Generating equidistant points

Simon Salamon

Simons Collaboration in Geometry, Analysis, and Physics

Stony Brook, September 2018

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Fubini-Study distance

Complex projective space \mathbb{CP}^{d-1} is a compact Kähler manifold. Its Riemannian metric g arises from the standard Hermitian form

$$\langle \mathbf{w} | \mathbf{z} \rangle = \sum_{i=0}^{d-1} \overline{w}_i z_i,$$

on \mathbb{C}^d , which is invariant by the unitary group U(d).

The associated distance δ satisfies

$$\cos^{2}\left(\frac{1}{2}\delta([\mathbf{w}], [\mathbf{z}])\right) = \frac{|\langle \mathbf{w} | \mathbf{z} \rangle|^{2}}{\|\mathbf{w}\|^{2} \|\mathbf{z}\|^{2}} = \frac{\langle \mathbf{w} | \mathbf{z} \rangle \langle \mathbf{z} | \mathbf{w} \rangle}{\langle \mathbf{w} | \mathbf{w} \rangle \langle \mathbf{z} | \mathbf{z} \rangle}$$

The RHS is a cross ratio of four points [w], [z], [w'], [z'], and represents a *transition probability*.

Wigner's theorem (J)

Theorem. Any isometry ϕ of \mathbb{CP}^{d-1} arises from a unitary or conjugate unitary transformation of \mathbb{C}^d .

Proof [Freed]. Consider the effect of ϕ on the acs J of \mathbb{CP}^{d-1} . The Levi-Civita connection has holonomy U(d-1), so ∇J and $\nabla(\phi^*J)$ both vanish and $R(\phi^*J) = \nabla_1 \nabla(\phi^*J) = 0$.

It follows from the invariant nature of $R \in S^2\mathfrak{h}$ that $\phi^*J = \pm J$ and ϕ is holomorphic or anti-holomorphic. In the former case, it lifts to (the transpose of) the linear map

$$\tilde{\phi} \colon H^0(\mathbb{CP}^{d-1}, L) \longrightarrow H^0(\phi^*L) \cong H^0(L),$$

where $L = \mathcal{O}(1)$. Since ϕ is an isometry, $\tilde{\phi}$ is unitary.

Moment mapping (ω)

The 2-form $\omega_0 = i \sum dz_i \wedge d\overline{z}_i$ on \mathbb{C}^d induces a symplectic form on \mathbb{CP}^{d-1} , regarded as a symplectic quotient of \mathbb{C}^d by U(1). Let

$$\mathscr{D} = \{A \in \mathbb{C}^{d,d} : A = A^*, \text{ tr } A = 1\} \simeq \mathfrak{su}(d).$$

The mapping $S^{2d-1} \to \mathscr{D}$ for which

$$\mathbf{z} \longmapsto \mathbf{z}^* \mathbf{z} = \begin{pmatrix} |z_0|^2 & \overline{z}_0 z_1 & \overline{z}_0 z_2 & \cdots \\ \overline{z}_1 z_0 & |z_1|^2 & \overline{z}_1 z_2 & \cdots \\ \overline{z}_2 z_0 & \overline{z}_2 z_1 & |z_2|^2 & \cdots \\ \cdots & \cdots & \cdots & \cdots \end{pmatrix}$$

is U(d)-equivariant and defines an isometric embedding

$$\mu\colon \mathbb{CP}^{d-1} \hookrightarrow \mathscr{D} \simeq \mathbb{R}^{d^2 - 1}.$$

A point of \mathscr{D} represents a *mixed* quantum state.

SIC-POVM

is shorthand for *Symmetric Informationally Complete Positive Operator Valued Measure*, here it is a finite one.

