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This is a review talk which I hope helps the partcipants in
this meeting understand the basic framework being
discussed. (There is nothing new or original in this lecture.)
Some suggestions for further reading:

I D. Z. Freedman and A. Van Proyen, Supergravity,
Cambridge University Press 2012.

I K. Becker, M. Becker, and J. H. Schwarz, String Theory
and M-Theory, Cambridge University Press 2007.

I C. Johnson, D-Branes, Cambridge University Press
2003.

I P. S. Aspinwall et al., Dirichlet Branes and Mirror
Symmetry, Clay Mathematics Institute and the
American Mathematical Society, 2009.

I D. R. Morrison, TASI Lectures on Compactification and
Duality, in: Strings, Branes, and Gravity (TASI ’99),
World Scientific 2001.



Nonabelian Gauge
Symmetry

David R. Morrison

Superstring theories
Superstring theories are quantum versions of the 9+1
dimensional supergravity theories, based on the notion of a
propagating one-dimensional object known as a string. The
string sweeps out a “worldsheet” in the 9+1 dimensional
spacetime, and the “super” in superstring refers to
supersymmetry of the worldsheet physical theory.
Remarkably, the quantized superstring reproduces the
spectrum of a 9+1 dimensional physical theory with
spacetime supersymmetry and with gravity, and so
corresponds (in the “classical limit”) to a supergravity
theory.

The string in a superstring theory can either be open or
closed, and if it is open one should think about boundary
conditions for the endpoints. They can be of Neumann or
Dirichlet type, and the Dirichlet strings must end on a
particular sub-spacetime known as a Dirichlet brane, or
D-brane.
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D-branes, supergravity theories, superstring
theories
It is conventional to label the D-brane by its spatial
dimension, and call the resulting object a Dp-brane when it
has spacetime dimension p+1, i.e;, when it contains p
spatial and one time dimension.
There are three or four supergravity theories in 9+1
dimensions (depending on how you count), known as type I,
type IIA, and type IIB. In the case of type I, there is also a
choice of 10-dimensional gauge algebra, which can be either
so(32) or e8 � e8. (This latter restriction is due to the
celebrated result of Green and Schwarz from 1984, which
restricts type I theories if one is interested in theories which
might have a quantum version).
On the other hand, there are five superstring theories, known
as type I, type IIA, type IIB, and two “heterotic” theories
(depending on the choice of gauge algebra so(32) or
e8 � e8). D-branes are only relevant for the first three.
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Gauge fields

An open superstring must couple to a gauge field at each
endpoint, typically with gauge algebra u(N), in other words,
there should be a gauge field on the D-brane worldvolume
with gauge algebra u(N). It is common to regard N as a
“multiplicity” of the D-brane, and to think of this as a stack
of N D-branes on top of each other. If the D-branes in the
stack are slightly separated, each D-brane contributes a u(1)
gauge field (the diagonal elements in a U(N) matrix)
whereas the short strings connecting the i th D-brane to the
j th D-branes are slightly massive, and represent the
o↵-diagonal elements in a U(N) matrix.
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BPS

D-branes are charged under certain of the k-form fields in
the supergravity theory, and the most frequently studied
D-branes satisfy an inequality between charge and mass (or
charge and volume) known as a BPS bound. Now, in a
supersymmetric theory, objects which saturate a BPS bound
have di↵erent supersymmetry representation properties than
objects which do not saturate the bound. This leads to the
conclusion that, provided supersymmetry remains unbroken,
the BPS D-branes (those that saturate the bound) will be
stable objects which can be followed as parameters change.
More is true: the D-branes serve as “sources” for some of
the k-form fields in the theory, analogous to how electrons
are sources for the familiar electromagnetic field.
BPS D-branes will necessarily break some of the
supersymmetry of the theory (since they break infinitesimal
translation invariance) but they typically preserve some
fraction of it, such as 1/2 or 1/4.

The
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Supergravity solutions; types of branes

In super-Minkowski spacetime, there are explicit supergravity
solutions (with singularities on the brane world-volume)
which realize all the properties of the brane. These solutions
are expected to provide the correct asymptotics for 1/2-BPS
D-branes in more general spacetimes.
In the type IIA theory, one has D0, D2, D4, and D6-branes,
while in the type IIB theory, one has D1, D3, D5, and
D7-branes. It is natural to extend this a bit, and consider
also D9-branes in IIB (which would fill all of spacetime),
D(-1)-branes (also known as D-instantions) in type IIB, and
D8-branes (which may be boundaries or may separate
regions) in type IIA.
There is another kind of 5-brane in type II theories known as
an NS5-brane which couples to the “B-field” 2-form (and its
dual 6-form) and has a supergravity solution.

l
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Type I and Type I’
One way to realize type I is as a quotient of type IIB by an
“orientifold” symmetry, which reverses orientation on the
worldsheet (and also acts on spacetime). When this is done,
the gauge fields naturally become either Sp or SO rather
than U. In paticular, one needs 32 D9-branes to have a
consistent quotient, and these give rise to the so(32) gauge
field in type I. D5-branes and D1-branes are also possible in
type I theory.
The fixed point locus of an orientifold symmetry is known as
an “orientifold plane,” and in counts of Dp-branes, an
orientifold p-plane usually counts negatively.
A type IIA theory with D8-branes has similar properties to
type I, and is sometimes called “type I’ ” or “type IA.”
Compactifying this theory on the interval S1/Z2 gives
enhanced gauge symmetry of SO type at the endpoints (due
to the orientifold); it is also possible to take a “strong
coupling limit” and obtain enhanced gauge symmetry of en
type.
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T-duality

The various superstring theories are related by a number of
“dualities.” The oldest of these, known as T-duality,
operates at weak string coupling.
T-duality asserts an equivalence between type IIA string
theory compactified on an S1 of radius R , and type IIB
string theory compactified on an S1 of radius ↵0/R , once the
“momentum” and “winding” modes have been exchanged.

