Generating equidistant points

Simon Salamon

Simons Collaboration in
Geometry, Analysis, and Physics

Stony Brook, September 2018

Fubini-Study distance

Complex projective space $\mathbb{C P}^{d-1}$ is a compact Kähler manifold. Its Riemannian metric g arises from the standard Hermitian form

$$
\langle\mathbf{w} \mid \mathbf{z}\rangle=\sum_{i=0}^{d-1} \bar{w}_{i} z_{i}
$$

on \mathbb{C}^{d}, which is invariant by the unitary group $U(d)$.
The associated distance δ satisfies

$$
\cos ^{2}\left(\frac{1}{2} \delta([\mathbf{w}],[\mathbf{z}])\right)=\frac{|\langle\mathbf{w} \mid \mathbf{z}\rangle|^{2}}{\|\mathbf{w}\|^{2}\|\mathbf{z}\|^{2}}=\frac{\langle\mathbf{w} \mid \mathbf{z}\rangle\langle\mathbf{z} \mid \mathbf{w}\rangle}{\langle\mathbf{w} \mid \mathbf{w}\rangle\langle\mathbf{z} \mid \mathbf{z}\rangle}
$$

The RHS is a cross ratio of four points $[\mathbf{w}],[\mathbf{z}],\left[\mathbf{w}^{\prime}\right],\left[\mathbf{z}^{\prime}\right]$, and represents a transition probability.

Wigner's theorem (J)

Theorem. Any isometry ϕ of $\mathbb{C P}^{d-1}$ arises from a unitary or conjugate unitary transformation of \mathbb{C}^{d}.

Proof [Freed]. Consider the effect of ϕ on the acs J of $\mathbb{C P}^{d-1}$. The Levi-Civita connection has holonomy $U(d-1)$, so ∇J and $\nabla\left(\phi^{*} J\right)$ both vanish and $R\left(\phi^{*} J\right)=\nabla_{1} \nabla\left(\phi^{*} J\right)=0$.

It follows from the invariant nature of $R \in S^{2} \mathfrak{h}$ that $\phi^{*} J= \pm J$ and ϕ is holomorphic or anti-holomorphic. In the former case, it lifts to (the transpose of) the linear map

$$
\tilde{\phi}: H^{0}\left(\mathbb{C P}^{d-1}, L\right) \longrightarrow H^{0}\left(\phi^{*} L\right) \cong H^{0}(L)
$$

where $L=\mathcal{O}(1)$. Since ϕ is an isometry, $\tilde{\phi}$ is unitary.

Moment mapping (ω)

The 2-form $\omega_{0}=i \sum d z_{i} \wedge d \bar{z}_{i}$ on \mathbb{C}^{d} induces a symplectic form on $\mathbb{C P}^{d-1}$, regarded as a symplectic quotient of \mathbb{C}^{d} by $U(1)$. Let

$$
\mathscr{D}=\left\{A \in \mathbb{C}^{d, d}: A=A^{*}, \operatorname{tr} A=1\right\} \simeq \mathfrak{s u}(d)
$$

The mapping $S^{2 d-1} \rightarrow \mathscr{D}$ for which

$$
\mathbf{z} \longmapsto \mathbf{z}^{*} \mathbf{z}=\left(\begin{array}{cccc}
\left|z_{0}\right|^{2} & \bar{z}_{0} z_{1} & \bar{z}_{0} z_{2} & \cdots \\
\bar{z}_{1} z_{0} & \left|z_{1}\right|^{2} & \bar{z}_{1} z_{2} & \cdots \\
\bar{z}_{2} z_{0} & \bar{z}_{2} z_{1} & \left|z_{2}\right|^{2} & \cdots \\
\cdots & \cdots & \cdots &
\end{array}\right)
$$

is $U(d)$-equivariant and defines an isometric embedding

$$
\mu: \mathbb{C P}^{d-1} \hookrightarrow \mathscr{D} \simeq \mathbb{R}^{d^{2}-1}
$$

A point of \mathscr{D} represents a mixed quantum state.

