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1. Introduction

At the June meeting I described a very general conjectural theory
of enumerative invariants in Algebraic and Differential Geometry,
and their wall-crossing formulae under change of stability
condition, which we had proved for quivers without oriented cycles
(see arXiv:2005.05637, joint with Jacob Gross and Yuuji Tanaka).
I can now announce considerable progress in this programme. I am
writing a big paper/book which will prove the conjectures in most
of the cases in Algebraic Geometry that I care about (with a few
caveats, later). I hope to have finished it by the January meeting.
I also now understand how to extend the picture in several ways I
didn’t in June, including how to fit DT for Calabi–Yau 3-folds into
the same framework, and how to include Donaldson and
Seiberg–Witten invariants of surfaces when b2+ > 1. I will explain
the latter in the second half of today’s talk.
Warning: I may be lying. I haven’t finished all the proofs yet.
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Set up of the problem

Here is the situation I will consider (details omitted/simplified):
• A is a C-linear abelian category satisfying a list of assumptions,
in which we expect to form invariants ‘counting’ semistable objects
in A. Examples: A = mod-CQ or mod-CQ /I representations of a
quiver (with relations); A = coh(X ) coherent sheaves on smooth
projective C-scheme X which is a curve, surface, Fano 3-fold,
Calabi–Yau 3- or 4-fold. Or cohcs(X ) for X quasiprojective.
• M moduli stack of objects in A, as Artin C-stack.
• Mpl ‘projective linear’ moduli stack of objects in A modulo
multiples of the identity. Πpl :M→Mpl fibration, fibre [∗/Gm].
• K (A) a quotient of Grothendieck group K0(A) such that
M =

∐
α∈K(A)Mα, Mpl =

∐
α∈K(A)M

pl
α , with Mα,Mpl

α open

and closed. Examples K (A) = ZQ0 for quivers, K (A) ⊂ H∗(X ,Q)
lattice of Chern characters for X smooth (quasi-)projective.
• C (A) = {JEK : 0 6= E ∈ A} ⊂ K (A) ‘positive cone’.
• Some functors Fk : A → VectC used for ‘stable pairs’.
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• E•α,β = (Ext•)∨ dual of Ext complex on Mα ×Mβ, perfect complex.
• χ : K (A)× K (A)→ Z biadditive, χ(α, β) = rank E•α,β.
• φ : F• → LMpl Behrend–Fantechi perfect obstruction theory on
Mpl with [(Πpl)∗(F•)] = [OM]− [∆∗M(E•)] in K0(Perf(M)).
(Variants on this for Fano 3-folds and Calabi–Yau 3- or 4-folds).
• S set of (weak) stability conditions (τ,T ,6) on A. That is,
(T ,6) total order, e.g. (R,6), τ : C (A)→ T map satisfying
conditions. Write Mst

α (τ) ⊆Mss
α (τ) ⊆Mpl

α for the open substack
of τ -(semi)stable objects in A in class α ∈ C (A) ⊂ K (A).
• Important assumptions on S : the Mss

α (τ) have a properness
property. Implies that Mss

α (τ) is a proper Deligne–Mumford stack
if Mst

α (τ) =Mss
α (τ). Then obstruction theory φ : F• → LMpl

defines a virtual class [Mss
α (τ)]virt in H2−2χ(α,α)(Mpl

α ,Q).
• Can connect any (τ0,T0,6), (τ1,T1,6) in S by a ‘continuous
path’ (τt ,Tt ,6)t∈[0,1] in S .
• A finiteness assumption which ensures finitely many terms in
wall-crossing formula. (Cf Bogomolov vanishing; tricky dimX > 3.)
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Vertex algebras and Lie algebras

As I have told you in previous conferences, under these
assumptions, I define the structure of a graded vertex algebra on
H∗(M,Q) with shifted grading Ĥn(Mα,Q) = Hn−2χ(α,α)(Mα,Q),
given for u ∈ H∗(Mα) and v ∈ H∗(Mβ), α, β ∈ K (A), by

