\mathbb{R}^{n+4}) = \mathbb{G}r(\mathbb{P}^{1}, \mathbb{Q}^{n+2}).$

- ▶ \mathbb{P}^{2n+1} has index 2n + 2 because $L = \mathcal{O}(2)$. Recall that a Fano manifold of index 2n + 2 must be \mathbb{P}^n or a quadric $\mathbb{Q}^n \subset \mathbb{P}^{n+1}$ [Kobayashi-Ochiai].
- P(T*Pⁿ⁺¹) has b₂ = 2. Any twistor space Z with b₂ > 1

 admits a contraction Z → Pⁿ⁺¹ with fibres tangent to D

 [Wiśniewski].
- $\mathbb{Gr}(\mathbb{P}^1, \mathbb{Q}^{n+2})$ parametrizes lines on the quadric. It has $b_2 = 1$ and Pic = $\mathbb{Z} \cdot L$ for n > 2.

Fano contact manifolds

Let Z^{2n+1} be a contact manifold with *L* ample.

Theorem [LeBrun]. A Fano contact manifold *Z* is a QK twistor space if (and only if) *Z* admits a Kähler-Einstein metric.

Z is homogeneous iff it is the twistor space of a Wolf space. The KE metric is not really used in any of the classification results. Unless $Z = \mathbb{P}^{2n+1}$,

$$H^0(Z,TZ) \xrightarrow{\cong} H^0(Z,L)$$

is the space of infinitesimal contact automorphisms, known to be non-zero if $n \leq 4$:

Narrowing the field

One approach is to analyse the meromorphic map

 $\mu\colon Z\longrightarrow \mathbb{P}(H^0(Z,L)^*),$

try to prove that $B = \emptyset$ and construct a ladder of polarized varieties (Z^i, L) for i < n. This works for n = 2. Moreover, a Fano contact manifold Z^{2n+1} is homogeneous if μ is generically finite [Beauville].

Theorem [LeBrun-S]. There are finitely many Fano contact manifolds in each dimension. If $b_2(Z) > 1$ then $Z \cong \mathbb{P}(T^*\mathbb{P}^{n+1})$.

From now on, we may therefore assume that $b_2(Z) = 1$.

Theorem [Buczyński-Wiśniewski-Weber]. A Fano contact manifold is necessarily homogeneous if Aut *Z* is reductive of rank at least n - 2, in particular if n = 3 or 4.

Isometry rank

Let M^{4n} denote a complete QK manifold with s > 0.

Theorem [Besse, Poon-S, BWW]. M^{4n} is a Wolf space if $n \leq 4$, i.e. one of eleven: \mathbb{HP}^n or $\mathbb{Gr}_2(\mathbb{C}^{n+2})$ for n = 1, 2, 3, 4, $\mathbb{Gr}_4(\mathbb{R}^{n+4})$ for n = 3, 4, or $G_2/SO(4)$.

The table shows the lower bound on the isometry rank currently needed to infer that M^{4n} is symmetric:

n ightarrow	3	4	5	6	7	8	9	10	11	12	13	14	15
BWW	1	2	3	4	5	6	7	8	9	10	11	12	13
Fang	5	5	6	6	7	7	8	8	9	9	10	10	11
Bielawski	4	5	6	7	8	9	10	11	12	13	14	15	16

Part two

From now on, we suppose that Z^{2n+1} is a *Fano contact manifold* with Pic $Z = \mathbb{Z} \cdot L$, and that Aut *G* is reductive with a maximal torus $T = (\mathbb{C}^*)^r$.

This places one in the realm of *T*-varieties with relatively high *complexity* 2n + 1 - r, but simplifications arise from the contact structure $TZ/D \cong L$ and the isomorphism $H^0(Z, L) \cong \mathfrak{g}$.

In any case, it is often useful to extend the toric case to study *downgrading*, i.e. the action of a lower-dimensional torus.

Buczyński, Wiśniewski and Weber use Białynicki-Birula's decomposition [BB 1973, Carrell] and localization formulae to analyse the action of complex tori on *Z*. A special role is played by fixed points that define an extreme weight or vertex.

Subsequent slides highlight a selection of their results.

Torus actions and polytopes

We suppose that Z^{2n+1} is a *Fano contact manifold*, Pic $Z = \mathbb{Z} \cdot L$, and that Aut *G* is reductive with maximal $T = (\mathbb{C}^*)^r$. The latter will have fixed components $Y_i \subset Z$, *points* if we're lucky.

