Algebraically Constrained Special Holonomy Metrics and Second-order Associative 3-folds
A progress report

Robert L. Bryant — Duke University

The Simons Center for Geometry and Physics

September 10, 2017
Part I: Curvature-Constrained Special Holonomy

(M^n, g) Riemannian with holonomy $H \subset O(n)$, with Lie algebra $\mathfrak{h} \subset \mathfrak{so}(n)$.

The structure equations on the H-bundle $B \to M$:

$$d\eta = -\theta \wedge \eta \quad \text{and} \quad d\theta = -\theta \wedge \theta + R(\eta \wedge \eta)$$

$\eta: TB \to \mathbb{R}^n$, $\theta: TB \to \mathfrak{h}$, and $R: B \to K(\mathfrak{h})$ is the curvature function, where $K(\mathfrak{h})$ is the H-representation $0 \to K(\mathfrak{h}) \to S^2(\mathfrak{h}) \to \Lambda^4(\mathbb{R}^n)$.

Second Bianchi:

$$dR = -\theta.$$

$R': B \to K(1)(\mathfrak{h}) \subset \text{Hom}(\mathbb{R}^n, K(\mathfrak{h}))$ represents the covariant derivative of the curvature.
Part I: Curvature-Constrained Special Holonomy

\((M^n, g)\) Riemannian with holonomy \(H \subset O(n)\), with Lie algebra \(\mathfrak{h} \subset \mathfrak{so}(n)\).

The **structure equations** on the \(H\)-bundle \(B \to M\):

\[
d\eta = -\theta \wedge \eta \quad \text{and} \quad d\theta = -\theta \wedge \theta + R(\eta \wedge \eta).
\]

\(\eta : TB \to \mathbb{R}^n\), \(\theta : TB \to \mathfrak{h}\), and \(R : B \to K(\mathfrak{h})\) is the **curvature function**, where \(K(\mathfrak{h})\) is the \(H\)-representation

\[
0 \longrightarrow K(\mathfrak{h}) \longrightarrow S^2(\mathfrak{h}) \overset{\wedge}{\longrightarrow} \Lambda^4(\mathbb{R}^n).
\]
Part I: Curvature-Constrained Special Holonomy

\((M^n, g)\) Riemannian with holonomy \(H \subset O(n)\), with Lie algebra \(\mathfrak{h} \subset \mathfrak{so}(n)\).

The structure equations on the \(H\)-bundle \(B \to M\):

\[
\begin{align*}
d\eta &= -\theta \wedge \eta \\
d\theta &= -\theta \wedge \theta + R(\eta \wedge \eta).
\end{align*}
\]

\(\eta : TB \to \mathbb{R}^n\), \(\theta : TB \to \mathfrak{h}\), and \(R : B \to K(\mathfrak{h})\) is the curvature function, where \(K(\mathfrak{h})\) is the \(H\)-representation

\[
0 \to K(\mathfrak{h}) \to S^2(\mathfrak{h}) \overset{\wedge}{\to} \Lambda^4(\mathbb{R}^n).
\]

Second Bianchi: \(dR = -\theta.R + R'(\eta)\). where

\[
R' : B \to K^{(1)}(\mathfrak{h}) \subset \text{Hom}(\mathbb{R}^n, K(\mathfrak{h}))
\]

represents the covariant derivative of the curvature.
Example: \(\text{SU}(2) \subset \text{SO}(4) \)

\[
\begin{pmatrix}
\text{d}\eta_0 \\
\text{d}\eta_1 \\
\text{d}\eta_2 \\
\text{d}\eta_3
\end{pmatrix}
= -\begin{pmatrix}
0 & \theta_1 & \theta_2 & \theta_3 \\
-\theta_1 & 0 & -\theta_3 & \theta_2 \\
-\theta_2 & \theta_3 & 0 & -\theta_1 \\
-\theta_3 & -\theta_2 & \theta_1 & 0
\end{pmatrix}
\wedge
\begin{pmatrix}
\eta_0 \\
\eta_1 \\
\eta_2 \\
\eta_3
\end{pmatrix}
\]
Example: \(\text{SU}(2) \subset \text{SO}(4) \)

\[
\begin{pmatrix}
\frac{\mathrm{d}\eta_0}{\mathrm{d}t} \\
\frac{\mathrm{d}\eta_1}{\mathrm{d}t} \\
\frac{\mathrm{d}\eta_2}{\mathrm{d}t} \\
\frac{\mathrm{d}\eta_3}{\mathrm{d}t}
\end{pmatrix}
=
-\begin{pmatrix}
0 & \theta_1 & \theta_2 & \theta_3 \\
-\theta_1 & 0 & -\theta_3 & \theta_2 \\
-\theta_2 & \theta_3 & 0 & -\theta_1 \\
-\theta_3 & -\theta_2 & \theta_1 & 0
\end{pmatrix}
\wedge
\begin{pmatrix}
\eta_0 \\
\eta_1 \\
\eta_2 \\
\eta_3
\end{pmatrix}
\]

\[
\begin{pmatrix}
\frac{\mathrm{d}\theta_1}{\mathrm{d}t} \\
\frac{\mathrm{d}\theta_2}{\mathrm{d}t} \\
\frac{\mathrm{d}\theta_3}{\mathrm{d}t}
\end{pmatrix}
=
-\begin{pmatrix}
2 \theta_2 \wedge \theta_3 \\
2 \theta_3 \wedge \theta_1 \\
2 \theta_1 \wedge \theta_2
\end{pmatrix}
+
\begin{pmatrix}
R_{11} & R_{12} & R_{13} \\
R_{21} & R_{22} & R_{23} \\
R_{31} & R_{32} & R_{33}
\end{pmatrix}
\begin{pmatrix}
\eta_0 \wedge \eta_1 - \eta_2 \wedge \eta_3 \\
\eta_0 \wedge \eta_2 - \eta_3 \wedge \eta_1 \\
\eta_0 \wedge \eta_3 - \eta_1 \wedge \eta_2
\end{pmatrix},
\]

where \(R_{ij} = R_{ji} \) with \(R_{11} + R_{22} + R_{33} = 0 \).
Example: \(SU(2) \subset SO(4) \)

\[
\begin{pmatrix}
 d\eta_0 \\
 d\eta_1 \\
 d\eta_2 \\
 d\eta_3
\end{pmatrix}
= - \begin{pmatrix}
 0 & \theta_1 & \theta_2 & \theta_3 \\
 -\theta_1 & 0 & -\theta_3 & \theta_2 \\
 -\theta_2 & \theta_3 & 0 & -\theta_1 \\
 -\theta_3 & -\theta_2 & \theta_1 & 0
\end{pmatrix}
\wedge
\begin{pmatrix}
 \eta_0 \\
 \eta_1 \\
 \eta_2 \\
 \eta_3
\end{pmatrix}
\]

\[
\begin{pmatrix}
 d\theta_1 \\
 d\theta_2 \\
 d\theta_3
\end{pmatrix}
= - \begin{pmatrix}
 2\theta_2 \wedge \theta_3 \\
 2\theta_3 \wedge \theta_1 \\
 2\theta_1 \wedge \theta_2
\end{pmatrix}
+ \begin{pmatrix}
 R_{11} & R_{12} & R_{13} \\
 R_{21} & R_{22} & R_{23} \\
 R_{31} & R_{32} & R_{33}
\end{pmatrix}
\begin{pmatrix}
 \eta_0 \wedge \eta_1 - \eta_2 \wedge \eta_3 \\
 \eta_0 \wedge \eta_2 - \eta_3 \wedge \eta_1 \\
 \eta_0 \wedge \eta_3 - \eta_1 \wedge \eta_2
\end{pmatrix},
\]

where \(R_{ij} = R_{ji} \) with \(R_{11} + R_{22} + R_{33} = 0 \).