Definition 1. A SIC-POVM is a subset $\{P_{\alpha}\}$ of d^2 rank-one projections in \mathscr{D} such that

$$\sum_{\alpha=1}^{d^2} P_{\alpha} = d \mathbf{1}, \qquad \operatorname{tr}(P_{\alpha} P_{\beta}) = \begin{cases} 1 & \alpha = \beta \\ \lambda & \alpha \neq \beta. \end{cases}$$

Equivalently, by setting $P_{\alpha} = \mathbf{z}_{\alpha}^* \mathbf{z}_{\alpha}$ (with $\|\mathbf{z}_{\alpha}\| = 1$), it is a set of d^2 points $[\mathbf{z}_{\alpha}]$ in \mathbb{CP}^{d-1} such that

$$\left| \langle \mathsf{z}_{lpha} | \mathsf{z}_{eta}
angle \right|^2 = \lambda, \quad lpha
eq eta, \quad ext{for some fixed } \lambda \in (0,1).$$

The points represent "equiangular lines" in \mathbb{C}^d .

Adjoint orbits

Since $P_{\alpha} = \mu([\mathbf{z}_{\alpha}])$, we have

Definition 2. A SIC consists of a regular simplex in $\mathfrak{su}(d)$ whose d^2 vertices lie in the orbit \mathbb{CP}^{d-1} .

Lemma. d^2 is the maximum number of mutually equidistant points possible in \mathbb{CP}^{d-1} , and in this case λ must equal $\frac{1}{d+1}$.

Proof. Given an equidistant set $\{P_{\alpha}\}$, set $Q_{\beta} = P_{\beta} - \lambda \mathbf{1}$. Then

$$\operatorname{tr}(P_{\alpha}Q_{\beta}) = \begin{cases} 1-\lambda & \alpha = \beta \\ 0 & \alpha \neq \beta \end{cases}$$

So $\{P_{\alpha}\}$ is linearly independent in $i\mathfrak{u}(d)$. Applying $tr(Q_{\beta}\bullet)$ to $\mathbf{1} = \sum c_{\alpha}P_{\alpha}$, gives $1 - \lambda d = c_{\alpha}(1 - \lambda) \forall \alpha$. Then $d = d^{2}c_{\alpha}$, and so $d(1 - \lambda d) = 1 - \lambda$.

Existence

Following pioneering work of Zauner [PhD 1999], SIC-POVM's are known to exist for all $d \leq 21$ and in a few higher dimensions. There is strong numerical evidence for their existence $\forall d \leq 151$.

There are many papers [since 2004] on the subject by Appleby, Bengtsson, Caves, Flammia, Grassl, Renes, Scott, Zhu, and others.

Appleby-Flammia-McConnell-Yard [in 2016] establish links with number theory. A preprint [2018] by Kopp advances this.

However, all known SIC sets are orbits of a finite group. With one exception, that group is conjugate to the Heisenberg (WH or GP) group that acts on \mathbb{CP}^{d-1} as $(\mathbb{Z}/d\mathbb{Z})^2$.

Conjecture. For every *d*, one can always find $\mathbf{z} \in \mathbb{C}^d$ whose orbit $WH \cdot [\mathbf{z}]$ is a SIC set in \mathbb{CP}^{d-1} . Such a \mathbf{z} is called a *fiducial vector*.

Clifford-Weyl-Heisenberg

Fix $d \ge 3$. Set $\omega = e^{2\pi i/d}$. Consider the cyclic groups W and H generated by the 'shift' and 'clock' isometries

$$\begin{bmatrix} z_0, z_1, \dots, z_{d-1} \end{bmatrix} \xrightarrow{h} \begin{bmatrix} z_0, \omega z_1, \dots, \omega^{d-1} z_{d-1} \end{bmatrix}$$

$$w \downarrow$$

$$\begin{bmatrix} z_{d-1}, z_0, \dots, z_{d-2} \end{bmatrix}$$

which commute on \mathbb{CP}^{d-1} . The normalizer C(d) of $W \times H$ in U(d) is the *Clifford group*. There is a representation

$$SL(2,\mathbb{Z}_d)\ltimes (\mathbb{Z}_d)^2 \rightsquigarrow C(d)/U(1),$$

which can be extended to include complex conjugation. It is an isomorphism if d is odd.

Example. If d = 5 the order is 15000/5 [Horrocks-Mumford].

