Manifolds with holonomy

Sp(n)Sp(1)

SC in SHGAP
Simon Salamon
Stony Brook, 9 Sep 2016



The list

SO(N)
u) Sp(%)Sp(1)
suY) Sp(¥)
G (N=7)

Spin(7) (N=8)

All act transitively on SN=1 [Si]. In particular,

have ‘weak holonomy’ reductions. The Ricci-flat cases are

2

G &7 o SPin(7)

6 ~
> = SuEy G

characterized by the existence of parallel spinors.
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The quaternionic unitary case 1.2

Mathematical interest in Sp(n)Sp(1) arises from

(i) its presence in the list,

(i) its generalization of SO(4) = Sp(1)Sp(1),

(iii) being the holonomy group of the projective space

Sp(n+1) _ Sp(n+1)/Z

B = So(m) < Sp(1) ~ Sp(m)Sp(D)

The reduction corresponds to splittings
Ht =H"oH
C2n+2 — C2n e (CQ —E® H,

and
(T'HP"). 2 E®H (=S;®S5_if n=1).



Quaternion-kahler manifolds 1.3

Definition. A QK manifold is a Riemannian manifold of dimension
4n, with n > 2, whose holonomy group H satisfies

Sp(n) € H < Sp(n)Sp(1).

This rules out the hyperkahler case, though HK and QK manifolds
share some properties. Any QK manifold has a parallel 4-form
3
Q= Z wi N\ wj,
i=1
where w1, ws,ws is a local triple of 2-forms.

Any QK curvature tensor R belongs to S?(sp(n) @ sp(1)) and
R = RHK (&) SRO, RHK S 54E C 525p(n).

So a QK manifold is ‘nearly HK' and Einstein but can have s < 0.



The Wolf spaces 1.4

Given a compact simple Lie algebra g, choose a highest root
subalgebra su(2)=sp(1). Then

H=K5p(1) = {g € G : Ad(g)(sp(1)) = sp(1)}-

If G is centreless, K C Sp(n).

Wolf spaces of real dimension 4n include HP" and

ni2y  SU(n+2)
Er2(C") = S(0m) x v@)
gzt S0+ 4)

~ S0(n) x SO(4)
There are exceptional ones with n =2,7,10, 16, 28.

All compact QK homogeneous spaces arise in this way [A].



Twistor space 1.5

Let M be QK. The reduction to Sp(n)Sp(1) equips each tangent
space T,,M with a 2-sphere

Zm:{all+b/2+cl3:a2+b2—|—c2:1}

of almost complex structures, a point of which corresponds to a
reduction H,, =0 & 6 and

(TiM) = E® (0@ 0) = A0 @ %L,

Thus, Z = H/C* is a bundle over M with fibre S? = CP!.

Theorem. The tautological almost complex structure on Z
determined by the horizontal (LC) distribution is integrable.
Therefore Z is a complex manifold, generalizing the AHS
construction in dimension 4.



Associated bundles 1.6

pAnt3 %4n+4
1 N\
Z4n+2 N V4n+3
N\ e

M4 QK. s >0

The twistor space Z with fibre CP! is a K3hler manifold.
V is the span of Iy, b, 3, or wy,ws,ws, with fibre R3=sp(1).
U =H/Zy has both HK and QK metrics, and .¥ is 3-Sasakian.



Fano contact manifolds 1.7

When M*" is a Wolf space,

G ™ G

“kum ks M

Z

is an adjoint orbit in g, polarized by a holomorphic line bundle L.
Each fibre 771(m) is a rational curve CP! with normal bundle
2nO(1), whereas L|op = O(2).

If M is a QK manifold, Z has a holomorphic contact structure
0cH(Z, T*Z®L), so

0 # OA(dO)" € HY(Z, Kk ® L"),
and K 22 L"t1. There is a short exact sequence
05D-TZ-5% 10

in which D = [Y/2 @ 7*E is horizontal, and E is an instanton.



Characterization of HP" 1.8

The twistor space CP2"*1 of HP" has L=0(2), and is of course
Fano of index 2n + 2.

If M is a QK manifold with s > 0 and the Sp(n)Sp(n) structure
lifts to Sp(n) x Sp(1), the same is true. It follows that Z is
biholomorphic to CP?"*1 [KO].

Corollary. If H>(M,Z;) = 0 then M is isometric to HP".