\[
K(\mathfrak{su}(2)) = S_0^2(\mathbb{R}^3) \sim \mathbb{R}^5 \quad \text{and} \quad K^{(1)}(\mathfrak{su}(2)) \sim \mathbb{C}^6 \sim S^5(\mathbb{C}^2)
\]
Example: $\text{SU}(2) \subset \text{SO}(4)$

\[
\begin{pmatrix}
 d\eta_0 \\
 d\eta_1 \\
 d\eta_2 \\
 d\eta_3
\end{pmatrix}
= -
\begin{pmatrix}
 0 & \theta_1 & \theta_2 & \theta_3 \\
 -\theta_1 & 0 & -\theta_3 & \theta_2 \\
 -\theta_2 & \theta_3 & 0 & -\theta_1 \\
 -\theta_3 & -\theta_2 & \theta_1 & 0
\end{pmatrix}
\wedge
\begin{pmatrix}
 \eta_0 \\
 \eta_1 \\
 \eta_2 \\
 \eta_3
\end{pmatrix}

\begin{pmatrix}
 d\theta_1 \\
 d\theta_2 \\
 d\theta_3
\end{pmatrix}
= -
\begin{pmatrix}
 2\theta_2 \wedge \theta_3 \\
 2\theta_3 \wedge \theta_1 \\
 2\theta_1 \wedge \theta_2
\end{pmatrix}
+
\begin{pmatrix}
 R_{11} & R_{12} & R_{13} \\
 R_{21} & R_{22} & R_{23} \\
 R_{31} & R_{32} & R_{33}
\end{pmatrix}
\begin{pmatrix}
 \eta_0 \wedge \eta_1 - \eta_2 \wedge \eta_3 \\
 \eta_0 \wedge \eta_2 - \eta_3 \wedge \eta_1 \\
 \eta_0 \wedge \eta_3 - \eta_1 \wedge \eta_2
\end{pmatrix},
\]

where $R_{ij} = R_{ji}$ with $R_{11} + R_{22} + R_{33} = 0$.

\[
K(\mathfrak{su}(2)) = S_0^2(\mathbb{R}^3) \cong \mathbb{R}^5 \quad \text{and} \quad K^{(1)}(\mathfrak{su}(2)) \cong \mathbb{C}^6 \cong S^5(\mathbb{C}^2)
\]

É. Cartan (1926): $\text{SU}(2)$-holonomy depends on 2 functions of 3 variables.
Basic holonomy problem: For a given subgroup $H \subset \text{SO}(n)$ how to classify, up to local diffeomorphism, the ‘solutions’ to the structure equations

$$d\eta = -\theta \wedge \eta$$
$$d\theta = -\theta \wedge \theta + R(\eta \wedge \eta)$$

$(\eta, \theta) : TB \to \mathbb{R}^n \oplus \mathfrak{h}$ is a coframing and $R : B \to K(\mathfrak{h})$.
Basic holonomy problem: For a given subgroup $H \subset SO(n)$ how to classify, up to local diffeomorphism, the ‘solutions’ to the structure equations

\[
\begin{align*}
\text{d}\eta &= -\theta \wedge \eta \\
\text{d}\theta &= -\theta \wedge \theta + R(\eta \wedge \eta)
\end{align*}
\]

$(\eta, \theta) : TB \rightarrow \mathbb{R}^n \oplus \mathfrak{h}$ is a coframing and $R : B \rightarrow K(\mathfrak{h})$.

Algebraically special solutions: H does not act transitively on $K(\mathfrak{h})$. A geometrically natural condition on solutions is to require that $R : B \rightarrow K(\mathfrak{h})$ take values in an H-invariant subset $A \subset K(\mathfrak{h})$.

\[\sigma_3(\mathfrak{R})^2 + 4\sigma_2(\mathfrak{R})^3 \leq 0.\]
Basic holonomy problem: For a given subgroup $H \subset \text{SO}(n)$ how to classify, up to local diffeomorphism, the ‘solutions’ to the structure equations

\[
\begin{align*}
\text{d}\eta &= -\theta \wedge \eta \\
\text{d}\theta &= -\theta \wedge \theta + R(\eta \wedge \eta)
\end{align*}
\]

$(\eta, \theta) : TB \to \mathbb{R}^n \oplus \mathfrak{h}$ is a coframing and $R : B \to K(\mathfrak{h})$.

Algebraically special solutions: H does not act transitively on $K(\mathfrak{h})$. A geometrically natural condition on solutions is to require that $R : B \to K(\mathfrak{h})$ take values in an H-invariant subset $A \subset K(\mathfrak{h})$.

Example: $H = \text{SU}(2) = \text{Spin}(3) \subset \text{SO}(4)$ acts on $K(\mathfrak{su}(2)) = S_0^2(\mathbb{R}^3)$ preserving the symmetric functions of the eigenvalues of $R \in S_0^2(\mathbb{R}^3)$. Specifying a relation between $\sigma_2(R)$ and $\sigma_3(R)$ defines such an invariant subset $A \subset S_0^2(\mathbb{R}^3)$.

$$\sigma_3(R)^2 + \frac{4}{27} \sigma_2(R)^3 \leq 0.$$
Cases of interest in special holonomy

1. $\text{SU}(n) \subset \text{SO}(2n)$

 \[K(\mathfrak{su}(n)) = S_{0}^{2:2}(\mathbb{C}^{n}) \]
Cases of interest in special holonomy

1. $\text{SU}(n) \subset \text{SO}(2n)$

 $K(\mathfrak{su}(n)) = S_0^{2,2}(\mathbb{C}^n)$

 Of particular interest: The cases $n = 2$ and $n = 3$ (because of the connections with string theory and nearly Kähler geometry).
Cases of interest in special holonomy

1. $\text{SU}(n) \subset \text{SO}(2n)$

$$K(\mathfrak{su}(n)) = S^{2,2}_0(\mathbb{C}^n)$$

Of particular interest: The cases $n = 2$ and $n = 3$ (because of the connections with string theory and nearly Kähler geometry).

2. $\text{G}_2 \subset \text{SO}(7)$

$$K(\mathfrak{g}_2) \simeq V^{0,2}(\mathfrak{g}_2) \simeq \mathbb{R}^{77}.$$
Cases of interest in special holonomy

1. $SU(n) \subset SO(2n)$
 \[K(\mathfrak{su}(n)) = S_0^{2,2}(\mathbb{C}^n) \]
 Of particular interest: The cases $n = 2$ and $n = 3$ (because of the connections with string theory and nearly Kähler geometry).

2. $G_2 \subset SO(7)$
 \[K(\mathfrak{g}_2) \simeq V^{0,2}(\mathfrak{g}_2) \simeq \mathbb{R}^{77}. \]

3. $Spin(7) \subset SO(8)$
 \[K(\mathfrak{so}(7)) \simeq V^{0,2,0}(\mathfrak{so}(7)) \simeq \mathbb{R}^{168}. \]
Example: The structure equations for SU(2)-holonomy

\[
\begin{pmatrix}
 d\eta_0 \\
 d\eta_1 \\
 d\eta_2 \\
 d\eta_3
\end{pmatrix} = -\begin{pmatrix}
 0 & \theta_1 & \theta_2 & \theta_3 \\
 -\theta_1 & 0 & -\theta_3 & \theta_2 \\
 -\theta_2 & \theta_3 & 0 & -\theta_1 \\
 -\theta_3 & -\theta_2 & \theta_1 & 0
\end{pmatrix} \wedge \begin{pmatrix}
 \eta_0 \\
 \eta_1 \\
 \eta_2 \\
 \eta_3
\end{pmatrix}
\]

\[
\begin{pmatrix}
 d\theta_1 \\
 d\theta_2 \\
 d\theta_3
\end{pmatrix} = -\begin{pmatrix}
 2 \theta_2 \wedge \theta_3 \\
 2 \theta_3 \wedge \theta_1 \\
 2 \theta_1 \wedge \theta_2
\end{pmatrix} + \begin{pmatrix}
 R_{11} & R_{12} & R_{13} \\
 R_{21} & R_{22} & R_{23} \\
 R_{31} & R_{32} & R_{33}
\end{pmatrix} \begin{pmatrix}
 \eta_0 \wedge \eta_1 - \eta_2 \wedge \eta_3 \\
 \eta_0 \wedge \eta_2 - \eta_3 \wedge \eta_1 \\
 \eta_0 \wedge \eta_3 - \eta_1 \wedge \eta_2
\end{pmatrix},
\]

where \(R_{ij} = R_{ji} \) with \(R_{11} + R_{22} + R_{33} = 0 \).
Example: The structure equations for SU(2)-holonomy

\[
\begin{pmatrix}
\, d\eta_0 \\ d\eta_1 \\ d\eta_2 \\ d\eta_3
\end{pmatrix}
= -
\begin{pmatrix}
0 & \theta_1 & \theta_2 & \theta_3 \\
-\theta_1 & 0 & -\theta_3 & \theta_2 \\
-\theta_2 & \theta_3 & 0 & -\theta_1 \\
-\theta_3 & -\theta_2 & \theta_1 & 0
\end{pmatrix}
\wedge
\begin{pmatrix}
\eta_0 \\ \eta_1 \\ \eta_2 \\ \eta_3
\end{pmatrix}
\]

\[
\begin{pmatrix}
\, d\theta_1 \\ d\theta_2 \\ d\theta_3
\end{pmatrix}
= -
\begin{pmatrix}
2\theta_2\wedge\theta_3 \\ 2\theta_3\wedge\theta_1 \\ 2\theta_1\wedge\theta_2
\end{pmatrix}
+
\begin{pmatrix}
R_{11} & R_{12} & R_{13} \\
R_{21} & R_{22} & R_{23} \\
R_{31} & R_{32} & R_{33}
\end{pmatrix}
\begin{pmatrix}
\eta_0\wedge\eta_1 - \eta_2\wedge\eta_3 \\
\eta_0\wedge\eta_2 - \eta_3\wedge\eta_1 \\
\eta_0\wedge\eta_3 - \eta_1\wedge\eta_2
\end{pmatrix},
\]

where \(R_{ij} = R_{ji} \) with \(R_{11} + R_{22} + R_{33} = 0 \).