This set-up gives rise to two polytopes in t*:

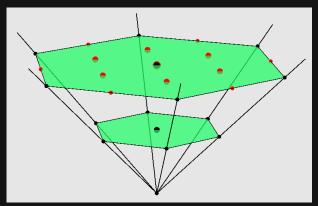
- ► Γ(L), the convex hull of the weights of T on H⁰(Z, L). If L^m is very ample then Γ(L^m) is Kostant's polytope, the projection of an adjoint orbit to ℝ^r.
- $\Delta(L)$, the convex hull of the weights λ of T on L_y for $y \in Y_i$. It is the image of the abelian moment mapping [Guillemin-Sternberg, Atiyah, Brion,...].

 $\Delta(L^m)$ merely scales with m. One always has $\Gamma(L) \subseteq \Delta(L)$, equality if (for example) $B = \emptyset$. For a twistor space, λ is a "rotation index" on the fibre $S^2 \ni y$. The shape of $\Delta(L)$ at a vertex is determined by the compass of weights at y.

12/24

Weight cone

Consider the example of $Z\mathbb{P}^2 = SU(3)/T^2 = \mathbb{F}$: $\Gamma(L^2)$ is generated by the 27 weights of $H^0(\mathbb{F}, L^2)$; $\Delta(L^2)$ is generated the action of T^2 at the 6 fixed points.



A similar picture describes a hypothetical action by SU(3) on a singular Fano 5-fold $Z^5 \subset Q_2 \cap C_3 \subset \mathbb{P}^7$.

Extremal fixed points

14/24

We suppose that Z^{2n+1} is a *Fano contact manifold*, Pic $Z = \mathbb{Z} \cdot L$, and that Aut *G* is reductive with maximal $T = (\mathbb{C}^*)^r$.

Corollary 3.8 [BWW]. If every extremal component $Y \subset Z^H$ has dimension at most 3 then $\Gamma(L) = \Delta(L)$.

Proof. The key point is that the restriction

 $H^0(Z,L) \to H^0(Y,L \,|\, Y)$

is surjective:

- ▶ If *Y* is a point it is the source of a \mathbb{C}^* action and $\exists X \in |L|$ such that $X \cap Y = \emptyset$.
- ► If not, *Y* is Fano, $h^0(L | Y) \ge 2$, and any holomorphic section *s* of L|Y extends to $\hat{s} \in H^0(Z, L)$ with weight λ matching the action on L|y.

These conclusions are based on the BB-decomposition or similar techniques. \Box

The rank

As a consequence:

Lemma 4.7 [BWW]. If $r \ge n - 2$ then $\Gamma(L) = \Delta(L)$ and all extremal fixed point components are isolated points.

Proof. Construct a chain of *i*-dimensional faces of $\Delta(L)$ that determine subtori

 $T = T^r \supseteq T^{r-1} \supseteq \cdots \supseteq T^1$

and extremal fixed-point components

$$Y^0 \subsetneq Y^1 \subsetneq \cdots \subsetneq Y^{r-1}$$

(with $Y_i \subset Z^{T_{r-i}}$) of increasing dimensions. The last is isotropic, so

$$\dim Y^{r-1} \leqslant \frac{1}{2} \dim D = n \implies \dim Y^0 \leqslant 3.$$

Moreover, $h^0(Y^0, L|_{Y^0})$ is the multiplicity of a root in \mathfrak{g} , i.e. 1, which forces *Y* to be a point. \Box

The automorphism group

Proposition 4.8 [BWW]. If $r \ge n - 2$ then *G* is simple.

Proof. We know that $\Gamma(L) = \Delta(L)$. The former arises from the roots of \mathfrak{g} . The latter spans the same dimension as $\Delta(L^m)$, i.e. r (if L^m is very ample), so G is semisimple.

If (for example) $G = G_1 \times G_2$ then $\Delta(L) = \text{Conv}\langle R_1 \cup R_2 \rangle$ contains vertices u_1, u_2 and (unless G_1, G_2 are of type A_1, C), $u_2 - u_1$ must be a weight for the action of H on D_y^* . But then so is $-u_1$ implying that $u_1 - au_2 \in \Delta(L)$ with a > 0, contradiction.

A refined argument is needed for the other cases in which $\frac{1}{2}(u_1 + u_2)$ lies in the root lattice. \Box

From now on, we assume that $r \ge n - 2$.

Eliminating E and F

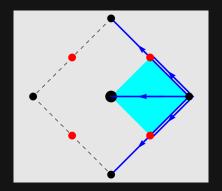
If Z = ZM is a twistor space, then the maximal torus T will fix $m \in M$ and so $T \subset Sp(n)Sp(1)$. Thus $r \leq n + 1 = \operatorname{rank}(\mathbb{HP}^n)$. We assume $n - 2 \leq r$, so that $\Gamma(L) = \Delta(L)$, extreme fixed points are isolated and $G = \operatorname{Aut} Z$ is simple.