In general, the twistor space Z of a QK manifold with positive
scalar curvature s > 0 is Fano of index n+ 1. The big question is
whether such a Fano contact manifold must be homogeneous. Yes,
if Z— P(H%(Z,L)*) is generically finite [Be].



The twistor dictionary

M QK, s # 0

1.9

\ Z complex contact

point

vertical rational curve

complex structure

holomorphic section

Killing field X

se HY(Z,L)

Dirac operator

9 on A% © O(—n)

Fueter operator

0 on A\ @ O(-3)

s>0

Z Kahler-Einstein

s > 0, compact

Z contact Fano

minimal 2-sphere

contact rational curve

bo(M) +1

= by(Z)




Rigidity 1.10

Let M*" be a QK manifold with s > 0. The odd Betti numbers of
M*" are all zero.

Theorem 1 [LS,Wi]. If by(M) > 0 then M is isometric to
Gr2((cn+2).

For, if bo(Z) > 1 there exists a family of rational curves on Z
transverse to the fibres, and a contraction Z — CP"*! with
fibres tangent to D. This forces Z = P(T*CP™1).

Theorem 2 [LS,KMM]. For each n, there are finitely many
complete QK manifolds with s > 0. (Three if n=2.)

Theorem 3 [GS,A]. If b4 =1 and 3 < n <6 then M = HP".



A curiosity: E¢/SU(6)Sp(1) 1.11

The configuration of 27 lines on a smooth cubic surface in CP3
can be described using

6 = s5u(6) ®sp(1) ® (E @ H), E=ANP°,

and choosing a basis of

C7 = (AP @ H) e A0

= (ai) ® (b)) @ (cij).



QK reduction 2.1

Suppose that M*" is a QK manifold with an isometric U(1) action
and Killing field X such that ZxQ = 0. Define a 2-form

3
n=m(dX") = 3 mwi € T(M, V)
i=1
and set f = Z||n||?. Then, up to constants,
df = X, dn=X1Q,
and 7 determines a holomorphic section 7j € H%(Z, L).

If s >0, M\ {f=0} has an associated Kahler metric [Ha].

Stony Brook Theorem [GL, HKLR]. If U(1) acts freely on
f~1(0) then £=1(0)/U(1) has a natural QK structure.



An M-theory example

The diagonal action of U(1) C Sp(3) on H3 has fixed point set
CP?, and gives rise to an SU(3)-equivariant picture

fH0)=5" C HP? \ CP?
CP? —  ANLT*CP? =X,

and HP?/U(1) ~ S7 [AW].
Lemma [CMS]. The 3-form on X defining the BS metric is

Y= IU,(X_I Q) + Wﬁgm(cot 2t)2VXb A a1 4+ Aaios,

3/2 (3 [(F—2)2 (64+(f—2)2f2)+f(f(3f—10)+4)+8) 2048\/5( (F—2)? (64+(r-2)2f2)+f(f—2)2>
A= y b= .

32(2—f)5/2 B (2—£)3/2



Nilpotency 23

Theorem [Sw]. For G compact simple,

f(<e1’ €2, e3>) = B(el7 [e27 63])

is a Morse-Bott function on Grsz(g). Critical points are subalgebras.
The unstable manifold determined by an su(2) is QK with twistor
space % /C*, where 7/ is the associated complex nilpotent orbit.
Example. su(3) has two TDA's up to conjugacy: su(2) and so(3).
(i) su(2) gives rise to the Wolf space CP? = SU(3)/U(1)SU(2).
(ii) so(3) gives an 8-dimensional incomplete QK manifold, covered
by the total space of the rank 3 vector bundle

V — L= SU(3)/S0(3),

which can be identified with an open subset of G>/SO(4).



8-manifolds of cohomogeneity one 2.4

There are 3 compact Wolf spaces in dimension 8. Remarkably, all
admit an action by SU(3), with principal orbits SU(3)/U(1)1,-1
and two ends chosen from

S°, CP?, L=—-%.

Gro(C*) | SU(4)/U(2)Sp(1) | CP?, CP?
HIP? Sp(3)/Sp(2)Sp(1) | CP?, S°
Gy/SO(4) | Go/SU(2)Sp(1) | CP?, L
SU(3) SU(3)2/ASU3) | S5 L

In the last case, the action is P — QPQ~1. Mapping P to PP
converts this to conjugation.



Parallel 4-forms 25

Corollary. The vector bundle V over IL admits three distinct
SU(3)-invariant parallel 4-forms with stabilizer Sp(2)Sp(1).