We have \(A \simeq K(\mathfrak{su}(2)) \simeq \mathbb{R}^5 \) with

\[
(s_1, s_2, s_3, s_4, s_5, s_6, s_7) = (0, 3, 2, 0, 0, 0, 0).
\]

and \(\dim A^{(1)} = \dim K(\mathfrak{su}(2))^{(1)} = 12 = 2s_2 + 3s_3 \), so it’s involutive.
Unfortunately, the systems we need to study are not always involutive, and one must prolong the structure equations.
Unfortunately, the systems we need to study are not always involutive, and one must prolong the structure equations.

Example: The SU(2) structure equations in which $R : B \rightarrow S^2_0(\mathbb{R}^3)$ has a double eigenvalue everywhere are not involutive:

\[
\begin{pmatrix}
\frac{\partial \eta_0}{\partial t} \\
\frac{\partial \eta_1}{\partial t} \\
\frac{\partial \eta_2}{\partial t} \\
\frac{\partial \eta_3}{\partial t}
\end{pmatrix} = -\begin{pmatrix}
0 & \theta_1 & \theta_2 & \theta_3 \\
-\theta_1 & 0 & -\theta_3 & \theta_2 \\
-\theta_2 & \theta_3 & 0 & -\theta_1 \\
-\theta_3 & -\theta_2 & \theta_1 & 0
\end{pmatrix} \wedge \begin{pmatrix}
\eta_0 \\
\eta_1 \\
\eta_2 \\
\eta_3
\end{pmatrix}
\]

\[
\begin{pmatrix}
\frac{\partial \theta_1}{\partial t} \\
\frac{\partial \theta_2}{\partial t} \\
\frac{\partial \theta_3}{\partial t}
\end{pmatrix} = -\begin{pmatrix}
2 \theta_2 \wedge \theta_3 \\
2 \theta_3 \wedge \theta_1 \\
2 \theta_1 \wedge \theta_2
\end{pmatrix} + \begin{pmatrix}
-2r^3 & 0 & 0 \\
0 & r^3 & 0 \\
0 & 0 & r^3
\end{pmatrix} \begin{pmatrix}
\eta_0 \wedge \eta_1 - \eta_2 \wedge \eta_3 \\
\eta_0 \wedge \eta_2 - \eta_3 \wedge \eta_1 \\
\eta_0 \wedge \eta_3 - \eta_1 \wedge \eta_2
\end{pmatrix},
\]
Applying \(d^2 = 0 \) to the equations

\[
\begin{pmatrix}
 d\eta_0 \\
 d\eta_1 \\
 d\eta_2 \\
 d\eta_3
\end{pmatrix} = - \begin{pmatrix}
 0 & \theta_1 & \theta_2 & \theta_3 \\
 -\theta_1 & 0 & -\theta_3 & \theta_2 \\
 -\theta_2 & \theta_3 & 0 & -\theta_1 \\
 -\theta_3 & -\theta_2 & \theta_1 & 0
\end{pmatrix} \wedge \begin{pmatrix}
 \eta_0 \\
 \eta_1 \\
 \eta_2 \\
 \eta_3
\end{pmatrix}
\]

\[
\begin{pmatrix}
 d\theta_1 \\
 d\theta_2 \\
 d\theta_3
\end{pmatrix} = - \begin{pmatrix}
 2 \theta_2 \wedge \theta_3 \\
 2 \theta_3 \wedge \theta_1 \\
 2 \theta_1 \wedge \theta_2
\end{pmatrix} + \begin{pmatrix}
 -2r^3 & 0 & 0 \\
 0 & r^3 & 0 \\
 0 & 0 & r^3
\end{pmatrix} \begin{pmatrix}
 \eta_0 \wedge \eta_1 - \eta_2 \wedge \eta_3 \\
 \eta_0 \wedge \eta_2 - \eta_3 \wedge \eta_1 \\
 \eta_0 \wedge \eta_3 - \eta_1 \wedge \eta_2
\end{pmatrix},
\]

with \(r \neq 0 \) implies that there exist \(u_0, u_1, u_1, u_3 \) for which

\[
dr = 4r \left(u_0 \eta_0 + u_1 \eta_1 + u_2 \eta_2 + u_3 \eta_3 \right)
\]

\[
\theta_2 = 2 \left(-u_2 \eta_0 - u_3 \eta_1 + u_0 \eta_2 + u_1 \eta_3 \right)
\]

\[
\theta_3 = 2 \left(-u_3 \eta_0 + u_2 \eta_1 - u_1 \eta_2 + u_0 \eta_3 \right)
\]
Applying $d^2 = 0$ to the equations

$$\begin{pmatrix} d\eta_0 \\ d\eta_1 \\ d\eta_2 \\ d\eta_3 \end{pmatrix} = - \begin{pmatrix} 0 & \theta_1 & \theta_2 & \theta_3 \\ -\theta_1 & 0 & -\theta_3 & \theta_2 \\ -\theta_2 & \theta_3 & 0 & -\theta_1 \\ -\theta_3 & -\theta_2 & \theta_1 & 0 \end{pmatrix} \wedge \begin{pmatrix} \eta_0 \\ \eta_1 \\ \eta_2 \\ \eta_3 \end{pmatrix}$$

$$\begin{pmatrix} d\theta_1 \\ d\theta_2 \\ d\theta_3 \end{pmatrix} = - \begin{pmatrix} 2\theta_2^\wedge \theta_3 \\ 2\theta_3^\wedge \theta_1 \\ 2\theta_1^\wedge \theta_2 \end{pmatrix} + \begin{pmatrix} -2r^3 & 0 & 0 \\ 0 & r^3 & 0 \\ 0 & 0 & r^3 \end{pmatrix} \begin{pmatrix} \eta_0^\wedge \eta_1 - \eta_2^\wedge \eta_3 \\ \eta_0^\wedge \eta_2 - \eta_3^\wedge \eta_1 \\ \eta_0^\wedge \eta_3 - \eta_1^\wedge \eta_2 \end{pmatrix},$$

with $r \neq 0$ implies that there exist u_0, u_1, u_1, u_3 for which

$$dr = 4r \left(u_0 \eta_0 + u_1 \eta_1 + u_2 \eta_2 + u_3 \eta_3 \right)$$

$$\theta_2 = 2 \left(-u_2 \eta_0 - u_3 \eta_1 + u_0 \eta_2 + u_1 \eta_3 \right)$$

$$\theta_3 = 2 \left(-u_3 \eta_0 + u_2 \eta_1 - u_1 \eta_2 + u_0 \eta_3 \right)$$

These are structure equations for a coframing $(\eta_0, \eta_1, \eta_2, \eta_3, \theta_1)$ with coefficients (r, u_0, u_1, u_2, u_3) that still are not involutive.
Differentiating the structure equations again yields relations of the form

\[\begin{pmatrix} u_0 \\ u_1 \\ u_2 \\ u_3 \end{pmatrix} = U(r, u_0, u_1, u_2, u_3, v_1, v_2, v_3) \begin{pmatrix} \theta_1 \\ \eta_0 \\ \eta_1 \\ \eta_2 \\ \eta_3 \end{pmatrix} \]

where \(U(\cdot) \) is a matrix depending on three new parameters \(v_1, v_2, v_3 \).
Differentiating the structure equations again yields relations of the form

\[
d \begin{pmatrix} u_0 \\ u_1 \\ u_2 \\ u_3 \end{pmatrix} = U(r, u_0, u_1, u_2, u_3, v_1, v_2, v_3) \begin{pmatrix} \theta_1 \\ \eta_0 \\ \eta_1 \\ \eta_2 \\ \eta_3 \end{pmatrix}
\]

where \(U(\cdot) \) is a matrix depending on three new parameters \(v_1, v_2, v_3 \).