This also works in the presence of BPS D-branes: a
Dp-brane wrapped around the S1 is mapped to a
D(p-1)-brane not wrapped around the other S1.

A variant applies which relates the type I and type I’ theories.

AlsoTduty Huks Retro hhutie them
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Strong coupling limits and M-theory

A superstring has two fundamental parameters: the size of
the string (usually measured as the area of the string
worldvolume and denoted by ↵0) and the “string coupling”
which corresponds to a scalar field in the supergravity theory
known as the “dilaton.” One question which was answered
in the 1990’s (using the stability of BPS D-branes) was:
what is the strong coupling behavior of each superstring
theory? The answer is that type I and the heterotic so(32)
theory are each other’s strong coupling limit, and the strong
coupling limit of type IIB is again type IIB. But the type IIA
theory and the heterotic e8 � e8 theories have a strong
coupling limit which is a quantum 10+1 dimensional theory
known as M-theory. (This is one of the string theory
“cousins” in the title.) When this larger theory is
compactified on S1 we get the type IIA string, and when it is
compactified on an interval we get the heterotic e8 � e8
string (with e8 gauge fields at the endponts).
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M-theory branes

There are also supergravity solutions for M-theory branes: an
M2-brane and an M5-brane (which couple to the M-theory
3-form field and its dual 6-form field).
When we compactify M-theory on a circle to get type IIA,
we can ask how the branes correspond. Now part of the
argument for the emergence of M-theory was that at strong
coupling, stacks of N D0-branes behave like the Nth

“Kaluza–Klein mode” for the compactification on a circle.
Beyond that, the type IIA string and the D2-brane both
come from the M2-brane (one wrapped on the circle and one
not); the D4-brane and the NS5-brane both come from the
M5-brane (one wrapped on the circle and one not); the
D8-brane does not lift to M-theory unless we also consider a
boundary M9-brane (carrying an e8 gauge field).
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Another mechanism

The remaining case of the D6-brane is quite interesting: a
stack of N D6-branes lifts to an M-theory geometry of
Atiyah–Hitchin type, with an AN�1 singularity in real
codimension 4. This provides a new mechanism for
non-abelian gauge symmetry – through singularities in real
codimension 4, and in fact the Dk and Ek singularities can
be realized as well (the former involving orientifolding).
This phenomenon of ALE singularities in real codimension
four giving rise to nonabelian gauge symmetry also works
directly in type IIA. The analogue of separating branes to get
a massive model is blowing up the singularities, with only a
small area for the 2-spheres thereby created.

in

8
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Analyzing the new mechanism

A complete analysis of this mechanism should involve
analyzing a classical physical system consisting of 10+1
dimensional supergravity on a singular background coupled
to 6+1 dimensional super-Yang–Mills theory of the
appropriate type. This has been done (by Anderson, Barrett,
and Lukas) in the AN�1 case but not yet in the other cases.
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F-theory

The transformation of the type IIB theory mentioned above
is part of a larger discrete symmetry group of that theory
isomorphic to SL(2,Z ). The other “cousin” of string theory
is known as F-theory, and is a quantum version of the
supergravity theory obtained from type IIB by gauging the
SL(2,Z ) symmetry. A prominent feature of this theory is the
D7-branes (and other kinds of 7-branes) which account for
non-abelian gauge symmetry in these theories. Because of
the “sourcing” behavior of branes, they also account for the
mutivaluedness of the scalar fields, which was to be expected
since SL(2,Z ) acts on the scalar fields through fractional
linear trasformations.
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F-theory/M-theory duality

The real scalar fields in type IIB supergravity (one of which
is constrained to be positive) can be combined into a single
complex scalar ⌧ in the upper half-plane, on which SL(2,Z )
acts by fractional linear transformations. It follows that there
is an elliptic curve E⌧ at each point in the type IIB
spacetime. The statement of F-theory/M-theory duality is
that M-theory compactified on the total space of the family
of elliptic curves will approach the F-theory vacuum when
the area of the elliptic curves (which is constant in the
family) approaches zero.



Nonabelian Gauge
Symmetry

David R. Morrison

F-theory/M-theory duality con.

To acieve that limit, assuming that the family has a section,
one can first shrink all components of fibers not meeting the
section to zero area. This will create loci of ALE singularities
in real codimension 4. Then, locally in the family one may
identify one of the two circles within the elliptic curve as
being invariant under monodromy; if that circle is shrunk,
the resulting type IIA compactification will have stacks of
D6-branes replacing the ALE-singularities. We can then do
T-duality on the remaining circle, turning stacks of
D6-branes into stacks of D7-branes. (Technically, this only
works as stated for A type; it can be modified with
orientifolds to work for D type. The E type cases are going
to be a challenge.)