Y (u, z)v = Y (z)(u ⊗ v) = (−1)χ(α,β)
∑

i>0
zχ(α,β)+χ(β,α)−i ·

H∗(Φα,β) ◦ (ezD ⊗ id)((u � v) ∩ ci (E•α,β ⊕ σ∗α,β(E•β,α)∨)),

with Φα,β :Mα ×Mβ →Mα+β the direct sum map. This then
induces the structure of a graded Lie algebra on H∗(Mpl,Q) with
shifted grading Ȟn(Mpl

α ,Q) = Hn+2−2χ(α,α)(Mpl
α ,Q). Thus

Ȟ0(Mpl) =
⊕

α∈K(A)H2−2χ(α,α)(Mpl
α ,Q) is a Lie algebra.

Note that virtual classes [Mss
α (τ)]virt lie in H2−2χ(α,α)(Mpl

α ,Q).
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The problems I want to solve

Here are my main goals:
• As above, if Mst

α (τ) =Mss
α (τ) then Mss

α (τ) is a proper D–M
stack with virtual class [Mss

α (τ)]virt in H2−2χ(α,α)(Mpl
α ,Q).

But if Mst
α (τ) 6=Mss

α (τ) then Mss
α (τ) is an Artin stack, and the

Behrend–Fantechi virtual class is not defined. I want to define an
enumerative invariant [Mss

α (τ)]inv in H2−2χ(α,α)(Mpl
α ,Q) for all

α ∈ C (A), with [Mss
α (τ)]inv = [Mss

α (τ)]virt if Mst
α (τ) =Mss

α (τ).
That is, I want to define invariants counting strictly semistables.
• I want an explicit wall-crossing formula for the [Mss

α (τ)]inv under
change of stability condition (τ,T ,6).
All this is known for Donaldson–Thomas invariants of Calabi–Yau
3-folds (Joyce–Song, Kontsevich–Soibelman) and other motivic
invariants (Joyce). I want to extend to virtual class invariants.
We regard the class in H2−2χ(α,α)(Mpl

α ,Q) as the primary invariant

– can get numbers by integrating universal classes in H∗(Mpl).
Note that H∗(Mpl) is often explicitly computable (for Db coh(X )).
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2. The main results, basic case

Theorem 1 (Work in progress, proof ongoing.)

In the situation above, with other assumptions I haven’t given, I
can define invariants [Mss

α (τ)]inv in H2−2χ(α,α)(Mpl
α ,Q) for all

α ∈ C (A) satisfying:

(a) If Mst
α (τ) =Mss

α (τ) then [Mss
α (τ)]inv = [Mss

α (τ)]virt.

(b) The [Mss
α (τ)]inv have an explicit inductive definition via B–F

virtual classes of moduli spaces of ‘stable pairs’ in an auxiliary
abelian category Ā with 0→ A→ Ā → VectC → 0 exact.

(c) If (τ,T ,6), (τ̃ , T̃ ,6) ∈ S and α ∈ C (A) then

[Mss
α (τ̃)]inv =

∑
n>1, α1,...,αn∈C(A):
α1+···+αn=α

Ũ(α1, . . . , αn; τ, τ̃) ·
[[
. . .
[
[Mss

α1
(τ)]inv,

[Mss
α2

(τ)]inv
]
, . . .

