Quotients and hypersurfaces of model metrics

Simon Salamon

Stony Brook, September 2017

CONTENTS

- PART 1. A quick review of relating structures defined by Lie groups in adjacent lowish dimensions.
- PART 2. Atiyah-Witten's example of an S^{1} quotient of the G_{2} metric on $\mathbb{C P}^{3} \times \mathbb{R}^{+}$. Identifying the induced $S U(3)$ structure. Joint work in progress with B. Acharya and R. Bryant.
- PART 3. Various quotients of metrics with holonomy $\operatorname{Spin}(7)$, starting with an example built up from $S U(3)$ holonomy. Joint work in progress with U. Fowdar.

The emphasis will be on S^{1} quotients of conical metrics with exceptional holonomy defined on vector bundles over S^{4}, using common techniques that are (in a nutshell) generalizations of the 1978 Gibbons-Hawking ansatz.

PART 1. REVIEW

Construction of metrics with special holonomy (parallel spinors) on manifolds of dimension $6,7,8$ typically involves G-structures with

$$
G=\begin{array}{ccccccc}
S U(2) & \subset & S U(3) & \subset & G_{2} & \subset & \operatorname{Spin}(7) \\
M^{5} & & M^{6} & & M^{7} & & M^{8}
\end{array}
$$

Theorem. If g has 'weak holonomy' (Killing spinor) on M^{n} then

- $d r^{2}+r^{2} g$ has reduced holonomy on M^{n+1} [Bär]
- $d r^{2}+(\sin r)^{2} g$ has weak holonomy on M^{n+1} [Acharya]

Arbitrary hypersurfaces of reduced holonomy spaces satisfy much weaker conditions: 'hypo' on M^{5} (more generally in a Calabi-Yau space), 'half-flat' on M^{6}, 'co-calibrated' on M^{7}.

Hypersurfaces

Consider $M^{n} \subset M^{n+1}$. The second fundamental form of M^{n} lies in $S^{2}\left(\mathbb{R}^{n}\right)^{*}$ at each point. Instead

$$
\Lambda^{2}\left(\mathbb{R}^{n}\right)^{*} \cong \mathfrak{s o}(n)=\mathfrak{g} \oplus \mathfrak{g}^{\perp}
$$

and the failure of holonomy to reduce is parametrized pointwise by an 'intrinsic torsion' tensor in $\left(\mathbb{R}^{n}\right)^{*} \otimes \mathfrak{g}^{\perp}$.

If M^{n+1} has reduced holonomy then the 2 nd ff of M^{n} can be identified with the reduced torsion, neatly via spinor connections.

$\operatorname{dim} M$	5	6	7	8
2nd ff	15	21	28	(36)
$\operatorname{dim} \mathfrak{g}^{\perp}$	7 $=1+1+1+4$	7 $=1+6$	7	7
torsion	35	42	49	56

If M^{7} has holonomy G_{2} then $d \varphi=0$ and $d * \varphi=0$. It induces an $S U(3)$ structure on a hypersurface $i\left(M^{6}\right)$ with

$$
\psi^{+}=i^{*} \varphi, \quad \frac{1}{2} \omega^{2}=i^{*}(* \varphi) .
$$

The closure of these forms is the half-flat condition.
In a dual way, if instead S^{1} acts freely on M^{7} with $\mathscr{L}_{X} \varphi=0$, then $\varpi=X\lrcorner \varphi$ is closed and determines an almost-Kähler structure on M^{6} / S^{1}. There is a connection 1-form η such that

$$
\begin{aligned}
\varphi & =\eta \wedge \varpi+t^{3 / 2} \psi^{+} \\
* \varphi & =\eta \wedge\left(t^{1 / 2} \psi^{-}\right)+\frac{1}{2}(t \varpi)^{2}
\end{aligned}
$$

where $t=\|\eta\|$, so $N=\|X\|^{2}=t^{-2}$. Note that $d\left(t^{1 / 2} \psi^{-}\right)=0$, and the torsion is determined by $d t$ and $d \psi^{+}$.

