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Introduction

Fix some interesting kind of space X in Differential or Algebraic
Geometry, for example a G2-manifold, Spin(7)-manifold, complex
surface, Fano 3-fold, Calabi–Yau 3-fold, or Calabi–Yau 4-fold.
Consider geometric objects E living on X , for example associative
3-folds, G2-instantons, Spin(7)-instantons, Gromov–Witten curves,
vector bundles and coherent sheaves. The families of objects E
with fixed topological invariants α form a moduli space Mss

α , with
some geometric structure (e.g. manifold, scheme, or stack).
The idea of enumerative invariants is to ‘count’ moduli spaces
Mss

α to get a number I (α) (or homology class, etc.). To count as
interesting, it is expected as a minimum that I (α) is unchanged
under deformations of X . You get extra points if I (α) does an
interesting job (e.g. distinguishes smooth structures on X ), or
satisfies interesting identities (e.g. wall-crossing formulae), or fits
in a generating function with nice properties (e.g. modular), or if
you give it an exciting name involving quantum, black holes, etc.
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Typically (especially in algebraic geometry) Mss
α is a rather

singular space, and may also be noncompact.

Principle

To do enumerative invariants, we need Mss
α to behave like a

compact, oriented manifold (or orbifold) of known dimension d : it
must have a fundamental class [Mss

α ]fund ∈ Hd(Mss
α ,Q).

Then we define the invariant by I (α) =
∫
[Mss

α ]fund
Ψ, for Ψ some

universal cohomology class on Mss
α (there are usually plenty of Ψ).

This raises several problems:

• Behaving like a manifold. We need Mss
α to be a manifold or

derived smooth manifold/orbifold in Differential Geometry, or a
quasi-smooth derived scheme/Deligne–Mumford stack in Algebraic
Geometry (or a classical scheme/D–M stack with obstruction theory).
To get a derived smooth manifold in Differential Geometry, you
need objects E to be solutions of a nonlinear elliptic p.d.e.
To get a quasi-smooth derived scheme you need dimension
restrictions on X (e.g. complex surface, Fano 3-fold, C–Y 3-fold).
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• Bad points. At reducible connections, or strictly semistable
sheaves, the manifold-like structure breaks.
Much of my research has involved working out how to correctly
‘count’ moduli spaces including strictly semistable sheaves.
• Compactifying moduli spaces. In Differential Geometry Mss

α is
usually noncompact, and you compactify to Mss

α by adding sin-
gular solutions. This is difficult, but showing that the ‘manifold-like’
structure extends over Mss

α \Mss
α is practically impossible in dim > 4.

So conjectures about counting associatives, G2-instantons, etc. are
likely to remain conjectures until we all retire.
In Algebraic Geometry we usually get compact moduli spaces for
free by considering the right kind of singular object (e.g. coherent
sheaves, not vector bundles).
• Orienting moduli spaces. We have proved many (6) theorems
showing moduli spaces Mss

α are orientable, and saying what data
you need on X to construct a canonical orientation on Mss

α .
• Actually computing invariants. Once you know your invariants
exist, can you compute them in examples? We have very good
theorems for quivers, and coherent sheaves on curves and surfaces.
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Enumerative geometry of G2-manifolds

I’ll get this over so Differential Geometers can go to sleep. I see
the high level picture (see Thomas Walpuski’s talk for more) as:

Conjecture 1

(a) (Donaldson–Segal 2009) Enumerative invariants counting
G2-instantons and associative 3-folds in a G2-manifold might work.
(b) (Joyce 2016) Invariants counting G2-instantons and
associative 3-folds might not work (unless ‘unobstructed’??).

• For 4-manifolds X 4 with b2+ = 0, Donaldson invariants are undefined.
• For X 4 with b2+ = 1, Donaldson invariants are defined, satisfy WCF.
• For 4-manifolds X 4 with b2+ > 1, Donaldson invariants are
deformation-invariant.
Under analogy b2+(X 4) ≈ b27(X 7), expect:
• For holonomy G2, invariants counting G2-instantons are undefined.
• For CY3×S1, invariants counting G2-instantons may be defined,
and satisfy WCF — compare D–T invariants of CY3.
• For K3×T 3, invariants counting G2-instantons may be defined,
and be deformation-invariant — compare Donaldson invariants of K3.
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Orientations on moduli spaces

We have a pretty complete answer in all the cases we care about:

Theorem 1

(a) (Joyce 2016) Moduli spaces of associative 3-folds are
orientable. Canonical orientations are induced by a ‘flag structure’.
(b) (Joyce–Tanaka–Upmeier 2018.) General theory of
orientations for moduli spaces of connections in gauge theory.
(c) (Joyce–Upmeier 2018.) Moduli spaces of G2-instantons are
orientable. Canonical orientations are induced by a ‘flag structure’.
(d) (Cao–Gross–Joyce 2018.) Moduli of Spin(7)-instantons,
and coherent sheaves on a compact CY 4-fold, are orientable.
(e) (Bojko PhD 2020.) Moduli spaces of coherent sheaves on a
noncompact CY 4-fold are orientable.
(f) (Joyce–Upmeier 2020.) Compact Calabi–Yau 3-folds have
‘orientation data’ [an important unsolved problem in D–T theory].