SIC-POVM

is shorthand for Symmetric Informationally Complete Positive Operator Valued Measure, here it is a finite one.

Definition 1. A SIC-POVM is a subset $\left\{P_{\alpha}\right\}$ of d^{2} rank-one projections in \mathscr{D} such that

$$
\sum_{\alpha=1}^{d^{2}} P_{\alpha}=d \mathbf{1}, \quad \operatorname{tr}\left(P_{\alpha} P_{\beta}\right)= \begin{cases}1 & \alpha=\beta \\ \lambda & \alpha \neq \beta\end{cases}
$$

Equivalently, by setting $P_{\alpha}=\mathbf{z}_{\alpha}^{*} \mathbf{z}_{\alpha}$ (with $\left\|\mathbf{z}_{\alpha}\right\|=1$), it is a set of d^{2} points $\left[\mathbf{z}_{\alpha}\right]$ in $\mathbb{C P}{ }^{d-1}$ such that

$$
\left|\left\langle\mathbf{z}_{\alpha} \mid \mathbf{z}_{\beta}\right\rangle\right|^{2}=\lambda, \quad \alpha \neq \beta, \quad \text { for some fixed } \lambda \in(0,1)
$$

The points represent "equiangular lines" in \mathbb{C}^{d}.

Adjoint orbits

Since $P_{\alpha}=\mu\left(\left[\mathbf{z}_{\alpha}\right]\right)$, we have
Definition 2. A SIC consists of a regular simplex in $\mathfrak{s u}(d)$ whose d^{2} vertices lie in the orbit $\mathbb{C P}^{d-1}$.

Lemma. d^{2} is the maximum number of mutually equidistant points possible in $\mathbb{C P}^{d-1}$, and in this case λ must equal $\frac{1}{d+1}$.

Proof. Given an equidistant set $\left\{P_{\alpha}\right\}$, set $Q_{\beta}=P_{\beta}-\lambda \mathbf{1}$. Then

$$
\operatorname{tr}\left(P_{\alpha} Q_{\beta}\right)= \begin{cases}1-\lambda & \alpha=\beta \\ 0 & \alpha \neq \beta\end{cases}
$$

So $\left\{P_{\alpha}\right\}$ is linearly independent in $\mathfrak{i u}(d)$.
Applying $\operatorname{tr}\left(Q_{\beta} \bullet\right)$ to $\mathbf{1}=\sum c_{\alpha} P_{\alpha}$, gives $1-\lambda d=c_{\alpha}(1-\lambda) \forall \alpha$.
Then $d=d^{2} c_{\alpha}$, and so $d(1-\lambda d)=1-\lambda$.

Existence

Following pioneering work of Zauner [PhD 1999], SIC-POVM's are known to exist for all $d \leqslant 21$ and in a few higher dimensions. There is strong numerical evidence for their existence $\forall d \leqslant 151$.

There are many papers [since 2004] on the subject by Appleby, Bengtsson, Caves, Flammia, Grassl, Renes, Scott, Zhu, and others.

Appleby-Flammia-McConnell-Yard [in 2016] establish links with number theory. A preprint [2018] by Kopp advances this.

However, all known SIC sets are orbits of a finite group. With one exception, that group is conjugate to the Heisenberg (WH or GP) group that acts on $\mathbb{C P}^{d-1}$ as $(\mathbb{Z} / d \mathbb{Z})^{2}$.

Conjecture. For every d, one can always find $\mathbf{z} \in \mathbb{C}^{d}$ whose orbit WH•[z] is a SIC set in $\mathbb{C P}^{d-1}$. Such a \mathbf{z} is called a fiducial vector.