]
, [Mss

αn
(τ)]inv

]
, (1)

where Ũ(−) are explicit(ish) combinatorial coefficients, and
[ , ] is the Lie bracket on Ȟ0(Mpl).
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Very brief sketch of proof

The proof of Theorem 1 will be huge and complicated, probably
> 100 pages total (document currently ∼ 120 pages). Rough idea:
• First prove (1) for simple wall-crossings, in which all moduli
spaces in the formula have stable=semistable, and on the wall
strictly semistables have only two stable factors in classes β, γ,
with τ(β) > τ(γ) and τ̃(β) < τ̃(γ), so (1) becomes

[Mss
α (τ̃)]virt = [Mss

α (τ)]virt +
[
[Mss

β (τ)]virt, [Mss
γ (τ)]virt

]
. (2)

Prove this using Gm-localization on a master space.
• For (τ,T ,6) ∈ S and t ∈ T , write Ass

τ,t ⊂ A for the abelian
subcategory of τ -semistable objects E ∈ A with τ(JEK) = t.
Introduce a class of auxiliary abelian categories Ā with
0→ Ass

τ,t → Ā → mod-CQ → 0 exact for certain quivers Q. Can

define invariants [M̄ss
(α,d )(µ)]inv for Ā, α ∈ C (A)τ=t , d ∈ NQ0 .

When Q = • and mod-CQ = VectC this gives the stable pair
invariants in Theorem 1(b).
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• At this stage we have defined invariants [Mss
α (τ)]inv and

[M̄ss
(α,d )(µ)]inv by ‘stable pairs’ in both A and auxiliary categories

Ā, with [· · · ]inv = [· · · ]virt if stable=semistable, and we can prove
they satisfy (2) for simple wall-crossings.
We can also prove some relations between the invariants
for different categories, e.g. if M̄ss

(α,d )(µ) has a smooth morphism to

Mss
α (τ) with fibre CPn then [M̄ss

(α,d )(µ)]inv determines [Mss
α (τ)]inv.

The idea is to get enough of these two relations to prove (1).
• Prove that if (τ,T ,6), (τ̃ , T̃ ,6) are ‘sufficiently close’ in S , can
reduce the complicated WCF (1) in A to a finite sequence of
simple WCFs (2) and smooth fibrations in auxiliary categories Ā.
• For the general case of (τ,T ,6), (τ̃ , T̃ ,6) joined by a
‘continuous path’ (τt ,Tt ,6)t∈[0,1] in S , prove (1) by considering
the WCF τ ⇒ τt as t deforms from 0 to 1, and composing WCFs
τ ⇒ τs ⇒ τt for s < t ‘sufficiently close’. Need a strong finiteness
condition to ensure WCFS have finitely many nonzero terms.
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Some cases in which the main results apply

Theorem 1 applies in the form above to examples including:

(a) A = mod-CQ for Q a quiver with no oriented cycles (to get
proper moduli spaces), and slope stability conditions (µ,R,6).

(b) A = mod-CQ/I for Q/I a quiver with relations, and slope
stability conditions (µ,R,6), provided have properness
condition on Mss

d (µ) (no oriented cycles is sufficient).

(c) coh(X ) for X a projective curve (boring as only 1 stability
condition, but at least can count strictly semistables).

(d) coh(X ) for X a projective surface with geometric genus
pg = 0, for both Gieseker and slope stability conditions
defined using real Kähler forms. (Here pg = h0,2(X ) = b2+ − 1.
Will explain case pg > 0 later.)

(e) coh(X ) for X a Fano 3-fold, with caveats: have to exclude
dim 0 sheaves, and restrict to Kahler forms in small open ball
in Kähler cone to make finiteness condition hold.
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Aside on finiteness conditions

In general it is not obvious that the WCF (1) should have finitely
many nonzero terms, but I don’t see a good notion of convergence,
so if there are infinitely many nonzero terms the theory breaks.
• For quivers and coh(X ) for X a curve this is not a problem.
• For coh(X ) for X a surface, if rankα > 0 then Bogomolov’s
theorem shows that Mss

α (τ) 6= ∅ implies ∆(α) > 0, where ∆ is the
discriminant. Then can show (1) has finitely many nonzero terms.
• If X is a smooth projective m-fold, m > 2, in general I cannot
prove (1) has only finitely many terms with Ũ(α1, . . . , αn; τ, τ̃) 6= 0
and Mss