The proofs of (b)–(f) involve understanding moduli spaces of all
connections on X using homotopy theory, classifying spaces, etc.
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A universal picture of enumerative invariants — set up

Let us restrict to enumerative invariant problems that are C-linear,
with a good notion of direct sum ⊕, such that reducibles / strictly
semistables come from direct sums of smaller objects. Examples
are gauge theory of U(m)-connections, and vector bundles /
coherent sheaves in algebraic geometry. Write A for the category
of all the objects (e.g. all U(m) connections on X , or coh(X )).
There are two ways of forming a moduli stack of all objects in A:
the full moduli stack M, and the ‘projective linear’ moduli stack
Mpl which quotients out by multiples of identity morphisms.
There is a BGm-fibration M→Mpl.
The moduli spaces of ‘semistable’ objects Mss

α we want to ‘count’
are generally open subspaces of Mpl. Thus, if we can form a
‘fundamental class’ [Mss

α ]fund we can push it forward to
H∗(Mpl,Q). The universal cohomology classes Ψ used to define
invariants I (α) =

∫
[Mss

α ]fund
Ψ always come from H∗(Mpl,Q).

We take the point of view that the enumerative invariant is the
class [Mss

α ]fund in H∗(Mpl,Q).
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Vertex and Lie algebras on homology of moduli spaces

Theorem 2 (Joyce 2018)

Given almost any C-linear additive category A of geometric origin,
with moduli spaces M,Mpl, we can define the structure of a
vertex algebra on H∗(M,Q), which induces the structure of a Lie
algebra on H∗(Mpl,Q) (lying a little bit).

I discovered this (and reinvented vertex algebras by mistake) while
trying to understand wall-crossing formulae for DT4 invariants of
C–Y 4-folds, but then realized it was far more general. Vertex
algebras are horribly complicated objects.
Who ordered the vertex algebras? They clearly come from String
Theory. The collaboration String Theorists cannot explain them,
and should all be fired.
Recent work by Bojko–Lim–Moreira 2022 relates the vertex
algebras to Virasoro constraints on invariants. Again, String
Theorists should explain this.
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Explicit description of the homology of moduli spaces

To apply Theorem 2 in examples, it is useful to have an explicit
description of H∗(M,Q), and H∗(Mpl,Q).

Theorem 3 (Simons PhD student Jacob Gross arXiv:1907.03269)

Let X be a connected complex projective surface. Write M for the
moduli stack of objects in Db coh(X ) and K 0

sst(X ) for the
semi-topological K-theory of X (equal to
Image(K 0(coh(X ))→ K 0

top(X )) for X a surface). Then
M =

∐
κ∈K0

sst(X )Mκ with Mκ connected, and

H∗(Mκ,Q) ∼=Sym∗
(
Heven(X ,Q)⊗Q t2Q[t2]

)
⊗Q∧

∗(Hodd(X ,Q)⊗Q tQ[t2]
)
. (0.1)

A similar equation holds for cohomology H∗(Mκ,Q).

This also holds if X is a curve, projective toric manifold, and a few
other cases. Jacob also described the vertex algebra structure on
H∗(M,Q) (it is basically a super-lattice vertex algebra). This
yields (more-or-less) a description of H∗(Mpl,Q) and its Lie bracket.
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Conjecture 2 (Gross–Joyce–Tanaka arXiv:2005.05637, 2020.)

Let there be given a C-linear enumerative invariant problem in
Differential or Algebraic Geometry, with additive category A,
lattice of topological charges K (A), stacks M and Mpl, and nice
stability conditions τ , so we get τ -(semi)stable moduli stacks
Mst

α ⊆Mss
α ⊆Mpl

α ⊂Mpl for α ∈ K (A). Then

(i) There is a systematic way to define invariants
[Mss

α (τ)]inv ∈ H∗(Mpl
α ,Q) for all α ∈ K (A). If Mst

α =Mss
α

then [Mss
α (τ)]inv = [Mss

α (τ)]virt is the ‘virtual class’. If
Mst

α 6=Mss
α then the virtual class is not defined, but we can

still construct [Mss
α (τ)]inv in a more complicated way using

‘pair invariants’, and get an answer independent of the pairs.