Clifford-Weyl-Heisenberg

Fix $d \geqslant 3$. Set $\omega=e^{2 \pi i / d}$. Consider the cyclic groups W and H generated by the 'shift' and 'clock' isometries

$$
\begin{aligned}
& {\left[z_{0}, z_{1}, \ldots, z_{d-1}\right] \xrightarrow{h}\left[z_{0}, \omega z_{1} \ldots, \omega^{d-1} z_{d-1}\right]} \\
& \quad w \| \\
& {\left[z_{d-1}, z_{0}, \ldots, z_{d-2}\right]}
\end{aligned}
$$

which commute on $\mathbb{C P}^{d-1}$. The normalizer $C(d)$ of $W \times H$ in $U(d)$ is the Clifford group. There is a representation

$$
S L\left(2, \mathbb{Z}_{d}\right) \ltimes\left(\mathbb{Z}_{d}\right)^{2} \rightsquigarrow C(d) / U(1)
$$

which can be extended to include complex conjugation. It is an isomorphism if d is odd.
Example. If $d=5$ the order is $15000 / 5$ [Horrocks-Mumford].

Low dimensions

Case $d=2$. A SIC set is a regular tetrahedron inscribed in $S^{2}=\mathbb{C P}^{1}$ and $S O(3)=S U(2) / \mathbb{Z}_{2}$. An example is

$$
[1+r, 1+i], \quad[1+r,-1-i], \quad[1+i, 1+r], \quad[1+i,-1-r]
$$

where $r=\sqrt{3}$, not the simplest.
Case $d=3$. An example is

$$
[0,1,-1],[0,1,-\omega],\left[0,1,-\omega^{2}\right], \text { and cyclic permutations, }
$$

where $\omega=e^{2 \pi i / 3}$. Easy to extend to a one-parameter family.
Case $d=4$. Let $s=\sqrt{2}$ and $t=\sqrt{2+\sqrt{5}}$. A fiducial vector is

$$
[-t-i(s+t), 1-s+i, t+i(t-s), 1+s+i] .
$$

NB. No SIC set in $\mathbb{C P}^{3}$ can project to only 4 points in $\mathbb{H P}^{1}=S^{4}$.

Maximal torus

Having fixed d and coordinates on \mathbb{C}^{d}, let

$$
\mathbb{T}=\left\{\operatorname{diag}\left(e^{i t_{0}}, \ldots, e^{i t_{d-1}}\right): \sum t_{i}=0\right\}
$$

be the standard $(d-1)$-torus in $S U(d)$. The associated moment $\operatorname{map} \tau: \mathbb{C P}^{d-1} \rightarrow \mathfrak{t}^{*}$ is μ composed with a projection, and can be identified with

$$
[\mathbf{z}] \mapsto \frac{1}{\|\mathbf{z}\|^{2}}\left(\left|z_{0}\right|^{2}, \ldots,\left|z_{d-1}\right|^{2}\right)=\operatorname{diag}\left(\mathbf{z}^{*} \mathbf{z}\right)
$$

Given $\mathbf{z} \in S^{2 d-1}$, we set $x_{i}=\left|z_{i}\right|^{2}$, so that the image of τ is the standard simplex

$$
\Delta=\left\{\left(x_{0}, \ldots, x_{d-1}\right): \sum x_{i}=1, x_{i} \geqslant 0\right\} \subset \mathbb{R}^{d} .
$$

Correct separation

Fix $d \geqslant 3$, and set $\omega=e^{2 \pi i / d}$.
Recall that $H=\langle h\rangle$ where $h=\operatorname{diag}\left(1, \omega, \omega^{2}, \ldots, \omega^{d-1}\right)$.
Definition. A point $[\mathbf{z}] \in \mathbb{C P}^{d-1}$ is H-fiducial if all points in its H-orbit are 'correctly separated', i.e.

$$
\left|\left\langle\mathbf{z} \mid h^{i} \cdot \mathbf{z}\right\rangle\right|^{2}=\frac{1}{d+1}\|\mathbf{z}\|^{4}, \quad 1 \leqslant i \leqslant d-1
$$

Since this concept is \mathbb{T}-invariant, we say that $\mathbf{x} \in \Delta$ is H-fiducial if the same is true for any $[\mathbf{z}] \in \mu^{-1}(\mathbf{x})$. Let \mathscr{H} denote the subset of Δ consisting of H-fiducial points.