Kähler reduction

Since ψ^{-}is 'stable' (and its stabilizer in $G L(6, \mathbb{R})$ is $S L(3, \mathbb{C})$), it determines the almost complex structure J. An associated $(3,0)$ form is $\Psi=\psi^{+}+i \psi^{-}$and J is integrable iff $d\left(t^{1 / 2} \psi^{+}\right)=0$.

Theorem [Apostolov-S]. In this case,

- the Ricci form of the Kähler metric equals $\frac{1}{2} i \partial \bar{\partial} \log t$,
- a new Killing vector field U is defined by $U\lrcorner \varpi=-d t$, and one can further quotient to 4 dimensions.

Other reductions leading to triples of 2-forms and Monge-Ampère equations can be imposed with extra symmetry [Donaldson]. In general, the curvature $F=d \eta$ of the S^{1} bundle is constrained by the residual torsion:

$$
\begin{aligned}
F \wedge \varpi & =-\frac{3}{2} t^{1 / 2} d t \wedge \psi^{+}-t^{3 / 2} d \psi^{+} \\
F \wedge \psi^{-} & =-t^{1 / 2} d t \wedge \varpi^{2}
\end{aligned}
$$

PART 2. An explicit S^{1} quotient

If M^{6} is nearly-Kähler then the conical metric on $M \times \mathbb{R}^{+}$has a metric with holonomy $\subseteq G_{2}$. In particular, this is true when M is the twistor space $\left(\mathbb{C P}^{3}, J_{2}\right)$ over S^{4}, with isometry group $S O(5)$.

Let $S^{1}=S O$ (2) be the subgroup acting on $S^{4} \subset \mathbb{R}^{2} \oplus \mathbb{R}^{3}$, and by extension on $\mathbb{C P}^{3}$.

Problem. Describe the structure of the quotient of $\mathbb{C P} \times \mathbb{R}^{+}$
We shall see that the resulting T^{2} action on \mathbb{C}^{4} is equivalent to $S^{1} \times S^{1}$ acting by left multiplication on some $\mathbb{H} \oplus \mathbb{H}$, so that the quotient is essentially $\mathbb{R}^{3} \oplus \mathbb{R}^{3}=\mathbb{R}^{6}$. Also, S^{1} fixes an S^{2} in S^{4}, covered by two disjoint S^{2} 's in $\mathbb{C P}^{3}$, giving rise to a singular locus $\mathbb{R}^{3} \cup \mathbb{R}^{3}$ of two 3 -spaces meeting at the origin in \mathbb{R}^{6}.

Right actions on $\mathbb{R}^{8}=\mathbb{H}^{2}$

Euclidean coordinates x_{1}, \ldots, x_{8}, vector fields $\partial_{i}=\frac{\partial}{\partial x_{i}}$.
Radius squared $R=\sum x_{i}^{2}$, metric $g=\sum d x_{i} \otimes d x_{i}$.
Right multiplication by $\operatorname{Sp}(1)$ gives Killing vector fields

$$
\begin{array}{lcr}
Y_{1}=x_{2} \partial_{1}-x_{1} \partial_{2}-x_{4} \partial_{3}+x_{3} \partial_{4}+x_{6} \partial_{5}-x_{5} \partial_{6}-x_{8} \partial_{7}+x_{7} \partial_{8} \\
Y_{2}=x_{3} \partial_{1}-x_{1} \partial_{3}-\ldots & -x_{6} \partial_{8}+x_{8} \partial_{6} \\
Y_{3}=x_{4} \partial_{1}-x_{1} \partial_{4}- & \cdots & -x_{7} \partial_{6}+x_{6} \partial_{7}
\end{array}
$$

