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The classical physical “supergravity” theories in 10 and 11 spacetime
dimensions, and their quantum cousins (the “superstring” theories and
“M-theory”) form an important component of the string theory approach to
quantizing gravity. These theories were constructed in the 1980’s (with
antecedents dating to the 1960’s), and in order to use them to study realistic
quantum gravity theories in our world of 4 spacetime dimensions, one must
“compactify,” that is, study 10- or 11-dimensional spacetimes M which are
fibered over our 4-dimensional spacetime M with compact fibers F .

If we take the characteristic length scale of the compact fiber to be, say, the
Planck length 10�33cm, then one would not expect to directly observe F , but
might detect geometric features of F through the physical e↵ects which are
produced.
In the simplest version of compactification, one takes M = M ⇥ F , although
more complicated scernarios are also possible.
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Compactification and special holonomy

The 10- and 11-dimensional theories in question are supersymmetric, and one
can correspondingly study supersymmetric theories in 4 spacetime dimensions.
(The “experimental jury” is still out on the question of whether the world
around us is actually supersymmetric at high enough energies, but
supersymmetric models of phyiscs are nonetheless interesting to study.) In order
to preserve at least some of the higher-dimensional supersymmetry in the
lower-dimensional theory, the compact fiber F must have a metric with a
covariantly-constant spinor field in the product scenario (and there should be an
appropriate fibration by such in the more complicated scenarios.)

Now the mathematical question of which compact Riemannian manifolds have
covariantly-constant spinor fields is a question about holonomy of Riemannian
manifolds, and the answer is known: after a finite unbranched cover, F is a
metric product of compact Riemannian manifolds whose holonomy is either
SU(n), Sp(n), G2, Spin(7), or trivial.



Perturbative
heterotic duals

David R. Morrison

Compactification

Compactification and special holonomy

The 10- and 11-dimensional theories in question are supersymmetric, and one
can correspondingly study supersymmetric theories in 4 spacetime dimensions.
(The “experimental jury” is still out on the question of whether the world
around us is actually supersymmetric at high enough energies, but
supersymmetric models of phyiscs are nonetheless interesting to study.) In order
to preserve at least some of the higher-dimensional supersymmetry in the
lower-dimensional theory, the compact fiber F must have a metric with a
covariantly-constant spinor field in the product scenario (and there should be an
appropriate fibration by such in the more complicated scenarios.)
Now the mathematical question of which compact Riemannian manifolds have
covariantly-constant spinor fields is a question about holonomy of Riemannian
manifolds, and the answer is known: after a finite unbranched cover, F is a
metric product of compact Riemannian manifolds whose holonomy is either
SU(n), Sp(n), G2, Spin(7), or trivial.



Perturbative
heterotic duals

David R. Morrison

Compactification

Compactification and special holonomy, con.

In fact, to obtain a theory in 4 dimensions from M-theory with only a single
4-dimensional supersymmetry transformation, one takes F to be a Riemannanian
7-manifold with holonomy G2. The aim is then to construct a dictionary
between geometric properties of such fibers F , and physical properties of the
corresponding 4-dimensional physical theory (and perhaps even to go backwards:
given a set of properties of the physical theory, one might want to “engineer” a
fiber F which produces them, and possibly even classify all fibers which could
produce them).

One immediately enounters the problem that two key physical properties –
non-abelian gauge symmetry, and chiral matter – cannot be realized if F is a
manifold. However, physicists have studied more general compactifications in
which the fiber (and the total space) are allowed to have controlled singularities,
of types known to produce the desired physical features. Thus, one wants to
allow “ADE” singularities in real codimension four in order to produce
non-abelian gauge symmetry, and to allow certain further singularities in real
codimension seven in order to produce chiral matter.
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Holonomy G2

A Riemannian 7-manifold F has holonomy G2 if the parallel transport along any
loop L ⇢ F based at a point P 2 F induces an automorphism of TP(F )
contained in the subgroup G2 ⇢ O(7) = O(TP).

The possibility of G2 as a Riemannian holonomy group had been raised by
Berger’s holonomy classificiation in the 1950’s, although the first local example
was constructed by Bryant in the 1980’s, followed by a complete example by
Bryant and Salomon.
The first compact examples were constructed by Joyce in the 1990’s. Joyce
started with singular spaces T 7/� for appropriate finite groups � acting on T

7,
and then worked quite hard to show that the singularities could be resolved,
leaving one with a manifold of holonomy G2. Of course, restricting the loops
used to measure holonomy to the nonsingular part of T 7/� would also produce
holonomy (contained in) G2; moreover, the singularities on T

7/� are of “ADE
type,” so paradoxically, Joyce’s starting singular space is actually a more general
space of the type relevant to physics.1

1It is important to note, however, that although these spaces give rise to non-abelian gauge
symmetry, they do not have the codim. seven singularities needed to produce chiral matter.
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Singular forms of Joyce’s examples

In this project, we investigated the singular spaces T 7/� which were Joyce’s
starting points, hoping to get a better handle on the physics involved. Our key
tool was the use of certain dualities, in order to represent the physical models in
a di↵erent way: as a compactification of one of the heterotic superstring theories
on a Calabi–Yau threefold (a manifold with holonomy SU(3)). A heterotic
compactification naively requires not just a metric on the space F , but also a
bundle on that space – precisely what type of bundle depends on which of the
two heterotic theories we are considering.
Our initial expectation was that the data of the singular 7-dimensional space
T