Low dimensions

Case d = 2. A SIC set is a regular tetrahedron inscribed in $S^2 = \mathbb{CP}^1$ and $SO(3) = SU(2)/\mathbb{Z}_2$. An example is [1+r, 1+i], [1+r, -1-i], [1+i, 1+r], [1+i, -1-r]where $r = \sqrt{3}$, not the simplest. **Case** d = 3. An example is $[0, 1, -1], [0, 1, -\omega], [0, 1, -\omega^2], \text{ and cyclic permutations},$ where $\omega = e^{2\pi i/3}$. Easy to extend to a one-parameter family. **Case** d = 4. Let $s = \sqrt{2}$ and $t = \sqrt{2 + \sqrt{5}}$. A fiducial vector is |-t-i(s+t), 1-s+i, t+i(t-s), 1+s+i|.NB. No SIC set in \mathbb{CP}^3 can project to only 4 points in $\mathbb{HP}^1 = S^4$.

Maximal torus

Having fixed d and coordinates on \mathbb{C}^d , let

$$\mathbb{T} = \{ \mathsf{diag}(e^{it_0}, \dots, e^{it_{d-1}}) : \sum t_i = 0 \}$$

be the standard (d-1)-torus in SU(d). The associated moment map $\tau : \mathbb{CP}^{d-1} \to \mathfrak{t}^*$ is μ composed with a projection, and can be identified with

$$[\mathbf{z}] \mapsto \frac{1}{\|\mathbf{z}\|^2} (|z_0|^2, \dots, |z_{d-1}|^2) = \operatorname{diag}(\mathbf{z}^* \mathbf{z}).$$

Given $\mathbf{z} \in S^{2d-1}$, we set $x_i = |z_i|^2$, so that the image of τ is the standard simplex

$$\Delta = \left\{ (x_0, \ldots, x_{d-1}) : \sum x_i = 1, \ x_i \ge 0 \right\} \subset \mathbb{R}^d.$$

Correct separation

Fix $d \ge 3$, and set $\omega = e^{2\pi i/d}$. Recall that $H = \langle h \rangle$ where $h = \text{diag}(1, \omega, \omega^2, \dots, \omega^{d-1})$.

Definition. A point $[\mathbf{z}] \in \mathbb{CP}^{d-1}$ is *H*-fiducial if all points in its *H*-orbit are 'correctly separated', i.e.

$$\left|\left\langle \mathbf{z} \right| h^{i} \cdot \mathbf{z} \right\rangle \right|^{2} = \frac{1}{d+1} \|\mathbf{z}\|^{4}, \qquad 1 \leqslant i \leqslant d-1.$$

Since this concept is \mathbb{T} -invariant, we say that $\mathbf{x} \in \Delta$ is *H*-fiducial if the same is true for any $[\mathbf{z}] \in \mu^{-1}(\mathbf{x})$. Let \mathscr{H} denote the subset of Δ consisting of *H*-fiducial points.

Trivial example. When d = 2, μ is the height function on S^2 and \mathscr{H} consists of two points, each the image of a small circle.

More tori

Given

$$u: \mathbb{CP}^{d-1} \longrightarrow \Delta \subset \mathbb{R}^d,$$

we can identify the *H*-fiducial subset \mathscr{H} of Δ :

Theorem [Dixon-S]. \mathscr{H} lies in a sphere of radius $\sqrt{\frac{2}{d+1}}$ centre the origin. Moreover,

- ► if d = 2n + 1, then $\mathscr{H} = \Delta \cap T$ where T is an *n*-dimensional torus of revolution;
- if d = 2n then ℋ = Δ ∩ (T' ⊔ T") where T', T" are (n-1)-tori of revolution in parallel hyperplanes.

Observation. The centre of an *n*-face of Δ is a distance $\frac{1}{\sqrt{n+1}}$ from the origin, so the sphere will touch such faces if d = 2n+1.