tangent to the fibres of

$$
S^{7}=\frac{S p(2)}{S p(1)} \rightarrow \frac{S p(2)}{S p(1) S p(1)}=S^{4}
$$

Consider the dual 1-forms $\left.\alpha_{i}=Y_{i}\right\lrcorner g$, such as

$$
\alpha_{1}=x_{2} d x_{1}-x_{1} d x_{2}-\cdots-x_{8} d x_{7}+x_{7} d x_{8}
$$

with $-\frac{1}{2} d \alpha_{1}=d x_{12}-d x_{34}+d x_{56}-d x_{78}$ 'anti-self-dual'.
The form $\hat{\alpha}_{i}=\alpha_{i} / R$ is invariant by \mathbb{R}^{*}, and is a connection on an S^{1} bundle $S^{7} \rightarrow \mathbb{C P}^{3}$. Fix $i=1$ and $\mathbb{C P}^{3}=S^{7} / U(1)_{1}$. Then the curvature $d \hat{\alpha}_{1}$ is a Kähler form for the Fubini-Study metric on the twistor space $\left(\mathbb{C P}^{3}, J_{1}\right)$.

Using $\mathscr{L}_{Y_{2}} \hat{\alpha}_{3}=\hat{\alpha}_{1}$ etc, one sees that the 2-forms

$$
\left\{\begin{array}{l}
\tau_{1}=d \hat{\alpha}_{1}-2 \hat{\alpha}_{23} \\
\tau_{2}=d \hat{\alpha}_{2}-2 \hat{\alpha}_{31} \\
\tau_{3}=d \hat{\alpha}_{3}-2 \hat{\alpha}_{12}
\end{array}\right.
$$

pass to S^{4}, and form a basis of ASD forms there.

Lemma. The nearly-Kähler structure of $\left(\mathbb{C P}^{3}, J_{2}\right)$ is given by

$$
\begin{aligned}
& \omega=-\hat{\alpha}_{23}+\tau_{1}=d \hat{\alpha}_{1}-3 \hat{\alpha}_{23} \\
& \Upsilon=\left(\hat{\alpha}_{2}-i \hat{\alpha}_{3}\right) \wedge\left(\tau_{2}+i \tau_{3}\right)
\end{aligned}
$$

Using the fact that $\tau_{i}^{2}=2 e_{1234}$ is independent of i, one verifies

$$
\left\{\begin{aligned}
d \omega & =3 \operatorname{Im} \Upsilon \\
d \Upsilon & =2 \omega^{2}
\end{aligned}\right.
$$

The conical G_{2} structure on $\mathbb{C P}^{3} \times \mathbb{R}^{+}=\mathbb{H}_{*}^{2} / S^{1}$ then has

$$
\begin{aligned}
\varphi & =d R \wedge R^{2} \omega+R^{3} \operatorname{Im} \Upsilon \\
* \varphi & =d\left(\frac{1}{3} R^{3} \omega\right) \\
& =d R \wedge R^{3} \operatorname{Re} \Upsilon+\frac{1}{2}\left(R^{2} \omega\right)^{2}
\end{aligned}=d\left(\frac{1}{4} R^{4} \operatorname{Re} \Upsilon\right) .
$$

A 2-torus action on \mathbb{R}^{8}

Left multiplication by S^{1} on \mathbb{R}^{8} gives a Killing vector field

$$
X=X_{1}=x_{2} \partial_{1}-x_{1} \partial_{2}+x_{4} \partial_{3}-x_{3} \partial_{4}+\cdots+x_{8} \partial_{7}-x_{7} \partial_{8}
$$

Observe that

$$
\begin{aligned}
& \frac{1}{2}\left(X+Y_{1}\right)=x_{2} \partial_{1}-x_{1} \partial_{2}+x_{6} \partial_{5}-x_{5} \partial_{6} \\
& \frac{1}{2}\left(X-Y_{1}\right)=x_{4} \partial_{3}-x_{3} \partial_{4}+x_{8} \partial_{7}-x_{7} \partial_{8}
\end{aligned}
$$

so that $X \pm Y_{1}$ define standard S^{1} actions on the two summands $\langle 1,2,5,6\rangle \oplus\langle 3,4,7,8\rangle=\mathbb{H}^{2}$, and indeed

$$
\frac{\mathbb{C P}^{3} \times \mathbb{R}^{+}}{S^{1}} \stackrel{*}{=} \frac{\mathbb{H}}{S^{1}} \times \frac{\mathbb{H}}{S^{1}}=\mathbb{R}^{3} \times \mathbb{R}^{3}
$$