7/� would determine both the corresponding 4-dimensional physics, and the
bundle data required for a heterotic interpretation of that same physics. The
final story turned out to be somewhat more complicated.
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M-theory/heterotic duality and K3 surfaces

Our starting point is one of the string theory dualities discovered in the 1990’s,
relating M-theory compactified on a Ricci-flat K3 surface,2 to the heterotic
string compactified on a flat T 3 with appropriate bundle data. These
compactified theories are 7-dimensional, and each has a moduli space with a
description of the form

R+ ⇥ (⇤\O(3, 19)/(O(3)⇥ O(19)))

for an appropriate discretely acting group ⇤. In the case of M-theory
compactified on a K3 surface, the moduli space is that of Ricci-flat metrics; in
the case of a heterotic string compactified on a flat T d , Narain made a general
perturbative string calculation showing that the moduli space has the form

R+ ⇥ (⇤d\O(d , d + 16)/(O(d)⇥ O(d + 16)))
2A K3 surface is a real 4-manifold, unique up to di↵eomorphism. The name arises from

putting on a compatible complex structure, which gives it two complex dimensions.

NAH.tt
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Nonabelian gauge symmetry

What we referred to as the “moduli space” on the previous slide contains some
points corresponding to theories with non-abelian gauge symmetry. In the
heterotic case, this is part of Narain’s perturbative heterotic string calculation:
he found gauge fields in the spectrum of the theory which become massless only
at certain moduli values determined by the “Narain lattice” O(d , d + 16;Z).
The corresponding statement on the K3 side deals with limits which are not
Ricci-flat metrics on K3 per se; but rather limiting Ricci-flat orbifold metrics
(with “ADE” singularities) corresponding to limits in which rational curves on
the nearby K3 which have shrunk to zero area. This is the origin of non-abelian
gauge symmetry in M-theory compactifications on singular spaces.

add
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M-theory/heterotic duality and K3 surfaces, con.

There is a particular limit in these moduli spaces, known as the “half-K3 limit,”
which makes the duality apparent. It is a limit in which the K3 surface is
equipped with a sequence of Ricci-flat metrics which leave a large open subset of
the K3 surface in the form (a, b)⇥ T

3 for an open interval (a, b); each of the
complicated geometric ends of this picture carries homology related to the E8

lattice and can be reinterpreted in terms of E8 bundle data on T
3. This relates

it directly to the “E8 ⇥ E8” heterotic string.
This duality can also be studied for families of K3 surfaces whose general
member is singular, compared with families of bundles on T

3 whose general
member has non-abelian struture group. Again, the correspondence between the
physical theories is evident.

0
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Fibering the duality

We now wish to invoke the same duality for a compact singular space F (of
holonomy G2) which has a map F ! B whose fibers are K3 surfaces (possibly
with ADE singularities). As Sen discusses in hep-th/9604070, there can be
complications when applying dualities fiberwise, and indeed we shall find some in
this case.
Our basic idea is to take a fiberwise half-K3 limit, in other words, a map
F ! (a, b) such that the K3 fibers within F have a T

3 fibration over (a, b). We
call this the “half-G2” limit. The 3-parameter family of T 3’s will sweep out a
Calabi–Yau threefold (in fact they form an SYZ fibration on that threefold) and
that Calabi–Yau is the space we need for compactifying the heterotic string.

E te
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An example

F = T
7/(Z2)3 with the group action generated by

↵ : (x1, ..., x7) 7! (�x1,�x2,�x3,�x4, x5, x6, x7)

� : (x1, ..., x7) 7! (�x1,
1

2
� x2, x3, x4,�x5,�x6, x7)

�2 : (x1, ..., x7) 7! (
1

2
� x1, x2,

1

2
� x3, x4,�x5, x6,�x7) .

WIT

F BE a
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An example

T 4/Z2

T 3

T 3/Z2

T 3/Z2

490
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An example

x4 = 0

x4 = 1/2

x4 = 1/4

Y2,�

L�

L�2

A schematic view of the half-G2 limit of the G2 orbifold X2 from example 3.2
with the ↵-fibration. We have stretched X2 along the direction of x4, the throat
coordinate. The heterotic dual geometry Y2,↵ is the inverse image ⇡�1

4

�
1
4

�
, and

is shown with its SYZ fibration of T 3 fibers (black lines) over the 3-orbifold base
Q2,↵ (blue disk). Some of the black lines are singular fibers that do not create
singularities in the total space; the singularities in the total space are displayed
by red lines.

O
O
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Example, con.

The ↵-fixed loci (vertical red lines) are confined to the ends of the x4 interval,
while the �-fixed loci L� and �2-fixed loci L� stretch across the interval. These
T

3 loci that stretch across the interval intersect Y2,↵ in a 2-component locus
T

2 t T
2. The monodromy action of ↵ on the singular T 2 of Y2,↵ fixed by � is

to travel around a loop in x4 that begins at x4 =
1
4 , passes through x4 = 0 or

x4 =
1
2 , and returns to x4 =

1
4 along the other leg of L� , so that the singular T 2

are swapped in pairs.
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