The case d=3

In this case, \mathscr{H} will touch the 1-faces, and is an incircle that we later parametrize by $\left(\cos^2\phi, \cos^2(\phi + \frac{2\pi}{3}), \cos^2(\phi + \frac{4\pi}{3})\right)$.

Let m_1, m_2, m_3 be the midpoints, and set $C_i = \mu^{-1}(m_i) \subset \mathbb{CP}^2$:

There exists a 1-parameter family $\{\mathbb{M}_t\}$ of SIC sets with $\mathbb{M}_t \subset C_1 \sqcup C_2 \sqcup C_3.$

Proof, exemplified by d=5

Let
$$\mathbf{z} = (z_0, \dots, z_4) \in \mathbb{C}^5$$
. Set $x_i = |z_i|^2$ and suppose $\sum x_i = 1$ so
 $\mu[\mathbf{z}] = (x_0, x_1, \dots, x_4)$.
Set $\omega = e^{2\pi i/5}$ and $\alpha_i = \langle h^i \cdot \mathbf{z} | \mathbf{z} \rangle$ for $i = 0, 1, 2$:
 $\alpha_0 = x_0 + x_1 + x_2 + x_3 + x_4 = 1$
 $\alpha_1 = x_0 + \omega x_1 + \omega^2 x_2 + \omega^3 x_3 + \omega^4 x_4 = \frac{1}{\sqrt{6}} e^{i\theta}$
 $\alpha_2 = x_0 + \omega^2 x_1 + \omega^4 x_2 + \omega^6 x_3 + \omega^8 x_4 = \frac{1}{\sqrt{6}} e^{i\phi}$.

Taking the moduli squared and rearranging gives three quadrics:

the first a sphere.

13/27

Parametrizing the intersection

It follows that \mathscr{H} lies in the intersection of 2 quadrics with the 4-dimensional hyperplane $\sum x_i = 1$ in \mathbb{R}^5 . It can now be parametrized by the very equations that define the quadrics.

Converting the equations for α_i into real and imaginary parts,

$$\begin{pmatrix} 1/\sqrt{2} & 1/\sqrt{2} & 1/\sqrt{2} & 1/\sqrt{2} & 1/\sqrt{2} \\ 1 & \cos\zeta & \cos 2\zeta & \cos 3\zeta & \cos 4\zeta \\ 0 & \sin\zeta & \sin 2\zeta & \sin 3\zeta & \sin 4\zeta \\ 1 & \cos 2\zeta & \cos 4\zeta & \cos 6\zeta & \cos 8\zeta \\ 0 & \sin 2\zeta & \sin 4\zeta & \sin 6\zeta & \sin 8\zeta \end{pmatrix} \begin{pmatrix} x_0 \\ x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 1/\sqrt{2} \\ \cos\theta \\ \sin\theta \\ \cos\phi \\ \sin\phi \end{pmatrix},$$

where $\zeta = 2\pi/5$ and $(\sqrt{\frac{2}{5}} \text{ times})$ the 5 × 5 matrix is orthogonal! Therefore, $Q_1 \cap Q_2 \cap Q_3$ defines a torus of revolution.

The case of d even

If d = 6, we'll have 3 quadrics, Q_1, Q_2 as before (6 terms each), together with

$$Q_3: \quad 2(x_0x_3 + x_1x_4 + x_2x_5) = \frac{1}{7}.$$

Rearranging their equations, ones sees that

$$(x_0 - x_1 + x_2 - x_3 + x_4 - x_5)^2 = \frac{1}{7}.$$

If d = 2n, \mathscr{H} will lie in the union of the two hyperplanes

$$\sum_{j=0}^{d-1} (-1)^j x_j = \pm \frac{1}{\sqrt{d+1}}.$$

The remaining n-1 moment maps to \mathbb{C} define the two tori.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Conjugation

Let $C = \langle g \rangle$ be a cyclic subgroup of $W \times H$ of order d. Let T be a maximal torus of SU(d) containing C. The modulus of

$$\operatorname{tr}(g^k \cdot \mathbf{z}^* \mathbf{z}) = \langle g^k \cdot \mathbf{z} | \mathbf{z} \rangle$$

equals $rac{1}{\sqrt{d+1}}$ whenever $\mathbf{z}\in S^{2d-1}$ is a fiducal vector.

