# Manifolds with holonomy $\mathrm{Sp}(\mathrm{n}) \mathrm{Sp}(1)$ 

SC in SHGAP

Simon Salamon
Stony Brook, 9 Sep 2016

$$
\begin{array}{lcr} 
& S O(N) & \\
U\left(\frac{N}{2}\right) & & \operatorname{Sp}\left(\frac{N}{4}\right) \operatorname{Sp}(1) \\
S U\left(\frac{N}{2}\right) & & \operatorname{Sp}\left(\frac{N}{4}\right) \\
& & \\
& G_{2}(N=7) & \\
& \operatorname{Spin}(7)(N=8) & \\
\hline
\end{array}
$$

All act transitively on $S^{N-1}$ [Si]. In particular,

$$
S^{6} \cong \frac{G_{2}}{S U(3)}, \quad S^{7} \cong \frac{\operatorname{Spin}(7)}{G_{2}}
$$

have 'weak holonomy' reductions. The Ricci-flat cases are characterized by the existence of parallel spinors.

## The quaternionic unitary case

Mathematical interest in $S p(n) S p(1)$ arises from
(i) its presence in the list,
(ii) its generalization of $S O(4)=S p(1) S p(1)$,
(iii) being the holonomy group of the projective space

$$
\mathbb{H} \mathbb{P}^{n}=\frac{\operatorname{Sp}(n+1)}{\operatorname{Sp}(n) \times \operatorname{Sp}(1)}=\frac{\operatorname{Sp}(n+1) / \mathbb{Z}_{2}}{\operatorname{Sp}(n) \operatorname{Sp}(1)} .
$$

The reduction corresponds to splittings

$$
\begin{gathered}
\mathbb{H}^{n+1}=\mathbb{H}^{n} \oplus \mathbb{H} \\
\mathbb{C}^{2 n+2}=\mathbb{C}^{2 n} \oplus \mathbb{C}^{2}=E \oplus H
\end{gathered}
$$

and

$$
\left(T^{*} \mathbb{H} \mathbb{P}^{n}\right)_{c} \cong E \otimes H \quad\left(=S_{+} \otimes S_{-} \text {if } n=1\right)
$$

## Quaternion-kähler manifolds

Definition. A QK manifold is a Riemannian manifold of dimension $4 n$, with $n \geqslant 2$, whose holonomy group $H$ satisfies

$$
S p(n) \subsetneq H \subseteq S p(n) S p(1)
$$

This rules out the hyperkähler case, though HK and QK manifolds share some properties. Any QK manifold has a parallel 4-form

$$
\Omega=\sum_{i=1}^{3} \omega_{i} \wedge \omega_{i}
$$

where $\omega_{1}, \omega_{2}, \omega_{3}$ is a local triple of 2 -forms.
Any QK curvature tensor $R$ belongs to $S^{2}(\mathfrak{s p}(n) \oplus \mathfrak{s p}(1))$ and

$$
R=R_{\mathrm{HK}} \oplus s R_{0}, \quad R_{\mathrm{HK}} \in S^{4} E \subset S^{2} \mathfrak{s p}(n)
$$

So a QK manifold is 'nearly HK' and Einstein but can have $s<0$.

## The Wolf spaces

Given a compact simple Lie algebra $\mathfrak{g}$, choose a highest root subalgebra $\mathfrak{s u}(2)=\mathfrak{s p}(1)$. Then

$$
H=K S p(1)=\{g \in G: \operatorname{Ad}(g)(\mathfrak{s p}(1))=\mathfrak{s p}(1)\} .
$$

If $G$ is centreless, $K \subseteq S p(n)$.
Wolf spaces of real dimension $4 n$ include $\mathbb{H P}^{n}$ and

$$
\begin{aligned}
& \mathbb{G r}_{2}\left(\mathbb{C}^{n+2}\right)=\frac{S U(n+2)}{S(U(n) \times U(2))} \\
& \mathbb{G r}_{4}\left(\mathbb{R}^{n+4}\right)=\frac{S O(n+4)}{S O(n) \times S O(4)}
\end{aligned}
$$

There are exceptional ones with $n=2,7,10,16,28$.
All compact QK homogeneous spaces arise in this way [A].

Let $M$ be QK. The reduction to $S p(n) S p(1)$ equips each tangent space $T_{m} M$ with a 2 -sphere

$$
Z_{m}=\left\{a l_{1}+b l_{2}+c l_{3}: a^{2}+b^{2}+c^{2}=1\right\}
$$

of almost complex structures, a point of which corresponds to a reduction $H_{m}=\theta \oplus \tilde{\theta}$ and

$$
\left(T_{m}^{*} M\right)_{c}=E \otimes(\theta \oplus \tilde{\theta})=\Lambda^{1,0} \oplus \Lambda^{0,1}
$$

Thus, $Z \cong H / \mathbb{C}^{*}$ is a bundle over $M$ with fibre $S^{2} \cong \mathbb{C P}^{1}$.

Theorem. The tautological almost complex structure on $Z$ determined by the horizontal (LC) distribution is integrable. Therefore $Z$ is a complex manifold, generalizing the AHS construction in dimension 4.

## Associated bundles

$Z^{4 n+2}$
$\hookrightarrow$

$$
V^{4 n+3}
$$

$$
M^{4 n}, Q K, s>0
$$

The twistor space $Z$ with fibre $\mathbb{C P}^{1}$ is a Kähler manifold. $V$ is the span of $I_{1}, l_{2}, l_{3}$, or $\omega_{1}, \omega_{2}, \omega_{3}$, with fibre $\mathbb{R}^{3}=\mathfrak{s p}(1)$. $\mathscr{U}=H / \mathbb{Z}_{2}$ has both HK and QK metrics, and $\mathscr{S}$ is 3-Sasakian.