αi
(τ) 6= ∅ for all i . However, I can prove this if τ, τ̃ are

Gieseker or slope stability conditions from real Kähler forms which
are sufficiently close in the Kähler cone.
• Using this, we can transform between any two such stability
conditions in finitely many steps, where each step has WCFs with
only finitely many terms.
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Expected extension to coh(X ) for X a Calabi–Yau 3-fold

The theory explained so far does not include Calabi–Yau 3-folds, as
although 3-Calabi–Yau moduli spaces do have a perfect (symmetric)
obstruction theory F• on Mss

α (τ) (at least when Mst
α (τ) =Mss

α (τ)),
this does not satisfy the condition [(Πpl)∗(F•)] = [OM]− [∆∗M(E•)]

linking the obstruction theory to the Lie bracket on H∗(Mpl).
In fact, because of Serre duality, the Lie bracket on H∗(Mpl) is zero.
Here is how to fix this: we introduce a degree −2 formal parameter
y into the vertex algebra construction, making Ĥ∗(M)[[y ]] into a
(completed) graded vertex algebra, and Ȟ∗(Mpl)[[y ]] into a
(completed) graded Lie algebra, with Lie bracket [, ] =

∑∞
i=0 y

i [ , ]i .
The leading term [ , ]0 is the previous Lie bracket, and so is zero.
Hence the next term [ , ]1 induces a degree 2 Lie bracket on
Ȟ∗(Mpl)[[y ]]|y=0 = Ȟ∗(Mpl). We can then do a version of the

previous construction using the Lie bracket [ , ]1 on Ȟ∗−2(Mpl).
This will (I hope) re-prove much of Donaldson–Thomas theory
without using Behrend, PTVV, BBJ, DAG, or critical loci.
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Conjectural extension to coh(X ) for X a Calabi–Yau 4-fold

Borisov–Joyce defined virtual classes for proper oriented
4-Calabi–Yau moduli schemes, with the intention of developing
Donaldson–Thomas type invariants for Calabi–Yau 4-folds. The
definition uses real derived differential geometry, and everybody
hates it. Oh–Thomas (arXiv:2009.05542 and in progress) are doing
the job properly using Behrend–Fantechi style algebraic geometry.
I hope to be able to prove the analogue of Theorem 1 for coh(X ) a
Calabi–Yau 4-fold, using Oh–Thomas virtual cycles. I haven’t
worked out the details yet, and it is likely I will need properties of
Oh–Thomas virtual cycles or auxiliary moduli spaces that aren’t
proved yet, e.g. defined for Deligne–Mumford stacks not schemes,
pull back of the obstruction theories under smooth morphisms of
classical stacks, and a pushforward theorem for virtual cycles under
smooth morphisms.
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3. Extension to surfaces with pg > 0 (speculative/lies?)

Let X be a projective surface with pg > 0 (i.e. h0,2(X ) > 0,
b2+(X ) > 1). Then the theory of §2 does apply to A = coh(X ).
However, if rankα > 0 then the obstruction theory
φ : F• → LMpl on Mss

α (τ) has a constant factor H0,2(X )∗ in
h−1(F•), which forces [Mss

α (τ)]inv = 0, so the theory is boring.
You can define a ‘reduced’ obstruction theory φ : F•red → LMpl (at
least on the rank > 0 part of Mpl) by deleting the H0,2(X )∗

factor. Then you get virtual classes [Mss
α (τ)]redvirt when

Mst
α (τ) =Mss

α (τ), which may be nonzero.
Think of these as algebraic U(n) Donaldson invariants, as roughly
U(n)-instantons ⇔ holo. rank n vector bundles with H–E conns ⇔
semistable algebraic rank n vector bundles.
So it seems natural to try to extend our theory to include
invariants defined using ‘reduced’ obstruction theories.
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On the face of it, we should hope to define ‘reduced’ invariants
[Mss

α (τ)]red even when Mst
α (τ) 6=Mss

α (τ), by the pair invariant
method, with [Mss

α (τ)]red = [Mss
α (τ)]redvirt when Mst

α (τ) =Mss
α (τ).