Lemma. The moment mapping

$$\mu_{\mathcal{T}} \colon \mathbb{CP}^{d-1} \longrightarrow \mathfrak{t}^*$$

can be identified with the vector-valued function

$$[\mathbf{z}] \mapsto \Big(\operatorname{tr}(g^k \cdot \mathbf{z}^* \mathbf{z}) : \ 1 \leqslant k \leqslant \lfloor d/2 \rfloor \Big).$$

This has values in \mathbb{C}^n if d = 2n + 1 and $\mathbb{C}^{n-1} \oplus \mathbb{R}$ if d = 2n, and the same theorem applies to the image of *C*-fiducial vectors.

Overlap phases

In general, set $au = -e^{\pi i/d}$. The unitary matrices

$$D_{p,q} = \tau^{pq} w^p h^q, \qquad 0 \leqslant p,q \leqslant d-1,$$

determine a basis of iu(d). They satisfy

$$D_{p_1,q_1}D_{p_2,q_2} = \tau^{p_1q_2-p_2q_1}D_{p_1+q_1,p_2+q_2},$$

imposing a symplectic pairing.

If $\mathbf{z} \in S^{2d-1}$, consider the d imes d matrix

$$\Phi_{\mathbf{z}} := \left(\sqrt{d+1} \operatorname{tr}(D_{p,q}\mathbf{z}^*\mathbf{z})\right).$$

- its entries describe the image of moment maps of tori;
- ▶ [z] is a fiducial vector iff a.e. entry has modulus one;
- Φ_z determines [z].

The case d=4

For d = 4, entries (0, 1), (1, 2) from the first row of Φ_z tell us that \mathscr{H} consists of two circular arcs

$$f(\theta) = \frac{1}{2\sqrt{5}}(\sigma + \cos\theta, \sigma' + \sin\theta, \sigma - \cos\theta, \sigma' - \sin\theta),$$

where $\sigma, \sigma' = \frac{1}{2}(\sqrt{5} \pm 1)$ in either order. So let

$$\mathbf{z} = (ae^{ilpha}, be^{ieta}, ce^{i\gamma}, de^{i\delta})$$

be a WH-fiducial vector with a, b, c, d > 0. Entries (2,0), (2,2) corresponding to elements w^2, w^2h^2 of order 2 give

$$\cos(lpha-\gamma)=0$$
 or $\cos(eta-\delta)=0.$

W.l.o.g, assume $\beta - \delta = \pm \frac{\pi}{2}$ and $\alpha = 0$, which implies

$$2ac\cos\gamma = \frac{1}{\sqrt{5}}.$$

Conclusions for d=4

Using entries from the second row of Φ_z , computing traces with $D_{1,0} - D_{1,2}$ and $D_{1,1} - D_{1,3}$ enables us to eliminate β and γ :

$$(ad - bc)(ad + bc)(ab - cd)(ab + cd) = 2a^2b^2c^2d^2\cos^2\gamma = \frac{1}{5}b^2d^2$$

 $\Rightarrow \cos\theta = \pm \frac{1}{2}\sqrt{1 + \sqrt{5}}, \quad \sin\theta = \pm \frac{1}{2}\sqrt{3 - \sqrt{5}} = \pm \frac{\sigma'}{\sqrt{2}},$

giving four points on each of the base circles over each of which one can find 2^5 fiducial vectors [LoraLamia-S].

The matrix of overlap phases is remarkably simple:

$$\Phi_{\mathbf{z}} = \begin{pmatrix} \cdot & u & 1 & \overline{u} \\ u & \overline{u} & -\overline{u} & \overline{u} \\ -1 & -u & -1 & \overline{u} \\ \overline{u} & u & u & u \end{pmatrix},$$

where $u = e^{i\theta} = \frac{1}{2}\sqrt{1+\sqrt{5}} + i\frac{\sqrt{5}-1}{2\sqrt{2}}$ [Bengtsson].

Picture for d=4

Here $\tau(\mathbb{CP}^3) = \Delta \subset \mathbb{R}^4$ and fiducial vectors map to 8 points in $\mathscr{H} = \Delta \cap (S^1 \sqcup S^1)$:

Moreover, each set of 4 beads of the same colour is the shadow of 8 SIC sets in \mathbb{CP}^3 . The 8 beads form an orbit of the dihedral group on Δ .

Arithmetic

The overlap phases are all generated by the unit

$$u = \frac{1}{2}\sqrt{1+\sqrt{5}} + i\frac{\sqrt{5}-1}{2\sqrt{2}},$$

which satisfies a monic polynomial of degree 8 over \mathbb{Z} . The coordinates of fiducial vectors lie in a splitting field E which has degree 2 over $\mathbb{Q}(u)$, and thus degree 8 over $K = \mathbb{Q}(\sqrt{5})$:

There are 256 possible fiducial vectors that form an orbit of the extended Clifford group, and there are 16 SIC sets.

・ロト・日本・日本・日本・日本

Abelian extensions

Suppose that $\mathbf{z} = (z_0, z_1, \dots, z_{d-1}) \in S^{2d-1}$ is the fiducial vector for a SIC set $\mathbb{S} = WH \cdot [\mathbf{z}]$ in \mathbb{CP}^{d-1} , and let $\tau = -e^{\pi i/d}$. Let

$$E = \mathbb{Q}(\tau, \ \overline{z}_i z_j)$$

be the field generated by τ and the entries of the matrix z^*z . Let $D = (d-3)(d+1) = (d-1)^2 - 4$, and set

$$K = \mathbb{Q}(\sqrt{D}).$$

This field contains a unit $\frac{d-1+\sqrt{D}}{2}$ of order 3 modulo d.

 $\operatorname{Gal}(E/K)$ will act on the set of WH-fiducials and therefore SIC sets, *permuting* orbits of $E \times C(d)$. There is strong empirical evidence for asserting that *E* is always an *abelian* extension of *K*.

Isometries of order 3

Example. Let $\tau = (1 - i)/\sqrt{2}$. Then

$$\begin{pmatrix} 0 & 1 \\ -1 & -1 \end{pmatrix} \rightsquigarrow \frac{1}{2} \begin{pmatrix} 1 & \tau & -1 & \tau \\ 1 & \tau^3 & 1 & \tau^7 \\ 1 & \tau^5 & -1 & \tau^5 \\ 1 & \tau^7 & 1 & \tau^3 \end{pmatrix} = X \in C(4),$$

indicating that $X^{-1}wX = h^{-1}$ and $X^{-1}hX = wh^{-1}$. Moreover, $X^3 = \tau \mathbf{1}$. An analogue exists for all d:

Conjecture [Zauner]. Let $\tau = -e^{\pi i/d}$. A fiducial vector **z** can always be found in an eigenspace of the matrix

$$rac{1}{\sqrt{d}}\Big(au^{2ij+j^2}\Big)\in C(d).$$

All elements of SL(2, d) of trace -1 give rise to unitary matrices in C(d) of order 3 if d > 3 [Appleby].

An exceptional group

Using the identification $\mathbb{C}^8 = \mathbb{H}^4$, consider the groups

- ▶ V_1 , right multiplication by $1, i, j, k \in Sp(1)$
- V_2 , double sign changes in \mathbb{H}^4
- ► *V*₃, double transpositions of the coordinates.

Then $A = V_1 \times V_2 \times V_3 \cong (\mathbb{Z}_2)^6$ is a subgroup of $Sp(4) \subset SU(8)$.

Fix unit quaternions $p = \frac{1}{2}(1 + i + j - k), q = \frac{1}{2}(1 + i - j - k).$

Proposition [Hoggar, 1998]. $A \cdot [0, p, q, j]$ is a SIC set S in \mathbb{CP}^7 .

Observation [Zhu, Stacey]. Let O denote the root lattice of E_8 (the set of 'octavians'). Then the stabilizer of \mathbb{S} in U(8) is isomorphic to Aut(O) \cong $G_2(2)$ and has order 12096.

Classification for d=3

Let $\omega = e^{2\pi i/3}$. The set \mathbb{M}_t of 9 points

$$\begin{array}{lll} [0,1,-1] & [0,1,-\omega] & [0,1,-\omega^2] \\ [1,0,-1] & [1,0,-\omega] & [1,0,-\omega^2] \\ [e^{it},-1,0] & [e^{it},-\omega,0] & [e^{it},-\omega^2,0] \end{array}$$

is a 1-parameter family of SIC-POVM's in \mathbb{CP}^2 , each conjugate to an orbit of $W \times H$.

Observation. \mathbb{M}_0 is the set of flexes of the cubic $x^3 + y^3 + z^3 - 3cxyz = 0$ with $c \notin \{1, \omega, \omega^3\}$, forming the Hesse configuration:

Theorem [Hughston-S, Szöllősi]. Any unordered set of nine mutually equidistant points in \mathbb{CP}^2 is isometric to \mathbb{M}_t for some t.

Proof, a pinched torus

Let $\mathbb S$ be a SIC set in $\mathbb C\mathbb P^2.$ Up to isometries, we are free to assume that $\mathbb S$ contains the two points

$$[\mathbf{z}_1] = [0, 1, -\omega], \quad [\mathbf{z}_2] = [0, 1, -\omega^2] \in C_1.$$

Any other point [z] of S lies a distance $\frac{2\pi}{3}$ apart from these two.

Lemma. $\mu([\mathbf{z}])$ belongs to the incircle \mathscr{H} , and

$$[\mathbf{z}] = \mathbf{Z}[\sigma, \phi] := \left[e^{i\sigma}\cos\phi, \ \cos(\phi + \frac{2\pi}{3}), \cos(\phi + \frac{4\pi}{3})\right]$$

for some $-\pi < \sigma \leqslant \pi$ and $-\frac{\pi}{2} < \phi \leqslant \frac{\pi}{2}$.

Thus, [z] lies in a 2-torus \mathscr{T} , pinched at the point where $\phi = \frac{\pi}{2}$.

Equilateral triangles in \mathscr{T}

Given

$$\mathbf{z}[\sigma,\phi], \ \mathbf{z}[\tau,\psi], \ \mathbf{z}[\upsilon,\chi] \in \mathscr{T}$$

all $2\pi/3$ apart in \mathbb{CP}^2 , set $x = \tan \phi$, $y = \tan \psi$, $z = \tan \chi$ and

$$p = x + y + z$$
, $q = yz + zx + xy$, $r = xyz$.

Lemma. F(p, q, r) = 0, where

$$\begin{split} F &= 9 - 22p^2 + 9p^4 + 87q - 126p^2q + 27p^4q + 298q^2 - 226p^2q^2 \\ &+ 24p^4q^2 + 414q^3 - 138p^2q^3 + 189q^4 + 27q^5 - 3pr - 50p^3r - 15p^5r \\ &+ 88pqr - 48p^3qr + 234pq^2r + 18p^3q^2r - 144pq^3r + 81pq^4r + 189r^2 \\ &- 480p^2r^2 - 153p^4r^2 + 1398qr^2 - 306p^2qr^2 + 2736q^2r^2 - 486p^2q^2r^2 \\ &+ 810q^3r^2 + 243q^4r^2 - 558pr^3 - 486p^3r^3 + 2376pqr^3 - 810pq^2r^3 \\ &+ 567r^4 - 162p^2r^4 + 6399qr^4 + 486q^2r^4 + 1701pr^5 + 2187r^6 \end{split}$$

(cf. $p^2 - 3q = \frac{3}{4}$ in \mathbb{R}^2). The proof is completed by adding a 4th point to get 4 equations in 4 unknowns and finding a Gröbner basis for a quotient ideal to eliminate the known solutions.

Thank you for your patience!

