Manifolds with holonomy Sp(n)Sp(1)

SC in SHGAP
Simon Salamon
Stony Brook, 9 Sep 2016

The list

$$SO(N)$$

$$U(\frac{N}{2}) \qquad Sp(\frac{N}{4})Sp(1)$$

$$SU(\frac{N}{2}) \qquad Sp(\frac{N}{4})$$

$$G_2 \quad (N=7)$$

$$Spin(7) \quad (N=8)$$

All act transitively on S^{N-1} [Si]. In particular,

$$S^6 \cong \frac{G_2}{SU(3)}, \qquad S^7 \cong \frac{Spin(7)}{G_2}$$

have 'weak holonomy' reductions. The Ricci-flat cases are characterized by the existence of parallel spinors.

The quaternionic unitary case

Mathematical interest in Sp(n)Sp(1) arises from

- (i) its presence in the list,
- (ii) its generalization of SO(4) = Sp(1)Sp(1),
- (iii) being the holonomy group of the projective space

$$\mathbb{HP}^n = \frac{Sp(n+1)}{Sp(n) \times Sp(1)} = \frac{Sp(n+1)/\mathbb{Z}_2}{Sp(n)Sp(1)}.$$

The reduction corresponds to splittings

$$\mathbb{H}^{n+1} = \mathbb{H}^n \oplus \mathbb{H}$$
$$\mathbb{C}^{2n+2} = \mathbb{C}^{2n} \oplus \mathbb{C}^2 = E \oplus H,$$

and

$$(T^*\mathbb{HP}^n)_c \cong E \otimes H \quad (= S_+ \otimes S_- \text{ if } n = 1).$$

Definition. A *QK manifold* is a Riemannian manifold of dimension 4n, with $n \ge 2$, whose holonomy group H satisfies

$$Sp(n) \subsetneq H \subseteq Sp(n)Sp(1)$$
.

This rules out the hyperkähler case, though HK and QK manifolds share some properties. Any QK manifold has a parallel 4-form

$$\Omega = \sum_{i=1}^{3} \omega_i \wedge \omega_i,$$

where $\omega_1, \omega_2, \omega_3$ is a *local* triple of 2-forms.

Any QK curvature tensor R belongs to $S^2(\mathfrak{sp}(n) \oplus \mathfrak{sp}(1))$ and

$$R = R_{\mathrm{HK}} \oplus sR_0, \quad R_{\mathrm{HK}} \in S^4E \subset S^2\mathfrak{sp}(n).$$

So a QK manifold is 'nearly HK' and Einstein but can have s < 0.

Given a compact simple Lie algebra \mathfrak{g} , choose a highest root subalgebra $\mathfrak{su}(2) = \mathfrak{sp}(1)$. Then

$$H=K\operatorname{Sp}(1)=\{g\in G:\operatorname{Ad}(g)(\mathfrak{sp}(1))=\mathfrak{sp}(1)\}.$$

If G is centreless, $K \subseteq Sp(n)$.

Wolf spaces of real dimension 4n include \mathbb{HP}^n and

$$\mathbb{G}\mathrm{r}_2(\mathbb{C}^{n+2}) = \frac{SU(n+2)}{S(U(n) \times U(2))}$$

$$\mathbb{G}\mathrm{r}_4(\mathbb{R}^{n+4}) = \frac{SO(n+4)}{SO(n) \times SO(4)}.$$

There are exceptional ones with n = 2, 7, 10, 16, 28.

All compact QK homogeneous spaces arise in this way [A].

Let M be QK. The reduction to Sp(n)Sp(1) equips each tangent space T_mM with a 2-sphere

$$Z_m = \{aI_1 + bI_2 + cI_3 : a^2 + b^2 + c^2 = 1\}$$

of almost complex structures, a point of which corresponds to a reduction $H_m=\theta\oplus\tilde{\theta}$ and

$$(T_m^*M)_c = E \otimes (\theta \oplus \tilde{\theta}) = \Lambda^{1,0} \oplus \Lambda^{0,1}.$$

Thus, $Z \cong H/\mathbb{C}^*$ is a bundle over M with fibre $S^2 \cong \mathbb{CP}^1$.