Trivial example. When $d=2, \mu$ is the height function on S^{2} and \mathscr{H} consists of two points, each the image of a small circle.

More tori

Given

$$
\mu: \mathbb{C P}^{d-1} \longrightarrow \Delta \subset \mathbb{R}^{d}
$$

we can identify the H-fiducial subset \mathscr{H} of Δ :
Theorem [Dixon-S]. \mathscr{H} lies in a sphere of radius $\sqrt{\frac{2}{d+1}}$ centre the origin. Moreover,

- if $d=2 n+1$, then $\mathscr{H}=\Delta \cap T$ where T is an n-dimensional torus of revolution;
- if $d=2 n$ then $\mathscr{H}=\Delta \cap\left(T^{\prime} \sqcup T^{\prime \prime}\right)$ where $T^{\prime}, T^{\prime \prime}$ are ($n-1$)-tori of revolution in parallel hyperplanes.

Observation. The centre of an n-face of Δ is a distance $\frac{1}{\sqrt{n+1}}$ from the origin, so the sphere will touch such faces if $d=2 n+1$.

The case $\mathrm{d}=3$

In this case, \mathscr{H} will touch the 1 -faces, and is an incircle that we later parametrize by $\left(\cos ^{2} \phi, \cos ^{2}\left(\phi+\frac{2 \pi}{3}\right), \cos ^{2}\left(\phi+\frac{4 \pi}{3}\right)\right)$.

Let m_{1}, m_{2}, m_{3} be the midpoints, and set $C_{i}=\mu^{-1}\left(m_{i}\right) \subset \mathbb{C P}^{2}$:

There exists a 1-parameter family $\left\{\mathrm{M}_{t}\right\}$ of SIC sets with

$$
\mathbb{M}_{t} \subset C_{1} \sqcup C_{2} \sqcup C_{3}
$$

Proof, exemplified by $d=5$

Let $\mathbf{z}=\left(z_{0}, \ldots, z_{4}\right) \in \mathbb{C}^{5}$. Set $x_{i}=\left|z_{i}\right|^{2}$ and suppose $\sum x_{i}=1$ so

$$
\mu[\mathbf{z}]=\left(x_{0}, x_{1}, \ldots, x_{4}\right)
$$

Set $\omega=e^{2 \pi i / 5}$ and $\alpha_{i}=\left\langle h^{i} \cdot \mathbf{z} \mid \mathbf{z}\right\rangle$ for $i=0,1,2$:

$$
\begin{array}{ll}
\alpha_{0}=x_{0}+x_{1}+x_{2}+x_{3}+x_{4} & =1 \\
\alpha_{1}=x_{0}+\omega x_{1}+\omega^{2} x_{2}+\omega^{3} x_{3}+\omega^{4} x_{4} & =\frac{1}{\sqrt{6}} e^{i \theta} \\
\alpha_{2}=x_{0}+\omega^{2} x_{1}+\omega^{4} x_{2}+\omega^{6} x_{3}+\omega^{8} x_{4} & =\frac{1}{\sqrt{6}} e^{i \phi} .
\end{array}
$$

Taking the moduli squared and rearranging gives three quadrics:

$$
\begin{array}{lr}
Q_{0}: & x_{0}^{2}+x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}=\frac{1}{3}=\frac{2}{d+1} \\
Q_{1}: & x_{0} x_{1}+x_{1} x_{2}+x_{2} x_{3}+x_{3} x_{4}+x_{4} x_{0}=\frac{1}{6} \\
Q_{2}: & x_{0} x_{2}+x_{1} x_{3}+x_{2} x_{4}+x_{3} x_{0}+x_{4} x_{1}=\frac{1}{6},
\end{array}
$$

the first a sphere.

Parametrizing the intersection

It follows that \mathscr{H} lies in the intersection of 2 quadrics with the 4-dimensional hyperplane $\sum x_{i}=1$ in \mathbb{R}^{5}. It can now be parametrized by the very equations that define the quadrics.