Differentiating these equations gives relations of the form

\[
d \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} = V(r, u_0, u_1, u_2, u_3, v_1, v_2, v_3) \begin{pmatrix} \theta_1 \\ \eta_0 \\ \eta_1 \\ \eta_2 \\ \eta_3 \end{pmatrix}
\]
Differentiating the structure equations again yields relations of the form

\[
d \begin{pmatrix} u_0 \\ u_1 \\ u_2 \\ u_3 \end{pmatrix} = U(r, u_0, u_1, u_2, u_3, v_1, v_2, v_3) \begin{pmatrix} \theta_1 \\ \eta_0 \\ \eta_1 \\ \eta_2 \\ \eta_3 \end{pmatrix}
\]

where \(U(\cdot)\) is a matrix depending on three new parameters \(v_1, v_2, v_3\). Differentiating these equations gives relations of the form

\[
d \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} = V(r, u_0, u_1, u_2, u_3, v_1, v_2, v_3) \begin{pmatrix} \theta_1 \\ \eta_0 \\ \eta_1 \\ \eta_2 \\ \eta_3 \end{pmatrix}
\]

Differentiating these last relations yields no more relations. Coupled with

\[
dr = 4r (u_0 \eta_0 + u_1 \eta_1 + u_2 \eta_2 + u_3 \eta_3)
\]

This gives 8 ‘independent’ coefficients in the structure equations for which \(d^2 = 0\) is an identity.
Classical Holonomy (no curvature restrictions)

1. $H = SU(m) \subset SO(2m)$: $s^2m - 1 = 2$ is the last nonzero character. (also works for the nearly Kähler case when $m = 3$)

2. $H = G_2 \subset SO(7)$: $s^6 = 6$ is the last nonzero character. (also works for 'nearly-G_2' structures on M^7)

3. $H = \text{Spin}(7) \subset SO(8)$: $s^7 = 12$ is the last nonzero character.
Classical Holonomy (no curvature restrictions)

1. $H = \text{SU}(m) \subset \text{SO}(2m)$: $s_{2m-1} = 2$ is last nonzero character.
 (also works for the nearly Kähler case when $m = 3$)
Classical Holonomy (no curvature restrictions)

1. $H = \text{SU}(m) \subset \text{SO}(2m)$: $s_{2m-1} = 2$ is last nonzero character. (also works for the nearly Kähler case when $m = 3$)

2. $H = G_2 \subset \text{SO}(7)$: $s_6 = 6$ is last nonzero character. (also works for ‘nearly-G_2’ structures on M^7)
Classical Holonomy (no curvature restrictions)

1. $H = \text{SU}(m) \subset \text{SO}(2m)$: $s_{2m-1} = 2$ is last nonzero character.
 (also works for the nearly Kähler case when $m = 3$)

2. $H = G_2 \subset \text{SO}(7)$: $s_6 = 6$ is last nonzero character.
 (also works for ‘nearly-G_2’ structures on M^7)

3. $H = \text{Spin}(7) \subset \text{SO}(8)$: $s_7 = 12$ is last nonzero character.
Curvature restrictions in the $\text{SU}(2) \subset \text{SO}(4)$ case

The $\text{SU}(2)$-invariants on $K(\mathfrak{su}(2)) \simeq S_0^2(\mathbb{R}^3) \simeq \mathbb{R}^5$ are generated by $\sigma_2, \sigma_3 : S_0^2(\mathbb{R}^3) \to \mathbb{R}$, satisfying

$$(\sigma_3(R))^2 + \frac{4}{27} (\sigma_2(R))^3 \leq 0.$$
Curvature restrictions in the $\text{SU}(2) \subset \text{SO}(4)$ case

The $\text{SU}(2)$-invariants on $K(\mathfrak{su}(2)) \simeq S_0^2(\mathbb{R}^3) \simeq \mathbb{R}^5$ are generated by $\sigma_2, \sigma_3 : S_0^2(\mathbb{R}^3) \to \mathbb{R}$, satisfying

$$(\sigma_3(R))^2 + \frac{4}{27} (\sigma_2(R))^3 \leq 0.$$

1. Fixed eigenvalues: $(\sigma_2(R), \sigma_3(R)) \equiv (c_2, c_3)$.
Not involutive. Prolongation shows that solutions only exist in the trivial case $c_2 = c_3 = 0$.

Curvature restrictions in the SU(2) \(\subset \) SO(4) case

The SU(2)-invariants on \(K(\mathfrak{su}(2)) \cong S_0^2(\mathbb{R}^3) \cong \mathbb{R}^5 \) are generated by \(\sigma_2, \sigma_3 : S_0^2(\mathbb{R}^3) \to \mathbb{R} \), satisfying

\[
(\sigma_3(R))^2 + \frac{4}{27}(\sigma_2(R))^3 \leq 0.
\]

1. Fixed eigenvalues: \((\sigma_2(R), \sigma_3(R)) \equiv (c_2, c_3) \).
 Not involutive. Prolongation shows that solutions only exist in the trivial case \(c_2 = c_3 = 0 \).

2. \(\sigma_3(R) = 0 \).
 Not involutive. Prolongation show that solutions only exist in the trivial case \(R = 0 \).
Curvature restrictions in the $\text{SU}(2) \subset \text{SO}(4)$ case

The $\text{SU}(2)$-invariants on $K(\mathfrak{su}(2)) \simeq S_0^2(\mathbb{R}^3) \simeq \mathbb{R}^5$ are generated by $\sigma_2, \sigma_3 : S_0^2(\mathbb{R}^3) \to \mathbb{R}$, satisfying

$$(\sigma_3(R))^2 + \frac{4}{27} (\sigma_2(R))^3 \leq 0.$$

1. Fixed eigenvalues: $(\sigma_2(R), \sigma_3(R)) \equiv (c_2, c_3)$.
 Not involutive. Prolongation shows that solutions only exist in the trivial case $c_2 = c_3 = 0$.

2. $\sigma_3(R) = 0$.
 Not involutive. Prolongation show that solutions only exist in the trivial case $R = 0$.

3. $(\sigma_3(R))^2 + \frac{4}{27} (\sigma_2(R))^3 = 0$.
 This is the 'double eigenvalue case', with nontrivial stabilizer $S^1 \subset \text{SU}(2)$.
 Not involutive, but prolongation yields a 2-parameter family of solutions, not all of which are complete, but some are.
Curvatures in $K(\mathfrak{h})$ with nontrivial H-stabilizers

Classifying the general H-invariant $A \subset K(\mathfrak{h})$ for which the corresponding H-structures have nontrivial solutions is probably intractable.
Curvatures in $K(\mathfrak{h})$ with nontrivial H-stabilizers

Classifying the general H-invariant $A \subset K(\mathfrak{h})$ for which the corresponding H-structures have nontrivial solutions is probably intractable.

However, it seems likely that one can classify the constraints $A \subset K(\mathfrak{h})$ that are either involutive or their first prolongation is involutive.
Curvatures in $K(h)$ with nontrivial H-stabilizers

Classifying the general H-invariant $A \subset K(h)$ for which the corresponding H-structures have nontrivial solutions is probably intractable.

However, it seems likely that one can classify the constraints $A \subset K(h)$ that are either involutive or their first prolongation is involutive.

The most promising candidate to date is the subset $S \subset K(h)$ that consists of the curvatures that have nontrivial H-stabilizers. It is not a smooth manifold, but it can be stratified into smooth pieces according to the stabilizer type, and these can be analyzed.
Curvatures in $K(\mathfrak{h})$ with nontrivial H-stabilizers

Classifying the general H-invariant $A \subset K(\mathfrak{h})$ for which the corresponding H-structures have nontrivial solutions is probably intractable.

However, it seems likely that one can classify the constraints $A \subset K(\mathfrak{h})$ that are either involutive or their first prolongation is involutive.