However, for b2+(X ) > 1 Donaldson invariants are independent of
the stability condition (which corresponds to the splitting
H2(X ) = H2

+(X )⊕H2
−(X ), since H2

+(X ) = H(2,0)+(0,2)(X )⊕ 〈[ω]〉,
and the stability condition is determined by the Kähler class [ω]).
So näıvely we would not expect an interesting wall crossing
formula. This would be a pity, as WCFs can be powerful tools.
I will propose a more complex set-up involving an abelian category
A which can have nontrivial reduced and non-reduced invariants at
the same time, and nontrivial WCFs for both.
When A = coh(X ) the non-reduced invariants are zero in rank > 0,
so the WCF is trivial. But for A a category of ‘L-Bradlow pairs’, we
get both (non-reduced) Seiberg-Witten type invariants and (reduced)
Donaldson type invariants, and the WCF can be used to compute
Donaldson invariants in terms of Seiberg–Witten invariants.
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Set up of the ‘reduced’ problem

Like a lot of this project, I found Mochizuki’s 2009 monograph on
invariants counting coherent sheaves on surfaces very helpful here.
Assume all the previous data, plus the following:
• We are given an open substack Ṁpl ⊆Mpl, a positive integer d
(will take d = pg ), and a ‘reduced’ φred : F•red → LṀpl obstruction

theory on Ṁpl with [(Πpl)∗(F•)] = (d + 1)[OṀ]− [∆∗Ṁ(E•)] in

K0(Perf(Ṁ)), where Ṁ = (Πpl)−1(Ṁpl) ⊆M.
• We are given a subset C (A)rp ⊆ C (A) of ‘reduced permissible

classes’. If (τ,T ,6) ∈ S and α ∈ C (A)rp then Mss
α (τ) ⊆ Ṁpl

α ,
so if Mst

α (τ) =Mss
α (τ) we have a reduced virtual class

[Mss
α (τ)]redvirt in Ȟ2d(Mpl

α ), defined using φred : F•red → LṀpl .
• Conditions on these, which roughly include that if α = β + γ
with α ∈ C (A)rp and β, γ ∈ C (A) then at least one of β, γ lies in
C (A)rp. (Basically, C (A)rp is an ideal in the monoid C (A).)
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The main results, reduced case

Theorem 2 (Work in progress, proof ongoing.)

In the situation above, as well as [Mss
α (τ)]inv in Theorem 1, I can

define invariants [Mss
α (τ)]red in H2d+2−2χ(α,α)(Mpl

α ,Q)=

Ȟ2d(Mpl
α ,Q) for all α ∈ C (A)rp, satisfying:

(a) If Mst
α (τ) =Mss

α (τ) then [Mss
α (τ)]red = [Mss

α (τ)]redvirt.

(b) The [Mss
α (τ)]redinv have an explicit inductive definition via B–F

virtual classes of moduli spaces of ‘stable pairs’.

(c) If (τ,T ,6), (τ̃ , T̃ ,6) ∈ S and α ∈ C (A)rp then

[Mss
α (τ̃)]red =

∑
n>i>1, αi∈C(A)rp,
α1,...,αi−1,αi+1,
...αn∈C(A)\C(A)rp:
α1+···+αn=α

Ũ(α1, . . . , αn; τ, τ̃) ·
[
. . .
[
[Mss

α1
(τ)]inv,

. . .
]
, [Mss

αi−1
(τ)]inv

]
, [Mss

αi
(τ)]red

]
,

[Mss
αi+1

(τ)]inv
]
, . . .