Converting the equations for α_{i} into real and imaginary parts,

$$
\left(\begin{array}{ccccc}
1 / \sqrt{2} & 1 / \sqrt{2} & 1 / \sqrt{2} & 1 / \sqrt{2} & 1 / \sqrt{2} \\
1 & \cos \zeta & \cos 2 \zeta & \cos 3 \zeta & \cos 4 \zeta \\
0 & \sin \zeta & \sin 2 \zeta & \sin 3 \zeta & \sin 4 \zeta \\
1 & \cos 2 \zeta & \cos 4 \zeta & \cos 6 \zeta & \cos 8 \zeta \\
0 & \sin 2 \zeta & \sin 4 \zeta & \sin 6 \zeta & \sin 8 \zeta
\end{array}\right)\left(\begin{array}{l}
x_{0} \\
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right)=\left(\begin{array}{c}
1 / \sqrt{2} \\
\cos \theta \\
\sin \theta \\
\cos \phi \\
\sin \phi
\end{array}\right)
$$

where $\zeta=2 \pi / 5$ and ($\sqrt{\frac{2}{5}}$ times) the 5×5 matrix is orthogonal!
Therefore, $Q_{1} \cap Q_{2} \cap Q_{3}$ defines a torus of revolution.

The case of d even

If $d=6$, we'll have 3 quadrics, Q_{1}, Q_{2} as before (6 terms each), together with

$$
Q_{3}: \quad 2\left(x_{0} x_{3}+x_{1} x_{4}+x_{2} x_{5}\right)=\frac{1}{7}
$$

Rearranging their equations, ones sees that

$$
\left(x_{0}-x_{1}+x_{2}-x_{3}+x_{4}-x_{5}\right)^{2}=\frac{1}{7} .
$$

If $d=2 n, \mathscr{H}$ will lie in the union of the two hyperplanes

$$
\sum_{j=0}^{d-1}(-1)^{j} x_{j}= \pm \frac{1}{\sqrt{d+1}}
$$

The remaining $n-1$ moment maps to \mathbb{C} define the two tori.

Conjugation

Let $C=\langle g\rangle$ be a cyclic subgroup of $W \times H$ of order d. Let T be a maximal torus of $S U(d)$ containing C. The modulus of

$$
\operatorname{tr}\left(g^{k} \cdot \mathbf{z}^{*} \mathbf{z}\right)=\left\langle g^{k} \cdot \mathbf{z} \mid \mathbf{z}\right\rangle
$$

equals $\frac{1}{\sqrt{d+1}}$ whenever $\mathbf{z} \in S^{2 d-1}$ is a fiducal vector.
Lemma. The moment mapping

$$
\mu_{T}: \mathbb{C P}^{d-1} \longrightarrow \mathfrak{t}^{*}
$$

can be identified with the vector-valued function

$$
[\mathbf{z}] \mapsto\left(\operatorname{tr}\left(g^{k} \cdot \mathbf{z}^{*} \mathbf{z}\right): 1 \leqslant k \leqslant\lfloor d / 2\rfloor\right) .
$$

This has values in \mathbb{C}^{n} if $d=2 n+1$ and $\mathbb{C}^{n-1} \oplus \mathbb{R}$ if $d=2 n$, and the same theorem applies to the image of C-fiducial vectors.

Overlap phases

In general, set $\tau=-e^{\pi i / d}$. The unitary matrices

$$
D_{p, q}=\tau^{p q} w^{p} h^{q}, \quad 0 \leqslant p, q \leqslant d-1
$$

determine a basis of $\mathfrak{i u (d)}$. They satisfy

$$
D_{p_{1}, q_{1}} D_{p_{2}, q_{2}}=\tau^{p_{1} q_{2}-p_{2} q_{1}} D_{p_{1}+q_{1}, p_{2}+q_{2}}
$$

imposing a symplectic pairing.
If $\mathbf{z} \in S^{2 d-1}$, consider the $d \times d$ matrix

$$
\Phi_{\mathrm{z}}:=\left(\sqrt{d+1} \operatorname{tr}\left(D_{p, q} \mathbf{z}^{*} \mathbf{z}\right)\right) .
$$

- its entries describe the image of moment maps of tori;
- [z] is a fiducial vector iff a.e. entry has modulus one;
- Φ_{z} determines $[z]$.