The most promising candidate to date is the subset $S \subset K(\mathfrak{h})$ that consists of the curvatures that have nontrivial H-stabilizers. It is not a smooth manifold, but it can be stratified into smooth pieces according to the stabilizer type, and these can be analyzed.

This is the project that I have been engaged in.
Table: Stabilized curvatures for subgroups of SU(3) and Generality

<table>
<thead>
<tr>
<th>G</th>
<th>$\dim(K(\mathfrak{su}(3)))^G$</th>
<th>G-splitting of \mathbb{C}^3</th>
<th>Generality</th>
</tr>
</thead>
<tbody>
<tr>
<td>U(2)</td>
<td>1</td>
<td>$\mathbb{C} \oplus \mathbb{C}^2$</td>
<td>1 const. (known)</td>
</tr>
<tr>
<td>SU(2)</td>
<td>1</td>
<td>$\mathbb{R} \oplus \mathbb{R} \oplus \mathbb{C}^2$</td>
<td>1 const. (known)</td>
</tr>
<tr>
<td>SO(3)</td>
<td>1</td>
<td>$\mathbb{R}^3 \oplus \mathbb{R}^3$</td>
<td>does not exist</td>
</tr>
<tr>
<td>\mathbb{T}^2</td>
<td>3</td>
<td>$\mathbb{C} \oplus \mathbb{C} \oplus \mathbb{C}$</td>
<td>8 constants</td>
</tr>
<tr>
<td>$S^1(p/q)\dagger$</td>
<td>3</td>
<td>$\mathbb{C} \oplus \mathbb{C} \oplus \mathbb{C}$</td>
<td>8 constants</td>
</tr>
<tr>
<td>$S^1(0)$</td>
<td>5</td>
<td>$\mathbb{R} \oplus \mathbb{R} \oplus \mathbb{C} \oplus \mathbb{C}$</td>
<td>$s_1 = 2$??</td>
</tr>
<tr>
<td>$S^1(1)$</td>
<td>7</td>
<td>$\mathbb{C} \oplus \mathbb{C} \oplus \mathbb{C}$</td>
<td>$s_1 = 4$??</td>
</tr>
</tbody>
</table>

\dagger $p/q \neq 0, 1$, where $S^1(p/q)$ is the circle of diagonal matrices $	ext{diag}(e^{ipt}, e^{iqt}, e^{-i(p+q)t})$.
Table: Stabilized curvatures of subgroups of G_2

<table>
<thead>
<tr>
<th>G</th>
<th>$\dim(K(g_2))^G$</th>
<th>G-splitting of \mathbb{R}^7</th>
<th>Generality</th>
</tr>
</thead>
<tbody>
<tr>
<td>SU(3)</td>
<td>0</td>
<td>$\mathbb{R}^1 \oplus \mathbb{C}^3$</td>
<td>only flat</td>
</tr>
<tr>
<td>SO(4)</td>
<td>1</td>
<td>$\mathbb{R}^3 \oplus \mathbb{R}^4$</td>
<td>only $\Lambda^2_+ (S^4)$</td>
</tr>
<tr>
<td>$U(2)_1$</td>
<td>2</td>
<td>$\mathbb{R}^3 \oplus \mathbb{R}^4$</td>
<td>only $\Lambda^2_+ (\mathbb{C}P^2)$</td>
</tr>
<tr>
<td>$U(2)_2$</td>
<td>2</td>
<td>$\mathbb{R}^1 \oplus \mathbb{R}^2 \oplus \mathbb{R}^4$</td>
<td>DNE</td>
</tr>
<tr>
<td>\mathbb{T}^2</td>
<td>5</td>
<td>$\mathbb{R} \oplus \mathbb{C} \oplus \mathbb{C} \oplus \mathbb{C}$</td>
<td>'only' consts.</td>
</tr>
<tr>
<td>SU(2)$_1$</td>
<td>3</td>
<td>$\mathbb{R} \oplus \mathbb{R} \oplus \mathbb{R} \oplus \mathbb{C}^2$</td>
<td>$s_2 = 0$</td>
</tr>
<tr>
<td>SU(2)$_2$</td>
<td>6</td>
<td>$\mathbb{R}^3 \oplus \mathbb{R}^4$</td>
<td>???</td>
</tr>
<tr>
<td>SO(3)$_1$</td>
<td>1</td>
<td>$\mathbb{R} \oplus \mathbb{R}^3 \oplus \mathbb{R}^3$</td>
<td>DNE</td>
</tr>
<tr>
<td>SO(3)$_2$</td>
<td>1</td>
<td>\mathbb{R}^7</td>
<td>'only' consts.</td>
</tr>
<tr>
<td>$S^1(p/q)^\dagger$</td>
<td>5</td>
<td>$\mathbb{R} \oplus \mathbb{C} \oplus \mathbb{C} \oplus \mathbb{C}$</td>
<td>'only' consts.</td>
</tr>
<tr>
<td>$S^1(1/2)$</td>
<td>7</td>
<td>$\mathbb{R} \oplus \mathbb{C} \oplus \mathbb{C} \oplus \mathbb{C}$</td>
<td>$s_1 = 2$</td>
</tr>
<tr>
<td>$S^1(1)$</td>
<td>9</td>
<td>$\mathbb{R} \oplus \mathbb{C} \oplus \mathbb{C} \oplus \mathbb{C}$</td>
<td>$s_1 = 4$</td>
</tr>
<tr>
<td>$S^1(0)$</td>
<td>13</td>
<td>$\mathbb{R} \oplus \mathbb{R} \oplus \mathbb{R} \oplus \mathbb{C} \oplus \mathbb{C}$</td>
<td>???</td>
</tr>
</tbody>
</table>

\dagger $p/q \neq 0, \frac{1}{2}, 1$
Part II: Second order associative 3-folds

Associative submanifolds $M^3 \subset \mathbb{R}^n$ can be defined by the condition that their tangent spaces belong to the 8-dimensional associative Grassmannian

$$\text{Assoc} (\cong G_2/\text{SO}(4)) = G_2 \cdot \mathbb{R}^3 \subset \text{Gr}_3^+(\mathbb{R}^7).$$
Part II: Second order associative 3-folds

Associative submanifolds $M^3 \subset \mathbb{R}^n$ can be defined by the condition that their tangent spaces belong to the 8-dimensional associative Grassmannian

$$\text{Assoc} \ (\cong G_2/\text{SO}(4)) = G_2 \cdot \mathbb{R}^3 \subset \text{Gr}_3^+ (\mathbb{R}^7).$$

More generally, given a group G acting by isometries on \mathbb{R}^n and a G-orbit

$$\Sigma \ (\cong G/H) = G \cdot \mathbb{R}^m \subset \text{Gr}_m^+ (\mathbb{R}^n), \quad \text{where} \ H = \text{Stab}(G, \mathbb{R}^m)$$

one can speak of Σ-manifolds $M^m \subset \mathbb{R}^n$, whose tangent spaces belong to Σ.
Part II: Second order associative 3-folds

Associative submanifolds $M^3 \subset \mathbb{R}^n$ can be defined by the condition that their tangent spaces belong to the 8-dimensional associative Grassmannian

$$\operatorname{Assoc} (\cong G_2/\operatorname{SO}(4)) = G_2 \cdot \mathbb{R}^3 \subset \operatorname{Gr}_3^+(\mathbb{R}^7).$$

More generally, given a group G acting by isometries on \mathbb{R}^n and a G-orbit

$$\Sigma (\cong G/H) = G \cdot \mathbb{R}^m \subset \operatorname{Gr}_m^+(\mathbb{R}^n), \quad \text{where } H = \operatorname{Stab}(G, \mathbb{R}^m)$$

one can speak of Σ-manifolds $M^m \subset \mathbb{R}^n$, whose tangent spaces belong to Σ. The Gauss map $\gamma_M : M \to \Sigma$ given by $\gamma_M(x) = T_x M \in \Sigma$ has a derivative

$$\gamma'_M(x) : T_x M \to T_{\gamma_M(x)} \Sigma \subset N_{\gamma_M(x)} \otimes T^*_x M \cong \mathbb{R}^{n-m} \otimes (\mathbb{R}^m)^*$$

that satisfies (because of symmetry of second partials),

$$\mathbb{I}_x = \gamma'_M(x) \in T_{\gamma_M(x)} \Sigma \otimes T^*_x M \cap (N_{\gamma_M(x)} \otimes S^2(T^*_x M)).$$
All of the spaces \mathbb{R}^m, $(\mathbb{R}^m)^\perp = \mathbb{R}^{n-m}$, and $T_{\mathbb{R}^m}\Sigma \simeq \mathfrak{g}/\mathfrak{h}$ are H-modules, and so is the space

$$\Pi(\mathfrak{g}, \mathfrak{h}) = \left(T_{\mathbb{R}^m}\Sigma \otimes \mathbb{R}^m \right) \cap \left((\mathbb{R}^m)^\perp \otimes S^2(\mathbb{R}^m) \right),$$

which defines a space of possible second fundamental forms of Σ-manifolds.
All of the spaces \mathbb{R}^m, $(\mathbb{R}^m)^\perp = \mathbb{R}^{n-m}$, and $\mathcal{T}_{\mathbb{R}^m}\Sigma \simeq \mathfrak{g}/\mathfrak{h}$ are H-modules, and so is the space

$$\Pi(g, h) = \left(\mathcal{T}_{\mathbb{R}^m}\Sigma \otimes \mathbb{R}^m \right) \cap \left((\mathbb{R}^m)^\perp \otimes S^2(\mathbb{R}^m) \right),$$

which defines a space of possible second fundamental forms of Σ-manifolds.