Theorem. The tautological almost complex structure on Z determined by the horizontal (LC) distribution is integrable. Therefore Z is a complex manifold, generalizing the AHS construction in dimension 4.

The twistor space Z with fibre \mathbb{CP}^1 is a Kähler manifold. V is the span of I_1, I_2, I_3 , or $\omega_1, \omega_2, \omega_3$, with fibre $\mathbb{R}^3 = \mathfrak{sp}(1)$. $\mathscr{U} = H/\mathbb{Z}_2$ has both HK and QK metrics, and \mathscr{S} is 3-Sasakian.

When M^{4n} is a Wolf space,

$$Z = \frac{G}{KU(1)} \xrightarrow{\pi} \frac{G}{KSp(1)} = M.$$

is an adjoint orbit in \mathfrak{g} , polarized by a holomorphic line bundle L. Each fibre $\pi^{-1}(m)$ is a rational curve \mathbb{CP}^1 with normal bundle $2n\mathcal{O}(1)$, whereas $L|_{\mathbb{CP}^1} \cong \mathcal{O}(2)$.

If M is a QK manifold, Z has a holomorphic contact structure $\theta \in H^0(Z, T^*Z \otimes L)$, so

$$0 \neq \theta \wedge (d\theta)^n \in H^0(Z, \kappa \otimes L^{n+1}),$$

and $\overline{\kappa} \cong L^{n+1}$. There is a short exact sequence

$$0 \to D \to TZ \xrightarrow{\theta} L \to 0$$

in which $D\cong L^{1/2}\otimes \pi^*E$ is horizontal, and E is an instanton.

The twistor space \mathbb{CP}^{2n+1} of \mathbb{HP}^n has $L=\mathcal{O}(2)$, and is of course Fano of index 2n+2.

If M is a QK manifold with s>0 and the Sp(n)Sp(n) structure lifts to $Sp(n)\times Sp(1)$, the same is true. It follows that Z is biholomorphic to \mathbb{CP}^{2n+1} [KO].

Corollary. If $H^2(M, \mathbb{Z}_2) = 0$ then M is isometric to \mathbb{HP}^n .

In general, the twistor space Z of a QK manifold with positive scalar curvature s>0 is Fano of index n+1. The big question is whether such a Fano contact manifold must be homogeneous. Yes, if $Z\to \mathbb{P}(H^0(Z,L)^*)$ is generically finite [Be].

M QK, $s \neq 0$	Z complex contact	
point	vertical rational curve	
complex structure	holomorphic section	
Killing field X	$s \in H^0(Z,L)$	
Dirac operator	$\overline{\partial}$ on $\Lambda^{0,*}\otimes \mathcal{O}(-n)$	
Fueter operator	$\overline{\partial}$ on $\Lambda^{0,1}\otimes \mathcal{O}(-3)$	
s>0	Z Kähler-Einstein	
s > 0, compact	Z contact Fano	
minimal 2-sphere	contact rational curve	
$b_2(M) + 1$	$= b_2(Z)$	

Let M^{4n} be a QK manifold with s > 0. The odd Betti numbers of M^{4n} are all zero.

Theorem 1 [LS,Wi]. If $b_2(M) > 0$ then M is isometric to $\mathbb{G}\mathrm{r}_2(\mathbb{C}^{n+2})$.

For, if $b_2(Z) > 1$ there exists a family of rational curves on Z transverse to the fibres, and a contraction $Z \longrightarrow \mathbb{CP}^{n+1}$ with fibres tangent to D. This forces $Z = \mathbb{P}(T^*\mathbb{CP}^{n+1})$.

Theorem 2 [LS,KMM]. For each n, there are finitely many complete QK manifolds with s > 0. (Three if n = 2.)

Theorem 3 [GS,A]. If $b_4 = 1$ and $3 \le n \le 6$ then $M \cong \mathbb{HP}^n$.