(ii) The [Mss
α (τ)]inv satisfy an explicit wall-crossing formula

(WCF) under change of stability condition τ  τ̃ . This writes
[Mss

α (τ̃)]inv as a Q-linear combination of repeated Lie brackets[[
· · ·
[
[Mss

α1
(τ)]inv, [Mss

α1
(τ)]inv

]
, . . .

]
, [Mss

αk
(τ)]inv

]
for α = α1 + · · ·+ αk , using the Lie bracket on H∗(Mpl,Q).
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This isn’t a complete statement, and there are variants: some
problems need a choice of orientations on M,Mpl, for
3-Calabi-Yau problems we should use a vertex Lie algebra rather
than a vertex algebra, etc. We proved the simplest case:

Theorem 4 (Gross–Joyce–Tanaka arXiv:2005.05637, 2020.)

Conjecture 2 holds for invariants counting representations of
quivers Q with no oriented cycles.

Theorem 5 (Joyce ‘Monster WCF paper’ arXiv:2111.04694, 2021.)

Conjecture 2 holds for Algebraic Geometry enumerative invariant
problems defined using Behrend–Fantechi virtual classes, satisfying
a list of assumptions. In particular this includes coherent sheaves
on projective curves, surfaces, and Fano 3-folds, and
representations of quivers with relations.

Conjecture 2 should also hold for coherent sheaves on Calabi–Yau
4-folds, but the proof is not yet complete. This is the subject of
ongoing work by Arkadij Bojko, Hyeonjun Park, and others.
It may also hold for U(m)-instantons on 4-manifolds with b2+ > 1.
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Applications of the Monster WCF paper

Theorem 6 (PhD student Chenjing Bu arXiv:2208.00927, 2022.)

Compute invariants of semistable vector bundles on projective
curves explicitly using Monster WCF paper. Reproves
Jeffrey–Kirwan–Witten.

Theorem 7 (Joyce in progress, 2023, see talk Jan 2023.)

Compute invariants of semistable coherent sheaves on projective
surfaces with b2+ > 1 explicitly using Monster WCF paper, in terms
of universal functions in infinitely many variables.
This proves at least the structural part of many conjectures in the
literature.

Example application: computation of all higher rank Donaldson
invariants for projective surfaces with b2+ > 1.
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Where to go next?

• Orientation problems: What algebro-topological data on a spin
8-manifold X (e.g. Spin(7)-manifold, Calabi–Yau 4-fold) is needed
to define canonical orientations on Cayley 4-fold moduli spaces,
and Spin(7)-instanton moduli spaces, and moduli of coherent
sheaves on Calabi–Yau 4-folds? The answer is a variant of flag
structures on 7-manifolds — Joyce–Upmeier, work in progress.
• Sheaves on surfaces: I need to finish writing the b2+ > 1 case
of computing invariants counting semistable coherent sheaves on
projective surfaces, and then work out the b2+ = 1 case (difficult).
• Constraints on Seiberg–Witten invariants? My construction of
sheaf invariants for surfaces X goes via pair invariants counting ‘pairs’
φ : L→ E for L an arbitrary (very negative) line bundle, where E is
the semistable sheaf. But the sheaf invariants are independent of L.
The fact that the invariants are independent of L seems quite
nontrivial, and requires constraints on the Seiberg–Witten
invariants of X — the poles in the invariant generating function
can only lie in special places. I think this may work for general
4-manifolds. I don’t yet know how powerful the constraints are.
If you know something about this, please tell me.
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• Invariants of Fano 3-folds: we now know that Fano 3-folds
have good sheaf-counting invariants and WCF for dimension > 0
sheaves. But nothing has really been done on them. One obvious
thing would be to extend Feyzbakhsh–Thomas to Fano 3-folds,
and show that sheaf-counting invariants are determined by
Gromov–Witten invariants.
• Calabi–Yau 4-fold DT4 invariants: general theory. Extend
the Monster WCF paper to Calabi–Yau 4-folds. Most of it should
be the same, but there are some issues about CY4 virtual classes,
and about how to make the pair invariants / quiver-sheaf
invariants work in the CY4 case. People are working on this.
• Calabi–Yau 4-fold DT4 invariants: examples. Understand
what DT4 invariants depend on and what their structure is. Lots
of work is being done on this. 3-fold counting invariants depend on
Gromov–Witten invariants. It looks like DT4 invariants may
depend on Gromov–Witten invariants and also invariants counting
surfaces in CY4 (compare counting Cayleys in Spin(7)-manifolds).
• Vertex algebra questions: Interpret my vertex algebras in
String Theory. Find applications in enumerative invariants, e.g. to
Virasoro constraints (Bojko–Lim–Moreira).
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