Example: Special Lagrangian submanifolds. $G = SU(m)$, $H = SO(m)$. Then

$$\Pi(g, h) = \left(S^2_0(\mathbb{R}^m) \otimes \mathbb{R}^m \right) \cap \left(\mathbb{R}^m \otimes S^2(\mathbb{R}^m) \right) = S^3_0(\mathbb{R}^m) \simeq \mathbb{R}^7.$$
All of the spaces \mathbb{R}^m, $(\mathbb{R}^m)^\perp = \mathbb{R}^{n-m}$, and $T_{\mathbb{R}^m}\Sigma \simeq \mathfrak{g}/\mathfrak{h}$ are H-modules, and so is the space

$$\mathcal{I}(g, h) = \left(T_{\mathbb{R}^m}\Sigma \otimes \mathbb{R}^m \right) \cap \left((\mathbb{R}^m)^\perp \otimes S^2(\mathbb{R}^m) \right),$$

which defines a space of possible second fundamental forms of Σ-manifolds.

Example: Special Lagrangian submanifolds. $G = SU(m)$, $H = SO(m)$. Then

$$\mathcal{I}(g, h) = \left(S^2_0(\mathbb{R}^m) \otimes \mathbb{R}^m \right) \cap \left(\mathbb{R}^m \otimes S^2(\mathbb{R}^m) \right) = S^3_0(\mathbb{R}^m) \simeq \mathbb{R}^7.$$

In 2000, I analyzed the case $m = 3$ of special Lagrangian 3-folds whose second fundamental forms (harmonic cubic forms) had a nontrivial symmetry, and found many integrable cases. (Second order families of special Lagrangian 3-folds, arXiv:math/0007128.)
All of the spaces \mathbb{R}^m, $(\mathbb{R}^m)^\perp = \mathbb{R}^{n-m}$, and $T_{\mathbb{R}^m} \Sigma \simeq \mathfrak{g}/\mathfrak{h}$ are H-modules, and so is the space

$$\Pi(g, \mathfrak{h}) = (T_{\mathbb{R}^m} \Sigma \otimes \mathbb{R}^m) \cap ((\mathbb{R}^m)^\perp \otimes S^2(\mathbb{R}^m)),$$

which defines a space of possible second fundamental forms of Σ-manifolds.

Example: Special Lagrangian submanifolds. $G = SU(m)$, $H = SO(m)$. Then

$$\Pi(g, \mathfrak{h}) = (S^2_0(\mathbb{R}^m) \otimes \mathbb{R}^m) \cap (\mathbb{R}^m \otimes S^2(\mathbb{R}^m)) = S^3_0(\mathbb{R}^m) \simeq \mathbb{R}^7.$$

In 2000, I analyzed the case $m = 3$ of special Lagrangian 3-folds whose second fundamental forms (harmonic cubic forms) had a nontrivial symmetry, and found many integrable cases. (*Second order families of special Lagrangian 3-folds, arXiv:math/0007128.*)

My student, Marianty Ionel, did a similar analysis of the case $m = 4$ in 2002 and also found many integrable cases.
Associative 3-folds: $G = G_2, H = SO(4)$. ($\text{Spin}(4) = \text{Sp}(1) \times \text{Sp}(1).$)

\[g/\mathfrak{h} \cong V^\mathbb{R}_{3,1} = S^3(V_{1,0}) \otimes_{\mathbb{H}} V_{0,1} \cong \mathbb{R}^8, \]
Associative 3-folds: \(G = G_2, \ H = SO(4). \) (\(\text{Spin}(4) = \text{Sp}(1) \times \text{Sp}(1). \))

\[
\mathfrak{g}/\mathfrak{h} \simeq V_{3,1}^\mathbb{R} = S^3(V_{1,0}) \otimes_\mathbb{H} V_{0,1} \simeq \mathbb{R}^8,
\]

and computation shows that

\[
\Pi(\mathfrak{g}, \mathfrak{h}) = V_{5,1}^\mathbb{R} = S^5(V_{1,0}) \otimes_\mathbb{H} V_{0,1} \simeq \mathbb{R}^{12},
\]
Associative 3-folds: \(G = G_2, H = \text{SO}(4). \) \((\text{Spin}(4) = \text{Sp}(1) \times \text{Sp}(1)).\)

\[\mathfrak{g}/\mathfrak{h} \cong V_{3,1}^\mathbb{R} = S^3(V_{1,0}) \otimes_{\mathbb{H}} V_{0,1} \cong \mathbb{R}^8, \]

and computation shows that

\[\Pi(\mathfrak{g}, \mathfrak{h}) = V_{5,1}^\mathbb{R} = S^5(V_{1,0}) \otimes_{\mathbb{H}} V_{0,1} \cong \mathbb{R}^{12}, \]

Thus, one can think of the second fundamental form of an associative 3-fold as a **quintic polynomial** in two complex variables

\[p(z_1, z_2) = a_5 z_1^5 + 5a_4 z_1^4 z_2 + 10a_3 z_1^3 z_2^2 + 10a_2 z_1^2 z_2^3 + 5a_1 z_1 z_2^4 + a_0 z_2^5. \]
Associative 3-folds: \(G = G_2, \ H = \text{SO}(4). \) \((\text{Spin}(4) = \text{Sp}(1) \times \text{Sp}(1)).\)

\[g/\mathfrak{h} \cong V_3^\mathbb{R} = S^3(V_{1,0}) \otimes_{\mathbb{H}} V_{0,1} \cong \mathbb{R}^8, \]

and computation shows that

\[\Pi(g, \mathfrak{h}) = V_5^\mathbb{R} = S^5(V_{1,0}) \otimes_{\mathbb{H}} V_{0,1} \cong \mathbb{R}^{12}, \]

Thus, one can think of the second fundamental form of an associative 3-fold as a **quintic polynomial** in two complex variables

\[p(z_1, z_2) = a_5 z_1^5 + 5a_4 z_1^4 z_2 + 10a_3 z_1^3 z_2^2 + 10a_2 z_1^2 z_2^3 + 5a_1 z_1 z_2^4 + a_0 z_2^5. \]

One can interpret a second fundamental form of an associative 3-manifold (up to real scalar multiples) as a degree \(\leq 5 \) rational mapping

\[P : \mathbb{CP}^1 \to \mathbb{CP}^1, \quad P(z_1, z_2) = [p(z_1, z_2), p(-\overline{z_2}, \overline{z_1})]. \]

up to (independent) isometric rotations in the domain and range 2-spheres.
By comparison, for co-associative submanifolds $M^4 \subset \mathbb{R}^7$, the coassociative Grassmannian is also $G_2/\text{SO}(4) \subset \text{Gr}^+_4(\mathbb{R}^7)$, so again,

$$\mathfrak{g}/\mathfrak{h} \simeq V_{3,1}^\mathbb{R} = S^3(V_{1,0}) \otimes_\mathbb{H} V_{0,1} \simeq \mathbb{R}^8.$$
By comparison, for co-associative submanifolds $M^4 \subset \mathbb{R}^7$, the coassociative Grassmannian is also $G_2/\text{SO}(4) \subset \text{Gr}^+_4(\mathbb{R}^7)$, so again,

$$\mathfrak{g}/\mathfrak{h} \simeq V^\mathbb{R}_{3,1} = S^3(V_{1,0}) \otimes_{\mathbb{H}} V_{0,1} \simeq \mathbb{R}^8.$$