A curiosity: $E_6/SU(6)Sp(1)$

The configuration of 27 lines on a smooth cubic surface in \mathbb{CP}^3 can be described using

$$\mathfrak{e}_6 = \mathfrak{su}(6) \oplus \mathfrak{sp}(1) \oplus (E \otimes H), \quad E = \Lambda^{3,0}.$$

and choosing a basis of

Suppose that M^{4n} is a QK manifold with an isometric U(1) action and Killing field X such that $\mathscr{L}_X\Omega\equiv 0$. Define a 2-form

$$\eta = \pi(dX^{\flat}) = \sum_{i=1}^{3} \eta_{i}\omega_{i} \in \Gamma(M, V)$$

and set $f = \frac{1}{2} ||\eta||^2$. Then, up to constants,

$$df = X \perp \eta, \qquad d\eta = X \perp \Omega,$$

and η determines a holomorphic section $\widehat{\eta} \in H^0(Z, L)$. If s > 0, $M \setminus \{f = 0\}$ has an associated Kähler metric [Ha].

Stony Brook Theorem [GL, HKLR]. If U(1) acts freely on $f^{-1}(0)$ then $f^{-1}(0)/U(1)$ has a natural QK structure.

An M-theory example

The diagonal action of $U(1) \subset Sp(3)$ on \mathbb{H}^3 has fixed point set \mathbb{CP}^2 , and gives rise to an SU(3)-equivariant picture

$$f^{-1}(0) = S^{5} \quad \subset \qquad \mathbb{HP}^{2} \setminus \mathbb{CP}^{2}$$

$$\downarrow \qquad \qquad \downarrow$$

$$\mathbb{CP}^{2} \qquad \longleftarrow \qquad \Lambda^{2}_{-} T^{*} \mathbb{CP}^{2} = \mathbb{X},$$

and $\mathbb{HP}^2/U(1) \approx S^7$ [AW].

Lemma [CMS]. The 3-form on \mathbb{X} defining the BS metric is

$$\varphi = \mu(X \perp \Omega) + \frac{\mu}{1048576} (\cot 2t)^2 \nabla X^{\flat} \wedge \alpha_1 + \lambda \alpha_{123},$$

$$\lambda = \frac{f^{3/2} \Big(3 \sqrt{(f-2)^2 \left(64 + (f-2)^2 f^2\right)} + f(f(3f-10) + 4) + 8 \Big)}{32(2-f)^{5/2}}, \;\; \mu = -\frac{2048 \sqrt{6} \Big(\sqrt{(f-2)^2 \left(64 + (f-2)^2 f^2\right)} + f(f-2)^2 \Big)}{(2-f)^{3/2}}.$$

Theorem [Sw]. For *G* compact simple,

$$f(\langle e_1, e_2, e_3 \rangle) = B(e_1, [e_2, e_3])$$

is a Morse-Bott function on $\mathbb{G}r_3(\mathfrak{g})$. Critical points are subalgebras. The unstable manifold determined by an $\mathfrak{su}(2)$ is QK with twistor space \mathscr{U}/\mathbb{C}^* , where \mathscr{U} is the associated complex nilpotent orbit.

Example. $\mathfrak{su}(3)$ has two TDA's up to conjugacy: $\mathfrak{su}(2)$ and $\mathfrak{so}(3)$.

- (i) $\mathfrak{su}(2)$ gives rise to the Wolf space $\mathbb{CP}^2 = SU(3)/U(1)SU(2)$.
- (ii) $\mathfrak{so}(3)$ gives an 8-dimensional incomplete QK manifold, covered by the total space of the rank 3 vector bundle

$$\mathbb{V} \longrightarrow \mathbb{L} = SU(3)/SO(3),$$

which can be identified with an open subset of $G_2/SO(4)$.

8-manifolds of cohomogeneity one

There are 3 compact Wolf spaces in dimension 8. Remarkably, all admit an action by SU(3), with principal orbits $SU(3)/U(1)_{1,-1}$ and two ends chosen from

$$S^5$$
, \mathbb{CP}^2 , $\mathbb{L} = \frac{SU(3)}{SO(3)}$.