Moment maps

The action of $X+Y_{1}$ on $\mathbb{H}=\langle 1,2,5,6\rangle$ is tri-holomorphic for the hyperkähler structure with 2 -forms

$$
d x_{12}-d x_{56}, \quad d x_{15}-d x_{62}, \quad d x_{16}-d x_{25}
$$

Using the quaternion $q=x_{1}+x_{2} i+x_{5} j+x_{6} k$, the components

$$
\left.\begin{array}{l}
u_{1}=x_{1}^{2}+x_{2}^{2}-x_{5}^{2}-x_{6}^{2} \\
u_{2}=2\left(-x_{1} x_{6}+x_{2} x_{5}\right) \\
u_{3}=2\left(x_{1} x_{5}+x_{2} x_{6}\right)
\end{array}\right\} \text { of } \bar{q} i q=u_{1} i+u_{2} j+u_{3} k
$$

are invariant by the $U(1)$ action $q \rightsquigarrow e^{i \theta} q$. We set

$$
u_{0}=x_{1}^{2}+x_{2}^{2}+x_{5}^{2}+x_{6}^{2}, \quad \text { so } \quad u_{0}^{2}=\sum_{i=1}^{3} u_{i}^{2}=|\mathbf{u}|^{2}
$$

Similarly, the hyperkähler moment map for $X-Y_{1}$ on $\langle 3,4,7,8\rangle$ equals $\left(v_{1}, v_{2}, v_{3}\right)$, where

$$
\left\{\begin{array}{l}
v_{1}=x_{3}^{2}+x_{4}^{2}-x_{7}^{2}-x_{8}^{2} \\
v_{2}=2\left(-x_{3} x_{8}+x_{4} x_{7}\right) \\
v_{3}=2\left(x_{3} x_{7}+x_{4} x_{8}\right)
\end{array}\right.
$$

We also set $v_{0}=|\mathbf{v}|$, so that $u_{0}+v_{0}=\sum_{i=1}^{8} x_{i}^{2}=R$.
Identifications $\mathbb{R}^{4} / S^{1} \cong \Lambda_{-}^{2} \mathbb{R}^{4}$ arise from the Gibbons-Hawking ansatz. Indeed, $f=1 / v_{0}$ is harmonic and the connection form $\left.\eta=f\left(X-Y_{1}\right)\right\lrcorner g$ satisfies

$$
\begin{aligned}
4 g & =f^{-1} \eta^{2}+f \sum_{i=1}^{3} d v_{i}^{2} \\
d \eta & =-\frac{1}{2} f^{3}\{\mathbf{v}, d \mathbf{v}, d \mathbf{v}\}=* d f
\end{aligned}
$$

Returning to \mathbb{R}^{8} / T^{2}, we next compute the symplectic form

$$
\varpi=X\lrcorner \varphi=X\lrcorner d\left(\frac{1}{3} R^{3} \omega\right)=d \sigma
$$

where $\left.\left.\sigma=-\frac{1}{3} R^{3} X\right\lrcorner \omega=\frac{1}{3} R^{3} X\right\lrcorner\left(d \hat{\alpha}_{1}-3 \hat{\alpha}_{23}\right)$. This can be expressed in terms of the functions $\left.\mu_{j}=X\right\lrcorner Y_{j}$ with

$$
\left\{\begin{array}{l}
\mu_{1}=x_{1}^{2}+x_{2}^{2}-x_{3}^{2}-x_{4}^{2}+x_{5}^{2}+x_{6}^{2}-x_{7}^{2}-x_{8}^{2} \\
\mu_{2}=2\left(-x_{1} x_{4}+x_{2} x_{3}-x_{5} x_{8}+x_{6} x_{7}\right) \\
\mu_{3}=2\left(x_{1} x_{3}+x_{4} x_{2}+x_{5} x_{7}+x_{6} x_{8}\right)
\end{array}\right.
$$