The one corresponding to G»/SO(4) is

3sin2(tt)2cosz(t) bbﬂ-’- \/§sin(2t) b,é-’- sinz(t)cosz(t)ag"’e _ —bsin(2t)+sin(6t)+4t cos(2t)

128313 yee
+sm (t)(coséi?;cos (4t)+1) bbb ae + 2tcos§;2t§)75in(2t)) b,@ ae
3(2tsin(4 (4 in? (5t—6sin(2t)—3sin(4 13 2 5 4 6
+ (2t sin( tzl;cos t)— ab ab,@ + sin“(t)(5t—6sin(2t)—3sin( ;)64:;(&5 cos(2t)+5 cos(4t)-+cos( t)))ab cee

i i —2t cos| sin® cos!
+5|n (2[’)(s|n(32215136 2t (2t))abb aee — (2;)1:3 (2t) avyavy




Closed 4-forms 2.6

If M has an Sp(n)Sp(1)-structure then

1

VQe T @ (sp(n)+sp(l))t = EH ® N3ES?H

~ (E@ E' @ NE)® (H® S3H)
has 6 irreducible components if n > 3.

Lemma [Sw]. If n > 3 the condition dQ2 = 0 implies that
VS =0 and so the holonomy reduces.

If n =2, one can have dQ2 = 0 without M being Einstein:

Theorem [CMS]. G/SO(4) admits SU(3) invariant closed
non-parallel 4-forms with stabilizer Sp(2)Sp(1).



Proof 2.7

G»/S0(4) does not admit a U(1) commuting with SU(3), but
there is still a circle action and vector field X tangent to the orbits.

The stabilizer of an exterior form is always preserved by a linear
deformation
Q ~ Q+N-Q,

where N € gl(8,R) satisfies N - (N - Q) =0.

In our case, we can take N = f(t)dt ® X to preserve closure,
where f is smooth and odd around the end points t =0, Z, so

s 4
Q ~ Q4 f(t)dt AN (X2Q), 0<t<

If f=£0, this gives non-Einstein metrics with scalar curvature

s = 64 — 3(tan 2t)?f(t)2.



The EH formalism: Spinors 2.8

Let A + A_ be the spin representation of Spin(4n). Then
Ay —D = N(E-H) = P(-1)PRPT,
p+q=n

where RPI=AJE @ SIH.

Corollary. M?4" is spin if n is even, so if s > 0 then //Z\n =0.

The Dirac operator

MM, Ay ® RPY) — T(M, A_ @ RP9)

~

has index [, ch(RP9)A(M).
If s > 0 this vanishes if p+ g < n. Used by [GMS]...

One also gets estimates on the dimension of the isometry group
involving h = cx(H) € H*(M, 3Z). (E.g. d =5 + 16h? for n=2.)



Instantons

Example. Over HP?,
Ay — A =N(E — H)=NE — EH+ S?H.
There are analogies with Spin(7) structures (1 —8+7).

E — H can't be a vector bundle because an inclusion H — E
would define a nowhere zero section of E ® H = THIP?. Indeed,
E — H has rank 2, but

c(E—H)=c(CO—2H)=(1—h)"2=1+2h+3h,
and c; # 0. By contrast,
c(N2E — H)=1+3h.

This time the difference is a genuine vector bundle.

2.9



Horrocks’ bundle 2.10

Theorem. There exists a rank 3 complex vector bundle V' over
HP? with ¢ =3h, and an SU(3)-connection with F € I'(sp(2)).

Recall that E = ker(p1: C°® — H). Similarly,
N2E = ker (/\3(@6) —> COA H).
Fix a reduction of Sp(3) to SU(3), giving C® = AM0 @ AO1 and
pa: A3(CF) —> C°.
Then p; o p» has rank 2 everywhere.

The instanton connection on V = ker(py o pp) is induced from
that on /\%E and ultimately E, using ADHM techniques, and
there is a moduli space SL(3,H)/SU(3) — SL(3,H)/Sp(3).



A curiosity: Eg/E7Sp(1) 2.11

The signature of an ADE Wolf space equals its rank: b;n:bg,,:r.
M*12 has 8 primitive cohomology classes o, € H**(M,R), and

H*®(M,R) = (o4 U ¥ : k=0,3,5,6,8,9,11,14),

exhibiting ‘secondary Poincaré duality’ about kK = 7:

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56
e o o o o o

e o o

°