The case $\mathrm{d}=4$

For $d=4$, entries $(0,1),(1,2)$ from the first row of Φ_{z} tell us that \mathscr{H} consists of two circular arcs

$$
f(\theta)=\frac{1}{2 \sqrt{5}}\left(\sigma+\cos \theta, \sigma^{\prime}+\sin \theta, \sigma-\cos \theta, \sigma^{\prime}-\sin \theta\right)
$$

where $\sigma, \sigma^{\prime}=\frac{1}{2}(\sqrt{5} \pm 1)$ in either order. So let

$$
\mathbf{z}=\left(a e^{i \alpha}, b e^{i \beta}, c e^{i \gamma}, d e^{i \delta}\right)
$$

be a WH-fiducial vector with $a, b, c, d>0$. Entries $(2,0),(2,2)$ corresponding to elements $w^{2}, w^{2} h^{2}$ of order 2 give

$$
\cos (\alpha-\gamma)=0 \quad \text { or } \quad \cos (\beta-\delta)=0
$$

W.I.o.g, assume $\beta-\delta= \pm \frac{\pi}{2}$ and $\alpha=0$, which implies

$$
2 a c \cos \gamma=\frac{1}{\sqrt{5}}
$$

Conclusions for $\mathrm{d}=4$

Using entries from the second row of $\Phi_{\mathbf{z}}$, computing traces with $D_{1,0}-D_{1,2}$ and $D_{1,1}-D_{1,3}$ enables us to eliminate β and γ :

$$
\begin{aligned}
(a d-b c)(a d+b c)(a b-c d)(a b+c d) & =2 a^{2} b^{2} c^{2} d^{2} \cos ^{2} \gamma=\frac{1}{5} b^{2} d^{2} \\
\Rightarrow \cos \theta= \pm \frac{1}{2} \sqrt{1+\sqrt{5}}, \quad \sin \theta & = \pm \frac{1}{2} \sqrt{3-\sqrt{5}}= \pm \frac{\sigma^{\prime}}{\sqrt{2}}
\end{aligned}
$$

giving four points on each of the base circles over each of which one can find 2^{5} fiducial vectors [LoraLamia-S].

The matrix of overlap phases is remarkably simple:

$$
\Phi_{\mathrm{z}}=\left(\begin{array}{cccc}
\cdot & u & 1 & \bar{u} \\
u & \bar{u} & -\bar{u} & \bar{u} \\
-1 & -u & -1 & \bar{u} \\
\bar{u} & u & u & u
\end{array}\right),
$$

where $u=e^{i \theta}=\frac{1}{2} \sqrt{1+\sqrt{5}}+i \frac{\sqrt{5}-1}{2 \sqrt{2}}$ [Bengtsson].

Picture for $\mathrm{d}=4$

Here $\tau\left(\mathbb{C P}^{3}\right)=\Delta \subset \mathbb{R}^{4}$ and fiducial vectors map to 8 points in $\mathscr{H}=\Delta \cap\left(S^{1} \sqcup S^{1}\right):$

Moreover, each set of 4 beads of the same colour is the shadow of 8 SIC sets in $\mathbb{C P}^{3}$. The 8 beads form an orbit of the dihedral group on Δ.

Arithmetic

The overlap phases are all generated by the unit

$$
u=\frac{1}{2} \sqrt{1+\sqrt{5}}+i \frac{\sqrt{5}-1}{2 \sqrt{2}}
$$

which satisfies a monic polynomial of degree 8 over \mathbb{Z}. The coordinates of fiducial vectors lie in a splitting field E which has degree 2 over $\mathbb{Q}(u)$, and thus degree 8 over $K=\mathbb{Q}(\sqrt{5})$:

There are 256 possible fiducial vectors that form an orbit of the extended Clifford group, and there are 16 SIC sets.