Computation yields
Proposition [Bryant]. $\sigma=\frac{1}{6} R\left[u_{0} d v_{0}-v_{0} d u_{0}-3(\mathbf{u} \cdot d \mathbf{v}-\mathbf{v} \cdot d \mathbf{u})\right]$
So ϖ is not in standard form on $\mathbb{R}^{3} \oplus \mathbb{R}^{3}$.

Invariant functions

The G_{2} structure on $\mathbb{C P}^{3} \times \mathbb{R}^{+}$is invariant by $\operatorname{Sp}(2)$. Recall that the double covering $S p(2) \rightarrow S O(5)$ is given by $\Lambda_{0}^{2}\left(\mathbb{C}^{4}\right) \xrightarrow{\cong} \mathbb{C}^{5}$.

The diagonal S^{1} in $S p(2)$ commutes with $S p(1)=S U(2)$, which acts as $S O(3)$ as follows:

- trivially on the first factor of $\mathbb{R}^{2} \oplus \mathbb{R}^{3} \supset S^{4}$
- diagonally on the quotient $\mathbb{R}^{6}=\mathbb{R}^{3} \oplus \mathbb{R}^{3}$.

The induced $S U(3)$ structure on \mathbb{R}^{6} can be expressed in terms of $S O(3)$ invariant quantities manufactured from the coordinates $(\mathbf{u}, \mathbf{v})=\left(u_{1}, u_{2}, u_{3} ; v_{1}, v_{2}, v_{3}\right)$ using scalar and triple products. These include the radii $\left(u_{0}, v_{0}\right)=(|\mathbf{u}|,|\mathbf{v}|)$, which are not smooth on $\mathbb{R}^{3} \cup \mathbb{R}^{3}$. More examples follow.

The antilinear involution j on $\mathbb{C P}^{3}$ generates the $\mathbf{u} \leftrightarrow \mathbf{v}$ symmetry.

Recall that $\left.t^{1 / 2} \psi^{-}=X\right\lrcorner(* \varphi)=d \tau$, where $\left.\tau=-\frac{1}{4} R^{4} X\right\lrcorner \operatorname{Re} \Upsilon$.
Proposition. $8 \tau / R$ equals

$$
3\{\mathbf{u}, d \mathbf{v}, d \mathbf{v}\}-\frac{u_{0}}{v_{0}}\{\mathbf{v}, d \mathbf{v}, d \mathbf{v}\}+2\{\mathbf{u}, d \mathbf{u}, d \mathbf{v}\}+\text { swapping } \mathbf{u}, \mathbf{v}
$$

To find ψ^{+}and the $(3,0)$-form $\psi=\psi^{+}+i \psi^{-}$, one needs to compute the connection 1-form η and its G_{2} norm, the reciprocal of $N=t^{-2}=\left\|X_{1}\right\|^{2}$. Knowledge of

$$
N=\frac{7 \varphi \wedge \varpi \wedge \varpi \wedge \alpha_{1}}{6 \varphi \wedge(* \varphi) \wedge \alpha_{1}}=6 u_{0} v_{0}-2\left(u_{1} v_{1}+u_{2} v_{2}+u_{3} v_{3}\right)
$$

allows us to compute the induced metric \tilde{g} on \mathbb{R}^{6} by subtracting the contribution from the S^{1} fibres.