]
, [Mss

αn
(τ)]inv

]
. (3)

(d) If α ∈ C (A)rp then [Mss
α (τ)]inv = 0 in Theorem 1.
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Here the ‘reduced’ WCF (3) is like (1), but every term involves
exactly one ‘reduced’ invariant [· · · ]red, and other ‘non-reduced’
invariants [· · · ]inv. Reduced invariants live in Ȟ2d(Mpl

α ,Q), which
is a representation of the Lie algebra Ȟ0(Mpl

α ,Q), in which
non-reduced invariants [· · · ]inv live. Algebraically, (1) is to (3) as
algebras are to representations.
To prove Theorem 2, the main new step is to replace the simple
WCF (2) for α ∈ C (A)rp with α = β + γ by

[Mss
α (τ̃)]redvirt = [Mss

α (τ)]redvirt

+


[
[Mss

β (τ)]redvirt, [Mss
γ (τ)]virt

]
, β ∈ C (A)rp, γ /∈ C (A)rp,[

[Mss
β (τ)]virt, [Mss

γ (τ)]redvirt

]
, β /∈ C (A)rp, γ ∈ C (A)rp,

0, β, γ ∈ C (A)rp.

The case β, γ /∈ C (A)rp does not occur by the ideal property of
C (A)rp. The rest of the proof of Theorem 1 generalizes easily(ish).
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Application to algebraic Seiberg–Witten ⇒ Donaldson

Let X be a projective surface, and L a line bundle on X . Define an
abelian category A to have objects (E ,V , φ) for E ∈ coh(X ), V a
finite-dimensional C-vector space, and φ : V → Hom(L,E ) a
C-linear map. (These are related to ‘L-Bradlow pairs’ in
Mochizuki.) Take K (A) = K (coh(X ))⊕ Z with
JE ,V , φK = (JEK, dimV ). Then coh(X ) embeds in A as the
subcategory of objects (E , 0, 0).
It turns out (Mochizuki) that the ‘reduced’ obstruction theory
φred : F•red → LṀpl can be defined on an open substack

Ṁpl ⊂Mpl which includes moduli spaces Mss
(α,d)(µ) if either

rankα > 0 and d = 0, or rankα > 1 and d = 1, so we set C (A)rp
to be the set of such (α, d). If rankα = 1 then (α, 1) /∈ C (A)rp,
so [Mss

(α,1)(µ)]inv may be nonzero. Roughly these [Mss
(α,1)(µ)]inv

are algebraic Seiberg–Witten invariants. Even though they are
non-reduced, they are independent of stability condition as rank 1.

19 / 20 Dominic Joyce, Oxford University Enumerative invariants in Algebraic Geometry and WCF



Introduction
The main results, basic case

Extension to surfaces with pg > 0

Fix a Gieseker or µ-stability condition (τ,T ,6) on coh(X ). Then
we can define a 1-parameter family (µt , T̃ ,6)t∈R of stability
conditions on R, which all restrict to (τ,T ,6) on coh(X ) ⊂ A.
Let α ∈ C (coh(X )) with rankα > 1, and take L = OX (−N) to be
very negative line bundle. It turns out that if t � 0 then
Mss

(α,1)(µt) = ∅, and if t � 0 then Mss
(α,1)(µt) is a stable pair

moduli space overMss
α (τ), so [Mss

(α,1)(µt)]redvirt is determined by the

algebraic Donaldson invariant [Mss
α (τ)]red and lower order terms.

By considering the (nontrivial) WCF (3) for [Mss
(α,1)(µt)]red from

t � 0 to t � 0 for rankα = r > 1, I expect to derive a formula

(rank r Donaldson invariants) = function (rank < r Donaldson
invariants and Seiberg–Witten invariants).

Hence by induction on r we write rank r > 1 Donaldson invariants
of surfaces in terms of Seiberg–Witten invariants and rank 1
Donaldson invariants, which count Hilbert schemes. This works for
both b2+ > 1 and b2+ = 1, though with different formulae.
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