$\mathbb{G}\mathrm{r}_2(\mathbb{C}^4)$	SU(4)/U(2)Sp(1)	\mathbb{CP}^2 , \mathbb{CP}^2
\mathbb{HP}^2	Sp(3)/Sp(2)Sp(1)	\mathbb{CP}^2, S^5
$G_2/SO(4)$	$G_2/SU(2)Sp(1)$	$\mathbb{CP}^2,\ \mathbb{L}$
<i>SU</i> (3)	$SU(3)^2/\Delta SU(3)$	S^5, \mathbb{L}

In the last case, the action is $P \mapsto \overline{Q}PQ^{-1}$. Mapping P to $\overline{P}P$ converts this to conjugation.

Corollary. The vector bundle \mathbb{V} over \mathbb{L} admits three distinct SU(3)-invariant parallel 4-forms with stabilizer Sp(2)Sp(1).

The one corresponding to $G_2/SO(4)$ is

$$\begin{split} &\frac{3\sin^2(t)\cos^2(t)}{t^2}\mathbf{bb}\beta + \frac{\sqrt{3}\sin(2t)}{t}\mathbf{b}\tilde{\beta} + \frac{\sin^2(t)\cos^2(t)}{t^2}\mathbf{a}\tilde{\beta}\epsilon - \frac{-5\sin(2t)+\sin(6t)+4t\cos(2t)}{128\sqrt{3}t^3}\gamma\epsilon\epsilon \\ &+ \frac{\sin^4(t)(\cos(2t)+\cos(4t)+1)}{2\sqrt{3}t^4}\mathbf{bbb}\,\mathbf{a}\epsilon + \frac{\sqrt{3}(2t\cos(2t)-\sin(2t))}{8t^3}\mathbf{b}\beta\,\mathbf{a}\epsilon \\ &+ \frac{3(2t\sin(4t)+\cos(4t)-1)}{4t^4}\mathbf{ab}\,\mathbf{ab}\beta + \frac{\sin^2(t)(5t-6\sin(2t)-3\sin(4t)+t(13\cos(2t)+5\cos(4t)+\cos(6t)))}{96\sqrt{3}t^5}\mathbf{ab}\,\epsilon\epsilon\epsilon \\ &+ \frac{\sin^3(2t)(\sin(2t)-2t\cos(2t))}{32t^6}\mathbf{abb}\,\mathbf{a}\epsilon\epsilon - \frac{\sin^3(2t)\cos(2t)}{8t^3}\mathbf{a}\gamma\,\mathbf{a}\gamma \end{split}$$

If M has an Sp(n)Sp(1)-structure then

$$\nabla\Omega \in T^* \otimes (\mathfrak{sp}(n) + \mathfrak{sp}(1))^{\perp} \cong EH \otimes \Lambda_0^2 ES^2H$$
$$\cong (E \oplus E' \oplus \Lambda_0^3 E) \otimes (H \oplus S^3H)$$

has 6 irreducible components if $n \ge 3$.

Lemma [Sw]. If $n \ge 3$ the condition $d\Omega = 0$ implies that $\nabla \Omega = 0$ and so the holonomy reduces.

If n = 2, one can have $d\Omega = 0$ without M being Einstein:

Theorem [CMS]. $G_2/SO(4)$ admits SU(3) invariant closed non-parallel 4-forms with stabilizer Sp(2)Sp(1).

 $G_2/SO(4)$ does not admit a U(1) commuting with SU(3), but there is still a circle action and vector field X tangent to the orbits.

The stabilizer of an exterior form is always preserved by a *linear* deformation

$$\Omega \rightsquigarrow \Omega + N \cdot \Omega$$

where $N \in \mathfrak{gl}(8,\mathbb{R})$ satisfies $N \cdot (N \cdot \Omega) = 0$.