One can also compute \tilde{g} (or more easily, its conformal structure) from the formula

$$
\left.\left.\tilde{g}(W, Z) \varpi^{3}=-2(W\lrcorner \varpi\right) \wedge(Z\lrcorner \psi^{-}\right) \wedge \psi^{-}
$$

The restriction of \tilde{g} to the plane (u, v) plane with $u=u_{1}, v=v_{1}$ and $u_{2}=u_{3}=v_{2}=v_{3}=0$ equals

$$
d s^{2}=\left(1+\frac{v}{4 u}\right) d u^{2}+\frac{3}{2} d u d v+\left(1+\frac{u}{4 v}\right) d v^{2}
$$

in the quadrant $u, v>0$.
Corollary. The coordinate 3-planes in $\left(\mathbb{R}^{6}, \tilde{g}\right)$ meet at an angle θ, where $\cos \theta=3 t / \sqrt{(1+4 t)(4+t)}$ and $t=v_{0} / u_{0}$.
... to be continued

PART 3. Starting from Spin(7)

Suppose, by way of transition, that $\left(M^{6}, \varpi, \Psi\right)$ has holonomy in $S U(3)$ and N^{7} is an S^{1}-bundle with connection 1-form η over satisfying $d \eta=-\omega$.

Naïvely, without rescaling, the total space N^{7} has a G_{2}-structure with

$$
\begin{aligned}
\varphi & =\eta \wedge \varpi+\operatorname{Re} \Psi, & & d \varphi=\varpi^{2}, \\
* \varphi & =\eta \wedge \operatorname{Im} \Psi+\frac{1}{2} \varpi^{2}, & & d * \varphi=0 .
\end{aligned}
$$

Even more trivially, the Riemannian product $M^{6} \times \mathbb{R}$ has holonomy a subgroup of G_{2} :

Then $N^{7} \times \mathbb{R}$ acquires a metric with holonomy in $S U(4)$ with

$$
\begin{aligned}
& \varpi^{\prime}=x^{2} \varpi+\eta \wedge 2 x d x \\
& \Psi^{\prime}=\Psi \wedge\left(-i \eta+2 x^{7} d x\right) \\
& g^{\prime}=x^{2} g_{M}+x^{-6} \eta^{2}+\left(2 x^{4} d x\right)^{2}
\end{aligned}
$$

This can be made explicit if $M=T^{6}$ and N is a nilmanifold.
The associated Spin(7) closed 4-form

$$
\begin{aligned}
\Omega & =\frac{1}{2}\left(\varpi^{\prime}\right)^{2}+\operatorname{Re} \Psi^{\prime} \\
& =\eta \wedge\left(\varpi \wedge 2 x^{3} d x+\operatorname{Im} \Psi\right)+x^{4}\left(\frac{1}{2} \varpi^{2}+\operatorname{Re} \Psi \wedge 2 x^{3} d x\right) \\
& =\eta \wedge \phi+x^{4} * \phi,
\end{aligned}
$$

does induce the product metric on $M^{6} \times \mathbb{R}$. Why does this work?

More generally, suppose that

$$
\Omega=\eta \wedge \phi+x^{4} * \phi
$$

defines a metric with holonomy in $\operatorname{Spin}(7)$ on the total space of an S^{1} bundle (with $\|\alpha\|=|x|^{3}$ non-constant), inducing a metric on the base with holonomy in G_{2}. Then

$$
0=d \Omega=F \wedge \phi+4 x^{3} d x \wedge * \phi
$$

This implies that $F \in \Lambda_{7}^{2}$ can be identified with $4 x^{3} d x$ modulo G_{2} invariants, so η is an anti-instanton. Moreover, $\nabla d x=0$ (because $\nabla d x$ can be extracted from $\left.d F \in \Lambda^{3} \cong \mathbb{R}^{7} \oplus S^{2}\left(\mathbb{R}^{7}\right)\right)$.

Corollary [Oliveira]. The base holonomy must reduce to $S U(3)$.

The $S U(4)$ structure on $N^{7} \times \mathbb{R}$ can instead be realized via the evolution equation

$$
\frac{\partial(* \varphi)}{\partial x}=-d \varphi
$$

for the co-calibrated G_{2} structure on the hypersurfaces $x=$ const.
In this picture, N^{7} has a 'hypo' $S U(3)$ structure (ω, η, ψ) such that $d \omega=0$ and $d(\eta \wedge \psi)=0$ [Conti-Fino].