However, the second fundamental form space is different:

$$\mathbb{I}(\mathfrak{g}, \mathfrak{h}) = V^\mathbb{R}_{4,2} = S^4(V_{1,0})^\mathbb{R} \otimes_{\mathbb{R}} S^2(V_{0,1})^\mathbb{R} = \mathbb{R}^5 \otimes \mathbb{R}^3 \simeq \mathbb{R}^{15},$$
By comparison, for co-associative submanifolds $M^4 \subset \mathbb{R}^7$, the coassociative Grassmannian is also $G_2/\text{SO}(4) \subset \text{Gr}^+(\mathbb{R}^7)$, so again,

$$\mathfrak{g}/\mathfrak{h} \simeq V_{3,1}^\mathbb{R} = S^3(V_{1,0}) \otimes_{\mathbb{H}} V_{0,1} \simeq \mathbb{R}^8.$$

However, the second fundamental form space is different:

$$\Pi(\mathfrak{g}, \mathfrak{h}) = V_{4,2}^\mathbb{R} = S^4(V_{1,0})^\mathbb{R} \otimes_{\mathbb{R}} S^2(V_{0,1})^\mathbb{R} = \mathbb{R}^5 \otimes \mathbb{R}^3 \simeq \mathbb{R}^{15},$$

For Cayley submanifolds $M^4 \subset \mathbb{R}^8$, the Cayley Grassmannian is $\text{Spin}(7)/H \subset \text{Gr}^+(\mathbb{R}^8)$, where $H = (\text{Sp}(1) \times \text{Sp}(1) \times \text{Sp}(1))/\mathbb{Z}_2$. Then

$$\mathfrak{g}/\mathfrak{h} = V_{1,2,1}^\mathbb{R} \simeq \mathbb{R}^{12},$$
By comparison, for co-associative submanifolds $M^4 \subset \mathbb{R}^7$, the coassociative Grassmannian is also $G_2/\text{SO}(4) \subset \text{Gr}_4^+(\mathbb{R}^7)$, so again,

$$g/\mathfrak{h} \simeq V_{3,1}^\mathbb{R} = S^3(V_{1,0}) \otimes_{\mathbb{H}} V_{0,1} \simeq \mathbb{R}^8.$$

However, the second fundamental form space is different:

$$\Pi(g, \mathfrak{h}) = V_{4,2}^\mathbb{R} = S^4(V_{1,0})^\mathbb{R} \otimes_{\mathbb{R}} S^2(V_{0,1})^\mathbb{R} = \mathbb{R}^5 \otimes \mathbb{R}^3 \simeq \mathbb{R}^{15},$$

For Cayley submanifolds $M^4 \subset \mathbb{R}^8$, the Cayley Grassmannian is $\text{Spin}(7)/H \subset \text{Gr}_4^+(\mathbb{R}^8)$, where $H = (\text{Sp}(1) \times \text{Sp}(1) \times \text{Sp}(1))/\mathbb{Z}_2$. Then

$$g/\mathfrak{h} = V_{1,2,1}^\mathbb{R} \simeq \mathbb{R}^{12},$$

while the second fundamental form space turns out to be

$$\Pi(g, \mathfrak{h}) = V_{2,3,1}^\mathbb{R} \simeq \mathbb{R}^{24},$$
The classification of the stabilizer types in the associative case can now be worked out.

Proposition 0:
If \(p(z_1, z_2) \) represents an associative second fundamental form with nontrivial stabilizer in \(H = \text{SO}(4) \), then \(p \) is in the orbit of one of the following types (where \(a, b, u, v \) are real)

1. \(p = a z_1^5 \), \(\text{Stab}(p) \cong \text{SO}(2) \)
2. \(p = 5a z_1^4 z_2 \), \(\text{Stab}(p) \cong \text{SO}(2) \)
3. \(p = 10a z_1^3 z_2^2 \), \(\text{Stab}(p) \cong \text{SO}(2) \)
4. \(p = a z_1^5 + 5b z_1 z_2^4 \), \(\text{Stab}(p) \cong \mathbb{Z}_4 \)
5. \(p = a z_1^5 + 5ib z_1^2 z_2^3 \), \(\text{Stab}(p) \cong \mathbb{Z}_3 \)
6. \(p = a z_1^5 + 5b z_1^3 z_2^2 + 5(u + iv) z_1 z_2^4 \), \(\text{Stab}(p) \cong \mathbb{Z}_2 \)

(N.B. There are some inequalities among \(a, b, u, v \) in the above cases in order to ensure no larger symmetry. Also, the three circles in Cases 1–3 are not conjugate in \(\text{SO}(4) \).)
The classification of the stabilizer types in the associative case can now be worked out.

Proposition 0: If \(p(z_1, z_2) \) represents an associative second fundamental form with nontrivial stabilizer in \(H = \text{SO}(4) \), then \(p \) is in the orbit of one of the following types (where \(a, b, u, v \) are real)

1. \(p = a z_1^5 \), \(\text{Stab}(p) \cong \text{SO}(2) \)
2. \(p = 5a z_1^4 z_2 \), \(\text{Stab}(p) \cong \text{SO}(2) \)
3. \(p = 10a z_1^3 z_2^2 \), \(\text{Stab}(p) \cong \text{SO}(2) \)
4. \(p = a z_1^5 + 5b z_1^2 z_2^4 \), \(\text{Stab}(p) \cong \mathbb{Z}_4 \)
5. \(p = a z_1^5 + 5ib z_1^2 z_2^3 \), \(\text{Stab}(p) \cong \mathbb{Z}_3 \)
6. \(p = a z_1^5 + 5b z_1^3 z_2^3 + 5(u + iv) z_1 z_2^4 \), \(\text{Stab}(p) \cong \mathbb{Z}_2 \)

(N.B. There are some inequalities among \(a, b, u, v \) in the above cases in order to ensure no larger symmetry. Also, the three circles in Cases 1–3 are not conjugate in \(\text{SO}(4) \).)
The classification of the stabilizer types in the associative case can now be worked out.

Proposition 0: If \(p(z_1, z_2) \) represents an associative second fundamental form with nontrivial stabilizer in \(H = \text{SO}(4) \), then \(p \) is in the orbit of one of the following types (where \(a, b, u, v \) are real)

1. \(p = a z_1^5 \), \(\text{Stab}(p) \simeq \text{SO}(2) \)
The classification of the stabilizer types in the associative case can now be worked out.

Proposition 0: If \(p(z_1, z_2) \) represents an associative second fundamental form with nontrivial stabilizer in \(H = \text{SO}(4) \), then \(p \) is in the orbit of one of the following types (where \(a, b, u, v \) are real)

1. \(p = a z_1^5, \text{Stab}(p) \simeq \text{SO}(2) \)
2. \(p = 5a z_1^4 z_2, \text{Stab}(p) \simeq \text{SO}(2) \)
The classification of the stabilizer types in the associative case can now be worked out.

Proposition 0: If \(p(z_1, z_2) \) represents an associative second fundamental form with nontrivial stabilizer in \(H = \text{SO}(4) \), then \(p \) is in the orbit of one of the following types (where \(a, b, u, v \) are real)

1. \(p = a z_1^5, \text{Stab}(p) \simeq \text{SO}(2) \)
2. \(p = 5a z_1^4 z_2, \text{Stab}(p) \simeq \text{SO}(2) \)
3. \(p = 10a z_1^3 z_2^2, \text{Stab}(p) \simeq \text{SO}(2) \)

(N.B. There are some inequalities among \(a, b, u, v \) in the above cases in order to ensure no larger symmetry. Also, the three circles in Cases 1–3 are not conjugate in \(\text{SO}(4) \).)
The classification of the stabilizer types in the associative case can now be worked out.

Proposition 0: If \(p(z_1, z_2) \) represents an associative second fundamental form with nontrivial stabilizer in \(H = \text{SO}(4) \), then \(p \) is in the orbit of one of the following types (where \(a, b, u, \nu \) are real)

1. \(p = a z_1^5 \), \(\text{Stab}(p) \simeq \text{SO}(2) \)
2. \(p = 5 a z_1^4 z_2 \), \(\text{Stab}(p) \simeq \text{SO}(2) \)
3. \(p = 10 a z_1^3 z_2^2 \), \(\text{Stab}(p) \simeq \text{SO}(2) \)
4. \(p = a z_1^5 + 5 b z_1 z_2^4 \), \(\text{Stab}(p) \simeq \mathbb{Z}_4 \)

(N.B. There are some inequalities among \(a, b, u, \nu \) in the above cases in order to ensure no larger symmetry. Also, the three circles in Cases 1–3 are not conjugate in \(\text{SO}(4) \)).
The classification of the stabilizer types in the associative case can now be worked out.