Abelian extensions

Suppose that $\mathbf{z}=\left(z_{0}, z_{1}, \ldots, z_{d-1}\right) \in S^{2 d-1}$ is the fiducial vector for a SIC set $\mathbb{S}=W H \cdot[\mathbf{z}]$ in $\mathbb{C P}^{d-1}$, and let $\tau=-e^{\pi i / d}$. Let

$$
E=\mathbb{Q}\left(\tau, \bar{z}_{i} z_{j}\right)
$$

be the field generated by τ and the entries of the matrix $\mathbf{z}^{*} \mathbf{z}$. Let $D=(d-3)(d+1)=(d-1)^{2}-4$, and set

$$
K=\mathbb{Q}(\sqrt{D})
$$

This field contains a unit $\frac{d-1+\sqrt{D}}{2}$ of order 3 modulo d.
$\operatorname{Gal}(E / K)$ will act on the set of WH-fiducials and therefore SIC sets, permuting orbits of $E x C(d)$. There is strong empirical evidence for asserting that E is always an abelian extension of K.

Isometries of order 3

Example. Let $\tau=(1-i) / \sqrt{2}$. Then

$$
\left(\begin{array}{cc}
0 & 1 \\
-1 & -1
\end{array}\right) \rightsquigarrow \frac{1}{2}\left(\begin{array}{cccc}
1 & \tau & -1 & \tau \\
1 & \tau^{3} & 1 & \tau^{7} \\
1 & \tau^{5} & -1 & \tau^{5} \\
1 & \tau^{7} & 1 & \tau^{3}
\end{array}\right)=X \in C(4)
$$

indicating that $X^{-1} w X=h^{-1}$ and $X^{-1} h X=w h^{-1}$. Moreover, $X^{3}=\tau 1$. An analogue exists for all d :

Conjecture [Zauner]. Let $\tau=-e^{\pi i / d}$. A fiducial vector \mathbf{z} can always be found in an eigenspace of the matrix

$$
\frac{1}{\sqrt{d}}\left(\tau^{2 i j+j^{2}}\right) \in C(d)
$$

All elements of $S L(2, d)$ of trace -1 give rise to unitary matrices in $C(d)$ of order 3 if $d>3$ [Appleby].

An exceptional group

Using the identification $\mathbb{C}^{8}=\mathbb{H}^{4}$, consider the groups

- V_{1}, right multiplication by $1, i, j, k \in S p(1)$
- V_{2}, double sign changes in \mathbb{H}^{4}
- V_{3}, double transpositions of the coordinates.

Then $A=V_{1} \times V_{2} \times V_{3} \cong\left(\mathbb{Z}_{2}\right)^{6}$ is a subgroup of $S p(4) \subset S U(8)$.
Fix unit quaternions $p=\frac{1}{2}(1+i+j-k), q=\frac{1}{2}(1+i-j-k)$.
Proposition [Hoggar, 1998]. $A \cdot[0, p, q, j]$ is a SIC set \mathbb{S} in $\mathbb{C P}^{7}$.
Observation [Zhu, Stacey]. Let O denote the root lattice of E_{8} (the set of 'octavians'). Then the stabilizer of \mathbb{S} in $U(8)$ is isomorphic to $\operatorname{Aut}(O) \cong G_{2}(2)$ and has order 12096.

Classification for $\mathrm{d}=3$

Let $\omega=e^{2 \pi i / 3}$. The set \mathbb{M}_{t} of 9 points

$$
\begin{array}{ccc}
{[0,1,-1]} & {[0,1,-\omega]} & {\left[0,1,-\omega^{2}\right]} \\
{[1,0,-1]} & {[1,0,-\omega]} & {\left[1,0,-\omega^{2}\right]} \\
{\left[e^{i t},-1,0\right]} & {\left[e^{i t},-\omega, 0\right]} & {\left[e^{i t},-\omega^{2}, 0\right]}
\end{array}
$$

is a 1-parameter family of SIC-POVM's in $\mathbb{C P}^{2}$, each conjugate to an orbit of $W \times H$.