Lemma. If *G* is one of F_4 , E_6 , E_7 , E_8 , then dim Z = 2n + 1 is at least that of the homogeneous space, contrary to assumption:

Proof. The (odd) complex dimension of *Z* exceeds the number of edges emanating from a vertex of the root polytope $\Gamma(L)$. That suffices for E_r . For F_4 one needs to add interior pointing arrows to 6 short roots and the origin:

The case of $Sp(n) = C_n$

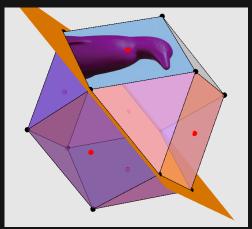
Illustrated for n = 2:



Midpoints of edges are also roots for this group, and each is the image of a \mathbb{P}^2 (rather than a \mathbb{P}^1). But this would imply a weight vector in $T_z Z$ exiting the "contact domain", contradiction.

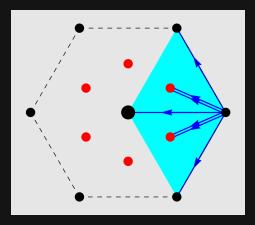
A model for Z^7

 T^3 acts on $\mathbb{R}^7 = \mathbb{R}^2 \oplus \mathbb{R}^2 \oplus \mathbb{R}^2 \oplus \mathbb{R}$ and on $Z \operatorname{Gr}_4(\mathbb{R}^7)$. In the root polytope for $SO(7) = B_3$, there are 12 fixed points, all extreme:



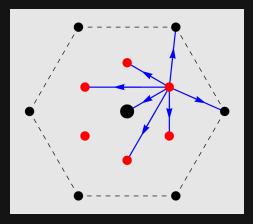
Let T^2 be a subtorus with LA orthogonal to a long diagonal.

Reduction to G₂



The resulting moment map is the diagram for both the action of G_2 on $\mathbb{Gr}(\mathbb{P}^1, \mathbb{Q}^5)$, and on a hypothetical non-homogeneous Z^7 . Arrows represent weights on T_y^*Z at an extreme fixed point y with target within the diamond-shaped contact domain.

The inner compass



This time the arrows represent weights on T_xZ at an inner fixed point x, and they all have multiplicity 1. One deduces that there is again a unique fixed point for each such weight, exactly as in the homogeneous case, and none at the origin.

Localization

For an arbitrary G_2 action on Z^7 , the fixed points and their compass weights are all completely determined.

In general, suppose that (Z, L) is a polarized variety acted upon by $T = (\mathbb{C}^*)^r$, such that:

- *T* has isolated fixed points y_1, \ldots, y_k ,
- λ_i is the weight on L_{y_i} as used to define $\Delta(L)$,
- $v_{i,j}$ are the weights on $T_{y_i}Z$.

Theorem [Atiyah-Bott]. Given a weight $\lambda = (a_1, \dots, a_r)$, set $\mathbf{t}^{\lambda} = \prod_{k=1}^r t_k^{a_k}$. Then $\chi^T(Z, L) = \sum_{i=1}^k \frac{\mathbf{t}^{\lambda_i}}{\prod_j (1 - \mathbf{t}^{\mathbf{v}_{i,j}})}$.

When (Z, L) is Fano, this equivariant Euler characteristic yields $H^0(Z, L)$ as a *T*-module.

G_2 acting on Z^7

For *G*₂ acting on a Fano contact 7-fold *Z*, the fixed points and the weights $(\lambda_i, \nu_{i,j})$ are all completely determined from the diagram within the polytope $\Gamma(L) = \Delta(L)$. Localization yields

Conclusion. The character of $H^0(Z, L) \cong \mathfrak{g}_2$ equals

$$\frac{1}{s^3t^2} \Big[1 + t + 2st + 2s^2t + s^3t + 2s^2t^2 + 3s^3t^2 + 2s^4t^2 + s^3t^3 + 2s^4t^3 + 2s^5t^3 + s^6t^3 + s^6t^4 \Big].$$

Setting s = t = 1 gives $h^0(L) = 21$, contradiction!

In fact, the numerical data coincides with that for the action of $G_2 \subset SO(7)$ on $Z \operatorname{Gr}(\mathbb{P}^1, \mathbb{Q}^5)$. The case Aut $Z^7 \cong SU(3)$ is similar, though for Z^9 more work is needed to eliminate the possibility of fixed-point components of dimension 1. Analysis of groups of type *A*, *B*, *D* remains!

What next?

- Interpret the fixed point analysis by means of Morse theory directly on the QK manifold *M*.
- It is conceivable that H⁰(Z, L) is non-zero for higher dimensional Fano contact manifolds using as yet unknown inequalities on characteristic numbers, as in the hyperkähler case.
- ▶ But a simple group with $r \ge 3$ on Z^{11} requires $h^0(L) \ge 15$, which seems out of reach.
- Do all Fano contact manifolds admit a Kähler-Einstein metric?