Proposition 0: If $p(z_1, z_2)$ represents an associative second fundamental form with nontrivial stabilizer in $H = SO(4)$, then p is in the orbit of one of the following types (where a, b, u, v are real)

1. $p = a z_1^5$, $\text{Stab}(p) \simeq SO(2)$
2. $p = 5a z_1^4 z_2$, $\text{Stab}(p) \simeq SO(2)$
3. $p = 10a z_1^3 z_2^2$, $\text{Stab}(p) \simeq SO(2)$
4. $p = a z_1^5 + 5b z_1 z_2^4$, $\text{Stab}(p) \simeq \mathbb{Z}_4$
5. $p = a z_1^5 + 5ib z_1^2 z_2^3$, $\text{Stab}(p) \simeq \mathbb{Z}_3$

(N.B. There are some inequalities among a, b, u, v in the above cases in order to ensure no larger symmetry. Also, the three circles in Cases 1–3 are not conjugate in $SO(4)$.)

The classification of the stabilizer types in the associative case can now be worked out.

Proposition 0: If $p(z_1, z_2)$ represents an associative second fundamental form with nontrivial stabilizer in $H = \text{SO}(4)$, then p is in the orbit of one of the following types (where a, b, u, v are real)

1. $p = az_1^5$, $\text{Stab}(p) \simeq \text{SO}(2)$
2. $p = 5az_1^4z_2$, $\text{Stab}(p) \simeq \text{SO}(2)$
3. $p = 10az_1^3z_2^2$, $\text{Stab}(p) \simeq \text{SO}(2)$
4. $p = az_1^5 + 5bz_1^2z_2^4$, $\text{Stab}(p) \simeq \mathbb{Z}_4$
5. $p = az_1^5 + 5ibz_1^2z_2^3$, $\text{Stab}(p) \simeq \mathbb{Z}_3$
6. $p = az_1^5 + 5bz_1^3z_2^3 + 5(u+iv)z_1z_2^4$, $\text{Stab}(p) \simeq \mathbb{Z}_2$
The classification of the stabilizer types in the associative case can now be worked out.

Proposition 0: If \(p(z_1, z_2) \) represents an associative second fundamental form with nontrivial stabilizer in \(H = \text{SO}(4) \), then \(p \) is in the orbit of one of the following types (where \(a, b, u, v \) are real)

1. \(p = a z_1^5, \quad \text{Stab}(p) \simeq \text{SO}(2) \)
2. \(p = 5a z_1^4 z_2, \quad \text{Stab}(p) \simeq \text{SO}(2) \)
3. \(p = 10a z_1^3 z_2^2, \quad \text{Stab}(p) \simeq \text{SO}(2) \)
4. \(p = a z_1^5 + 5b z_1 z_2^4, \quad \text{Stab}(p) \simeq \mathbb{Z}_4 \)
5. \(p = a z_1^5 + 5ib z_1^2 z_2^3, \quad \text{Stab}(p) \simeq \mathbb{Z}_3 \)
6. \(p = a z_1^5 + 5b z_1^3 z_2^3 + 5(u+iv) z_1 z_2^4, \quad \text{Stab}(p) \simeq \mathbb{Z}_2 \)

(N.B. There are some inequalities among \(a, b, u, v \) in the above cases in order to ensure no larger symmetry. Also, the three circles in Cases 1–3 are not conjugate in \(\text{SO}(4) \).)
Proposition 1: The associative 3-folds in \mathbb{R}^7 whose second fundamental forms have type $p = a z_1^5$

- are all ruled,
- depend on $s_1 = 6$ functions of 1 variable, and
- appear as pseudoholomorphic curves in an almost-complex 3-fold.
Proposition 1: The associative 3-folds in \mathbb{R}^7 whose second fundamental forms have type $p = a z_1^5$

- are all ruled,
- depend on $s_1 = 6$ functions of 1 variable, and
- appear as pseudoholomorphic curves in an almost-complex 3-fold.

Remark: The ruled associative 3-folds in \mathbb{R}^7 can be regarded as surfaces in $\Lambda(\mathbb{R}^7) \cong TS^6$, the space of lines in \mathbb{R}^7. There is a unique almost complex structure on $\Lambda(\mathbb{R}^7)$ such that these surfaces are the pseudoholomorphic curves in $\Lambda(\mathbb{R}^7)$. Thus, they locally depend on $s_1 = 12$ functions of 1 variable.
Proposition 2: There are no associative 3-folds in \mathbb{R}^7 whose second fundamental forms have type $p = 5a z_1^4 z_2$ (with $a \neq 0$).
Proposition 2: There are no associative 3-folds in \mathbb{R}^7 whose second fundamental forms have type $p = 5a z_1^4 z_2$ (with $a \neq 0$).

Proposition 3: The only associative 3-folds in \mathbb{R}^7 whose second fundamental forms have type $p = 10a z_1^3 z_2^2$ are actually special Lagrangian in a $\mathbb{R}^6 \subset \mathbb{R}^7$ and are the Harvey-Lawson examples with an SO(3) symmetry.
Proposition 2: There are no associative 3-folds in \mathbb{R}^7 whose second fundamental forms have type $p = 5a z_1^4 z_2$ (with $a \neq 0$).

Proposition 3: The only associative 3-folds in \mathbb{R}^7 whose second fundamental forms have type $p = 10a z_1^3 z_2^2$ are actually special Lagrangian in a $\mathbb{R}^6 \subset \mathbb{R}^7$ and are the Harvey-Lawson examples with an SO(3) symmetry.

Proposition 4: (\mathbb{Z}_4) The only associative 3-folds in \mathbb{R}^7 whose second fundamental forms have type $p = a z_1^5 + 5b z_1 z_2^4$ must actually have either $a = 0$ or $b = 0$ (and so have continuous symmetry).
Proposition 2: There are no associative 3-folds in \mathbb{R}^7 whose second fundamental forms have type $p = 5a z_1^4 z_2$ (with $a \neq 0$).

Proposition 3: The only associative 3-folds in \mathbb{R}^7 whose second fundamental forms have type $p = 10a z_1^3 z_2^2$ are actually special Lagrangian in a $\mathbb{R}^6 \subset \mathbb{R}^7$ and are the Harvey-Lawson examples with an SO(3) symmetry.

Proposition 4: (\mathbb{Z}_4) The only associative 3-folds in \mathbb{R}^7 whose second fundamental forms have type $p = a z_1^5 + 5b z_1 z_2^4$ must actually have either $a = 0$ or $b = 0$ (and so have continuous symmetry).

Proposition 5: (\mathbb{Z}_3) The only associative 3-folds in \mathbb{R}^7 whose second fundamental forms have type $p = a z_1^5 + 5ib z_1^2 z_2^3$ are actually special Lagrangian in a $\mathbb{R}^6 \subset \mathbb{R}^7$. (These were classified (B—) 2000.)
Proposition 2: There are no associative 3-folds in \mathbb{R}^7 whose second fundamental forms have type $p = 5a z_1^4 z_2$ (with $a \neq 0$).

Proposition 3: The only associative 3-folds in \mathbb{R}^7 whose second fundamental forms have type $p = 10a z_1^3 z_2^2$ are actually special Lagrangian in a $\mathbb{R}^6 \subset \mathbb{R}^7$ and are the Harvey-Lawson examples with an $SO(3)$ symmetry.

Proposition 4: (\mathbb{Z}_4) The only associative 3-folds in \mathbb{R}^7 whose second fundamental forms have type $p = a z_1^5 + 5b z_1^2 z_2^4$ must actually have either $a = 0$ or $b = 0$ (and so have continuous symmetry).

Proposition 5: (\mathbb{Z}_3) The only associative 3-folds in \mathbb{R}^7 whose second fundamental forms have type $p = a z_1^5 + 5ib z_1^2 z_2^3$ are actually special Lagrangian in a $\mathbb{R}^6 \subset \mathbb{R}^7$. (These were classified (B—) 2000.)

Proposition 6: (\mathbb{Z}_2) In progress.