Observation. \mathbb{M}_{0} is the set of flexes of the cubic $x^{3}+y^{3}+z^{3}-3 c x y z=0$ with $c \notin$ $\left\{1, \omega, \omega^{3}\right\}$, forming the Hesse configuration:

Theorem [Hughston-S, Szöllősi]. Any unordered set of nine mutually equidistant points in $\mathbb{C P}^{2}$ is isometric to \mathbb{M}_{t} for some t.

Proof, a pinched torus

Let \mathbb{S} be a SIC set in $\mathbb{C P}^{2}$. Up to isometries, we are free to assume that \mathbb{S} contains the two points

$$
\left[\mathbf{z}_{1}\right]=[0,1,-\omega], \quad\left[\mathbf{z}_{2}\right]=\left[0,1,-\omega^{2}\right] \quad \in C_{1} .
$$

Any other point $[\mathbf{z}]$ of \mathbb{S} lies a distance $\frac{2 \pi}{3}$ apart from these two.
Lemma. $\mu([\mathbf{z}])$ belongs to the incircle \mathscr{H}, and

$$
[\mathbf{z}]=\mathbf{Z}[\sigma, \phi]:=\left[e^{i \sigma} \cos \phi, \cos \left(\phi+\frac{2 \pi}{3}\right), \cos \left(\phi+\frac{4 \pi}{3}\right)\right]
$$

for some $-\pi<\sigma \leqslant \pi$ and $-\frac{\pi}{2}<\phi \leqslant \frac{\pi}{2}$.
Thus, $[\mathbf{z}]$ lies in a 2-torus \mathscr{T}, pinched at the point where $\phi=\frac{\pi}{2}$.

Equilateral triangles in \mathscr{T}

Given

$$
\mathbf{z}[\sigma, \phi], \quad \mathbf{z}[\tau, \psi], \quad \mathbf{z}[v, \chi] \quad \in \mathscr{T}
$$

all $2 \pi / 3$ apart in $\mathbb{C P}^{2}$, set $x=\tan \phi, y=\tan \psi, z=\tan \chi$ and

$$
p=x+y+z, \quad q=y z+z x+x y, \quad r=x y z
$$

Lemma. $F(p, q, r)=0$, where

$$
\begin{gathered}
F=9-22 p^{2}+9 p^{4}+87 q-126 p^{2} q+27 p^{4} q+298 q^{2}-226 p^{2} q^{2} \\
+24 p^{4} q^{2}+414 q^{3}-138 p^{2} q^{3}+189 q^{4}+27 q^{5}-3 p r-50 p^{3} r-15 p^{5} r \\
+88 p q r-48 p^{3} q r+234 p q^{2} r+18 p^{3} q^{2} r-144 p q^{3} r+81 p q^{4} r+189 r^{2} \\
-480 p^{2} r^{2}-153 p^{4} r^{2}+1398 q r^{2}-306 p^{2} q r^{2}+2736 q^{2} r^{2}-486 p^{2} q^{2} r^{2} \\
+810 q^{3} r^{2}+243 q^{4} r^{2}-558 p r^{3}-486 p^{3} r^{3}+2376 p q r^{3}-810 p q^{2} r^{3} \\
+567 r^{4}-162 p^{2} r^{4}+6399 q r^{4}+486 q^{2} r^{4}+1701 p r^{5}+2187 r^{6}
\end{gathered}
$$

(cf. $p^{2}-3 q=\frac{3}{4}$ in \mathbb{R}^{2}). The proof is completed by adding a 4 th point to get 4 equations in 4 unknowns and finding a Gröbner basis for a quotient ideal to eliminate the known solutions.

Thank you for your patience!