In our case, we can take $N = f(t)dt \otimes X$ to preserve closure, where f is smooth and odd around the end points $t = 0, \frac{\pi}{4}$, so

$$\Omega \rightsquigarrow \Omega + f(t)dt \wedge (X \perp \Omega), \quad 0 \leqslant t \leqslant \frac{\pi}{4}.$$

If $f \neq 0$, this gives non-Einstein metrics with scalar curvature

$$s = 64 - \frac{4}{3}(\tan 2t)^2 f(t)^2$$
.

The EH formalism: Spinors

Let $\Delta_+ + \Delta_-$ be the spin representation of Spin(4n). Then

$$\Delta_{+} - \Delta_{-} = \Lambda_{0}^{n}(E - H) = \bigoplus_{p+q=n} (-1)^{p} R^{p,q},$$

where $R^{p,q} = \Lambda_0^p E \otimes S^q H$.

Corollary. M^{4n} is spin if n is even, so if s > 0 then $\widehat{A}_n = 0$.

The Dirac operator

$$\Gamma(M, \Delta_+ \otimes R^{p,q}) \longrightarrow \Gamma(M, \Delta_- \otimes R^{p,q})$$

has index $\int_M \operatorname{ch}(R^{p,q}) \widehat{A}(M)$.

If s > 0 this vanishes if p + q < n. Used by [GMS]...

One also gets estimates on the dimension of the isometry group involving $h = c_2(H) \in H^4(M, \frac{1}{4}\mathbb{Z})$. (E.g. $d = 5 + 16h^2$ for n = 2.)

Example. Over \mathbb{HP}^2 ,

$$\Delta_{+} - \Delta_{-} = \Lambda_{0}^{2}(E - H) = \Lambda_{0}^{2}E - EH + S^{2}H.$$

There are analogies with Spin(7) structures (1-8+7).

E-H can't be a vector bundle because an inclusion $H\hookrightarrow E$ would define a nowhere zero section of $E\otimes H\cong T\mathbb{HP}^2$. Indeed, E-H has rank 2, but

$$c(E-H) = c(\underline{\mathbb{C}}^6 - 2H) = (1-h)^{-2} = 1 + 2h + 3h^2,$$

and $c_4 \neq 0$. By contrast,

$$c(\Lambda_0^2 E - H) = 1 + 3h.$$

This time the difference is a genuine vector bundle.

Theorem. There exists a rank 3 complex vector bundle V over \mathbb{HP}^2 with $c_2 = 3h$, and an SU(3)-connection with $F \in \Gamma(\mathfrak{sp}(2))$.

Recall that $E = \ker(p_1: \underline{\mathbb{C}}^6 \to H)$. Similarly,

$$\Lambda_0^2 E = \text{ker} \left(\Lambda_0^2(\underline{\mathbb{C}}^6) \longrightarrow \underline{\mathbb{C}}^6 \wedge H \right).$$

Fix a reduction of Sp(3) to SU(3), giving $\mathbb{C}^6=\Lambda^{1,0}\oplus\Lambda^{0,1}$ and

$$p_2: \ \Lambda_0^2(\underline{\mathbb{C}}^6) \longrightarrow \underline{\mathbb{C}}^6.$$

Then $p_1 \circ p_2$ has rank 2 everywhere.

The instanton connection on $V=\ker(p_1\circ p_2)$ is induced from that on Λ_0^2E and ultimately E, using ADHM techniques, and there is a moduli space $SL(3,\mathbb{H})/SU(3)\to SL(3,\mathbb{H})/Sp(3)$.

A curiosity: $E_8/E_7Sp(1)$

The signature of an ADE Wolf space equals its rank: $b_{2n}^+ = b_{2n} = r$. M^{112} has 8 primitive cohomology classes $\sigma_k \in H^{4k}(M, \mathbb{R})$, and

$$H^{56}(M,\mathbb{R}) = \langle \sigma_k \cup h^{14-k} : k = 0, 3, 5, 6, 8, 9, 11, 14 \rangle,$$

exhibiting 'secondary Poincaré duality' about k = 7:

