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The emphasis will be on S1 quotients of conical metrics with
exceptional holonomy defined on vector bundles over S4 , using
common techniques that are (in a nutshell) generalizations of the
1978 Gibbons-Hawking ansatz.



PART 1. REVIEW

Construction of metrics with special holonomy (parallel spinors) on
manifolds of dimension 6, 7, 8 typically involves G -structures with

G = SU(2) ⊂ SU(3) ⊂ G2 ⊂ Spin(7)

M5 M6 M7 M8

Theorem. If g has ‘weak holonomy’ (Killing spinor) on Mn then

I dr2 + r2g has reduced holonomy on Mn+1 [Bär]

I dr2 + (sin r)2g has weak holonomy on Mn+1 [Acharya]

Arbitrary hypersurfaces of reduced holonomy spaces satisfy much
weaker conditions: ‘hypo’ on M5 (more generally in a Calabi-Yau
space), ‘half-flat’ on M6, ‘co-calibrated’ on M7 .



Hypersurfaces 2

Consider Mn ⊂ Mn+1 . The second fundamental form of Mn lies in
S2(Rn)∗ at each point. Instead

Λ2(Rn)∗ ∼= so(n) = g⊕ g⊥,

and the failure of holonomy to reduce is parametrized pointwise by
an ‘intrinsic torsion’ tensor in (Rn)∗⊗g⊥ .

If Mn+1 has reduced holonomy then the 2nd ff of Mn can be
identified with the reduced torsion, neatly via spinor connections.

dim M 5 6 7 8

2nd ff 15 21 28 (36)

dim g⊥ 7 7 7 7
=1+1+1+4 =1+6

torsion 35 42 49 56



. . . and quotients 3

If M7 has holonomy G2 then dϕ = 0 and d ∗ ϕ = 0. It induces an
SU(3) structure on a hypersurface i(M6) with

ψ+ = i∗ϕ, 1
2ω

2 = i∗(∗ϕ).

The closure of these forms is the half-flat condition.

In a dual way, if instead S1 acts freely on M7 with LXϕ = 0, then
$ = X y ϕ is closed and determines an almost-Kähler structure on
M6/S1 . There is a connection 1-form η such that

ϕ = η ∧$ + t3/2ψ+

∗ϕ = η ∧ (t1/2ψ−) + 1
2(t$)2,

where t = ‖η‖, so N = ‖X‖2 = t−2 . Note that d(t1/2ψ−) = 0,
and the torsion is determined by dt and dψ+ .



Kähler reduction 4

Since ψ− is ‘stable’ (and its stabilizer in GL(6,R) is SL(3,C)), it
determines the almost complex structure J . An associated (3, 0)
form is Ψ = ψ+ + iψ− and J is integrable iff d(t1/2ψ+) = 0.

Theorem [Apostolov-S]. In this case,
I the Ricci form of the Kähler metric equals 1

2 i∂∂ log t ,

I a new Killing vector field U is defined by Uy $ = −dt, and
one can further quotient to 4 dimensions.

Other reductions leading to triples of 2-forms and Monge-Ampère
equations can be imposed with extra symmetry [Donaldson].

In general, the curvature F =dη of the S1 bundle is constrained by
the residual torsion:

F ∧$ = −3
2 t1/2dt ∧ ψ+ − t3/2dψ+

F ∧ ψ− = −t1/2dt ∧$2.



PART 2. An explicit S1 quotient

If M6 is nearly-Kähler then the conical metric on M × R+ has a
metric with holonomy ⊆ G2 . In particular, this is true when M is
the twistor space (CP3, J2) over S4, with isometry group SO(5).

Let S1 =SO(2) be the subgroup acting on S4 ⊂ R2 ⊕ R3, and by
extension on CP3 .

Problem. Describe the structure of the quotient of CP3× R+

We shall see that the resulting T 2 action on C4 is equivalent to
S1 × S1 acting by left multiplication on some H⊕H, so that the
quotient is essentially R3 ⊕ R3 = R6 . Also, S1 fixes an S2 in S4,
covered by two disjoint S2 ’s in CP3, giving rise to a singular locus
R3 ∪ R3 of two 3-spaces meeting at the origin in R6 .



Right actions on R8 = H2
6

Euclidean coordinates x1, . . . , x8, vector fields ∂i = ∂
∂xi

.

Radius squared R =
∑

xi
2, metric g =

∑
dxi⊗dxi .

Right multiplication by Sp(1) gives Killing vector fields

Y1 = x2∂1 − x1∂2 − x4∂3 + x3∂4 + x6∂5 − x5∂6 − x8∂7 + x7∂8
Y2 = x3∂1 − x1∂3 − · · · − x6∂8 + x8∂6
Y3 = x4∂1 − x1∂4 − · · · − x7∂6 + x6∂7

tangent to the fibres of

S7 =
Sp(2)

Sp(1)
→ Sp(2)

Sp(1)Sp(1)
= S4.
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Consider the dual 1-forms αi = Yiy g , such as

α1 = x2dx1 − x1dx2 − · · · − x8dx7 + x7dx8,

with −1
2dα1 = dx12 − dx34 + dx56 − dx78 ‘anti-self-dual’.

The form α̂i = αi/R is invariant by R∗, and is a connection on an
S1 bundle S7 → CP3 . Fix i = 1 and CP3 = S7/U(1)1 . Then the
curvature dα̂1 is a Kähler form for the Fubini-Study metric on the
twistor space (CP3, J1).

Using LY2
α̂3 = α̂1 etc, one sees that the 2-forms

τ1 = dα̂1 − 2α̂23

τ2 = dα̂2 − 2α̂31

τ3 = dα̂3 − 2α̂12

pass to S4, and form a basis of ASD forms there.
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Lemma. The nearly-Kähler structure of (CP3, J2) is given by

ω = −α̂23 + τ1 = dα̂1 − 3α̂23

Υ = (α̂2 − i α̂3) ∧ (τ2 + iτ3)

Using the fact that τ2i = 2e1234 is independent of i , one verifies{
dω = 3ImΥ,

dΥ = 2ω2.

The conical G2 structure on CP3 × R+ = H2
∗/S1 then has

ϕ = dR ∧ R2ω + R3 ImΥ = d(13R3ω),

∗ϕ = dR ∧ R3ReΥ + 1
2(R2ω)2 = d(14R4ReΥ).



A 2-torus action on R8
9

Left multiplication by S1 on R8 gives a Killing vector field

X = X1 = x2∂1 − x1∂2+x4∂3−x3∂4 + · · ·+x8∂7−x7∂8,

Observe that

1
2(X + Y1) = x2∂1 − x1∂2 + x6∂5 − x5∂6,

1
2(X − Y1) = x4∂3 − x3∂4 + x8∂7 − x7∂8,

so that X ± Y1 define standard S1 actions on the two summands
〈1, 2, 5, 6〉 ⊕ 〈3, 4, 7, 8〉 = H2, and indeed

CP3 × R+

S1

∗
=

H
S1
× H

S1
= R3 × R3.



Moment maps 10

The action of X + Y1 on H = 〈1, 2, 5, 6〉 is tri-holomorphic for the
hyperkähler structure with 2-forms

dx12 − dx56, dx15 − dx62, dx16 − dx25.

Using the quaternion q = x1+x2i +x5j +x6k , the components

u1 = x2
1 +x2

2−x2
5−x2

6

u2 = 2(−x1x6 + x2x5)

u3 = 2(x1x5 + x2x6)

 of q i q = u1i +u2j +u3k

are invariant by the U(1) action q  e iθq . We set

u0 = x2
1 +x2

2 +x2
5 +x2

6 , so u2
0 =

3∑
i=1

u2
i = |u|2.
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Similarly, the hyperkähler moment map for X − Y1 on 〈3, 4, 7, 8〉
equals (v1, v2, v3), where

v1 = x2
3 +x2

4−x2
7−x2

8

v2 = 2(−x3x8 + x4x7)

v3 = 2(x3x7 + x4x8).

We also set v0 = |v|, so that u0 + v0 =
8∑

i=1
x2
i = R .

Identifications R4/S1∼= Λ2
−R4 arise from the Gibbons-Hawking

ansatz. Indeed, f = 1/v0 is harmonic and the connection form
η = f (X−Y1)y g satisfies

4g = f −1η2 + f
3∑

i=1
dv2

i

dη = −1
2 f 3{v, dv, dv} = ∗df .
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Returning to R8/T 2, we next compute the symplectic form

$ = X y ϕ = X y d(13R3ω) = dσ,

where σ = −1
3R3X y ω = 1

3R3X y (dα̂1 − 3α̂23). This can be
expressed in terms of the functions µj = X y Yj with

µ1 = x2
1 + x2

2 − x2
3 − x2

4 + x2
5 + x2

6 − x2
7 − x2

8

µ2 = 2(−x1x4 + x2x3 − x5x8 + x6x7)

µ3 = 2(x1x3 + x4x2 + x5x7 + x6x8).

Computation yields

Proposition [Bryant]. σ = 1
6R
[
u0dv0−v0du0 − 3(u·dv−v·du)

]
So $ is not in standard form on R3 ⊕ R3 .



Invariant functions 13

The G2 structure on CP3×R+ is invariant by Sp(2). Recall that

the double covering Sp(2)→ SO(5) is given by Λ2
0(C4)

∼=→ C5 .

The diagonal S1 in Sp(2) commutes with Sp(1) = SU(2), which
acts as SO(3) as follows:

I trivially on the first factor of R2 ⊕ R3 ⊃ S4

I diagonally on the quotient R6 = R3 ⊕ R3 .

The induced SU(3) structure on R6 can be expressed in terms of
SO(3) invariant quantities manufactured from the coordinates
(u, v)=(u1, u2, u3; v1, v2, v3) using scalar and triple products.
These include the radii (u0, v0)=(|u|, |v|), which are not smooth
on R3 ∪ R3 . More examples follow.

The antilinear involution j on CP3 generates the u↔ v symmetry.
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Recall that t1/2ψ− = X y (∗ϕ) = dτ, where τ = −1
4R4X y ReΥ.

Proposition. 8τ/R equals

3{u, dv, dv}− u0

v0
{v, dv, dv}+2{u, du, dv}+ swapping u, v

To find ψ+ and the (3, 0)-form Ψ = ψ+ + iψ− , one needs to
compute the connection 1-form η and its G2 norm, the reciprocal
of N = t−2 = ‖X1‖2 . Knowledge of

N =
7ϕ ∧$ ∧$ ∧ α1

6ϕ ∧ (∗ϕ) ∧ α1

= 6u0v0 − 2(u1v1+u2v2+u3v3)

allows us to compute the induced metric g̃ on R6 by subtracting
the contribution from the S1 fibres.
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One can also compute g̃ (or more easily, its conformal structure)
from the formula

g̃(W ,Z )$3 = −2(W y $) ∧ (Z y ψ−) ∧ ψ−,

The restriction of g̃ to the plane (u, v) plane with u =u1 , v =v1
and u2 =u3 =v2 =v3 =0 equals

ds2 =
(

1 +
v

4u

)
du2 + 3

2 du dv +
(

1 +
u

4v

)
dv2

in the quadrant u, v > 0.

Corollary. The coordinate 3-planes in (R6, g̃) meet at an angle θ,
where cos θ = 3t/

√
(1+4t)(4+t) and t = v0/u0 .

. . . to be continued



PART 3. Starting from Spin(7)

Suppose, by way of transition, that (M6, $,Ψ) has holonomy in
SU(3) and N7 is an S1-bundle with connection 1-form η over
satisfying dη=−ω.

Näıvely, without rescaling, the total space N7 has a G2-structure
with

ϕ = η ∧$ + ReΨ, dϕ = $2,

∗ϕ = η ∧ ImΨ + 1
2$

2, d ∗ϕ = 0.

Even more trivially, the Riemannian product M6×R has holonomy
a subgroup of G2 :

N7 N7 × Ry y
M6 ⊂ M6 × R.
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Then N7 × R acquires a metric with holonomy in SU(4) with

$′ = x2$ + η ∧ 2x dx ,

Ψ′ = Ψ ∧ (−iη + 2x7dx),

g ′ = x2gM + x−6η2 + (2x4dx)2.

This can be made explicit if M = T 6 and N is a nilmanifold.

The associated Spin(7) closed 4-form

Ω = 1
2($′)2 + ReΨ′

= η ∧ ($ ∧ 2x3dx + ImΨ) + x4(12$
2 + ReΨ ∧ 2x3dx)

= η ∧ φ+ x4 ∗φ,

does induce the product metric on M6 × R. Why does this work?
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More generally, suppose that

Ω = η ∧ φ+ x4 ∗φ

defines a metric with holonomy in Spin(7) on the total space of an
S1 bundle (with ‖α‖ = |x |3 non-constant), inducing a metric on
the base with holonomy in G2 . Then

0 = dΩ = F ∧ φ+ 4x3dx ∧ ∗φ.

This implies that F ∈ Λ2
7 can be identified with 4x3dx modulo G2

invariants, so η is an anti-instanton. Moreover, ∇dx = 0 (because
∇dx can be extracted from dF ∈ Λ3 ∼= R7 ⊕ S2(R7)).

Corollary [Oliveira]. The base holonomy must reduce to SU(3).



Hitchin flow 19

The SU(4) structure on N7 × R can instead be realized via the
evolution equation

∂(∗ϕ)

∂x
= −dϕ

for the co-calibrated G2 structure on the hypersurfaces x = const.

In this picture, N7 has a ‘hypo’ SU(3) structure (ω, η, ψ) such
that dω = 0 and d(η ∧ ψ) = 0 [Conti-Fino].

A number of Lie groups with co-calibrated G2 structures have such
structures:

Theorem [Freibert]. If N7 arises from a ‘close to abelian’ Lie
algebra with an invariant co-calibrated structure, this evolves to
SU(4) (but not Sp(2)) holonomy.



Model metrics over S4
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The (negative) spin bundle ∆− over S4 has fibre H, and a ‘left’
hyperkähler structure with complex structures I1, I2, I3 . Choose a
Killing vector field X =X1 generating I1 . Fibrewise, this preserves
a ‘right’ hyperkähler structure defined by a local basis (γi ) of
2-forms that are ASD on H.

Then ∆− admits a metric with holonomy equal to Spin(7), with
closed 4-form

ΩBS ∼ r−8/5dx1234 + r2/5
3∑

i=1
γi ∧ εi + r12/5e1234,

where r is the radius on H, (εi ) is a local basis of ASD forms on
S4 matching the γi ’s, and e1234 is the volume form on the sphere
(∼ means we are ignoring universal constants in all terms).
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The quotient of ∆− by {e I1t} can be identified with Λ2
−T ∗S4,

allowing one to realize a fibrewise Gibbons-Hawking ansatz, even
though the action is not hyperkähler on ∆− . We obtain

ϕGH = Xy Ω ∼ r−8/5(Xy dx1234) + r2/5
∑

(Xy γi ) ∧ εi
∼ r−18/5du123 + r2/5

∑
dui ∧ εi

ϕGH ∼ R−9/5 du123 + R1/5 dT

where R = r2 is the radius on R3, and T the tautological 2-form.

This contrasts with the 3-form of the known metric

ϕBS ∼ R−3/2 du123 + R1/2 dT

with holonomy equal to G2 .
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The ‘Gibbons-Hawking’ quotient can’t have holonomy G2 . Indeed,

∗ϕGH ∼ R8/5e1234 + R−2/5U ,

(unit 1-forms have weight R−3/5 vertically and R2/5 horizontally).

d ∗ϕGH ∼ R3/5dR ∧ e1234 + R−3/5dR ∧ U + R−2/5dU

∼ R3/5dR ∧ e1234 + R7/5du123 ∧ T

We know that
d∗ϕGH ∼ R2/5F + R7/5T

lies in the ‘instanton subspace’ Λ2
14
∼= g2, imposing a condition on

the S1 curvature F = dη.

To what extent can one extend the analysis in PARTS 2 and 3 to
complete metrics?