A number of Lie groups with co-calibrated G_{2} structures have such structures:

Theorem [Freibert]. If N^{7} arises from a 'close to abelian' Lie algebra with an invariant co-calibrated structure, this evolves to $S U(4)$ (but not $S p(2)$) holonomy.

Model metrics over S^{4}

The (negative) spin bundle $\Delta_{\text {_ }}$ over S^{4} has fibre \mathbb{H}, and a 'left' hyperkähler structure with complex structures I_{1}, I_{2}, I_{3}. Choose a Killing vector field $X=X_{1}$ generating I_{1}. Fibrewise, this preserves a 'right' hyperkähler structure defined by a local basis $\left(\gamma_{i}\right)$ of 2-forms that are ASD on \mathbb{H}.

Then Δ_{-}admits a metric with holonomy equal to $\operatorname{Spin}(7)$, with closed 4-form

$$
\Omega_{\mathrm{BS}} \sim r^{-8 / 5} d x_{1234}+r^{2 / 5} \sum_{i=1}^{3} \gamma_{i} \wedge \varepsilon_{i}+r^{12 / 5} e_{1234}
$$

where r is the radius on $\mathbb{H},\left(\varepsilon_{i}\right)$ is a local basis of ASD forms on S^{4} matching the γ_{i} 's, and e_{1234} is the volume form on the sphere (\sim means we are ignoring universal constants in all terms).

The quotient of Δ_{-}by $\left\{e^{l_{1} t}\right\}$ can be identified with $\Lambda_{-}^{2} T^{*} S^{4}$, allowing one to realize a fibrewise Gibbons-Hawking ansatz, even though the action is not hyperkähler on Δ_{-}. We obtain

$$
\begin{aligned}
\left.\varphi_{\mathrm{GH}}=X\right\lrcorner \Omega & \left.\left.\sim r^{-8 / 5}(X\lrcorner d x_{1234}\right)+r^{2 / 5} \sum(X\lrcorner \gamma_{i}\right) \wedge \varepsilon_{i} \\
& \sim r^{-18 / 5} d u_{123}+r^{2 / 5} \sum d u_{i} \wedge \varepsilon_{i}
\end{aligned}
$$

$$
\varphi_{\mathrm{GH}} \sim R^{-9 / 5} d u_{123}+R^{1 / 5} d \mathcal{T}
$$

where $R=r^{2}$ is the radius on \mathbb{R}^{3}, and \mathcal{T} the tautological 2-form.
This contrasts with the 3 -form of the known metric

$$
\varphi_{\mathrm{BS}} \sim R^{-3 / 2} d u_{123}+R^{1 / 2} d \mathcal{T}
$$

with holonomy equal to G_{2}.

The 'Gibbons-Hawking' quotient can't have holonomy G_{2}. Indeed,

$$
* \varphi_{\mathrm{GH}} \sim R^{8 / 5} e_{1234}+R^{-2 / 5} \mathcal{U}
$$

(unit 1 -forms have weight $R^{-3 / 5}$ vertically and $R^{2 / 5}$ horizontally).

$$
\begin{aligned}
d * \varphi_{\mathrm{GH}} & \sim R^{3 / 5} d R \wedge e_{1234}+R^{-3 / 5} d R \wedge \mathcal{U}+R^{-2 / 5} d \mathcal{U} \\
& \sim R^{3 / 5} d R \wedge e_{1234}+R^{7 / 5} d u_{123} \wedge \mathcal{T}
\end{aligned}
$$

We know that

$$
d^{*} \varphi_{\mathrm{GH}} \sim R^{2 / 5} F+R^{7 / 5} \mathcal{T}
$$

lies in the 'instanton subspace' $\Lambda_{14}^{2} \cong \mathfrak{g}_{2}$, imposing a condition on the S^{1} curvature $F=d \eta$.

To what extent can one extend the analysis in PARTS 2 and 3 to complete metrics?