## Fano contact manifolds

When $M^{4 n}$ is a Wolf space,

$$
Z=\frac{G}{K U(1)} \xrightarrow{\pi} \frac{G}{K S p(1)}=M
$$

is an adjoint orbit in $\mathfrak{g}$, polarized by a holomorphic line bundle $L$. Each fibre $\pi^{-1}(m)$ is a rational curve $\mathbb{C P}^{1}$ with normal bundle $2 n \mathcal{O}(1)$, whereas $\left.L\right|_{\mathbb{C P}^{1}} \cong \mathcal{O}(2)$.
If $M$ is a QK manifold, $Z$ has a holomorphic contact structure $\theta \in H^{0}\left(Z, T^{*} Z \otimes L\right)$, so

$$
0 \neq \theta \wedge(d \theta)^{n} \in H^{0}\left(Z, \kappa \otimes L^{n+1}\right)
$$

and $\bar{\kappa} \cong L^{n+1}$. There is a short exact sequence

$$
0 \rightarrow D \rightarrow T Z \xrightarrow{\theta} L \rightarrow 0
$$

in which $D \cong L^{1 / 2} \otimes \pi^{*} E$ is horizontal, and $E$ is an instanton.

## Characterization of $\mathrm{HP}^{n}$

The twistor space $\mathbb{C P}^{2 n+1}$ of $\mathbb{H} \mathbb{P}^{n}$ has $L=\mathcal{O}(2)$, and is of course Fano of index $2 n+2$.

If $M$ is a QK manifold with $s>0$ and the $S p(n) S p(n)$ structure lifts to $S p(n) \times S p(1)$, the same is true. It follows that $Z$ is biholomorphic to $\mathbb{C P}^{2 n+1}[\mathrm{KO}]$.

Corollary. If $H^{2}\left(M, \mathbb{Z}_{2}\right)=0$ then $M$ is isometric to $\mathbb{H P}^{n}$.

In general, the twistor space $Z$ of a QK manifold with positive scalar curvature $s>0$ is Fano of index $n+1$. The big question is whether such a Fano contact manifold must be homogeneous. Yes, if $Z \rightarrow \mathbb{P}\left(H^{0}(Z, L)^{*}\right)$ is generically finite [Be].

## The twistor dictionary

| $M$ QK, $s \neq 0$ | $Z$ complex contact |
| :---: | :---: |
| point | vertical rational curve |
| complex structure | holomorphic section |
| Killing field $X$ | $s \in H^{0}(Z, L)$ |
| Dirac operator | $\bar{\partial}$ on $\Lambda^{0, *} \otimes \mathcal{O}(-n)$ |
| Fueter operator | $\bar{\partial}$ on $\Lambda^{0,1} \otimes \mathcal{O}(-3)$ |
| $s>0$ | $Z$ Kähler-Einstein |
| $s>0$, compact | $Z$ contact Fano |
| minimal 2-sphere | contact rational curve |
| $b_{2}(M)+1$ | $=b_{2}(Z)$ |

## Rigidity

Let $M^{4 n}$ be a QK manifold with $s>0$. The odd Betti numbers of $M^{4 n}$ are all zero.

Theorem $1[\mathrm{LS}, \mathrm{Wi}]$. If $b_{2}(M)>0$ then $M$ is isometric to $\mathbb{G r}_{2}\left(\mathbb{C}^{n+2}\right)$.

For, if $b_{2}(Z)>1$ there exists a family of rational curves on $Z$ transverse to the fibres, and a contraction $Z \longrightarrow \mathbb{C P} \mathbb{P}^{n+1}$ with fibres tangent to $D$. This forces $Z=\mathbb{P}\left(T^{*} \mathbb{C P}{ }^{n+1}\right)$.

Theorem 2 [LS,KMM]. For each $n$, there are finitely many complete QK manifolds with $s>0$. (Three if $n=2$.)

Theorem 3 [GS,A]. If $b_{4}=1$ and $3 \leqslant n \leqslant 6$ then $M \cong \mathbb{H} \mathbb{P}^{n}$.

## A curiosity: $E_{6} / S U(6) S p(1)$

The configuration of 27 lines on a smooth cubic surface in $\mathbb{C P}^{3}$ can be described using

$$
\mathfrak{e}_{6}=\mathfrak{s u}(6) \oplus \mathfrak{s p}(1) \oplus(E \otimes H), \quad E=\Lambda^{3,0}
$$

and choosing a basis of

$$
\begin{aligned}
\mathbb{C}^{27} & =\left(\Lambda^{1,0} \otimes H\right) \oplus \Lambda^{0,2} \\
& =\left\langle a_{i}\right\rangle \oplus\left\langle b_{j}\right\rangle \oplus\left\langle c_{i j}\right\rangle
\end{aligned}
$$

Suppose that $M^{4 n}$ is a QK manifold with an isometric $U(1)$ action and Killing field $X$ such that $\mathscr{L}_{X} \Omega \equiv 0$. Define a 2 -form

$$
\eta=\pi\left(d X^{b}\right)=\sum_{i=1}^{3} \eta_{i} \omega_{i} \in \Gamma(M, V)
$$

and set $f=\frac{1}{2}\|\eta\|^{2}$. Then, up to constants,

$$
d f=X\lrcorner \eta, \quad d \eta=X\lrcorner \Omega,
$$

and $\eta$ determines a holomorphic section $\widehat{\eta} \in H^{0}(Z, L)$.
If $s>0, M \backslash\{f=0\}$ has an associated Kähler metric [Ha].
Stony Brook Theorem [GL, HKLR]. If $U(1)$ acts freely on $f^{-1}(0)$ then $f^{-1}(0) / U(1)$ has a natural QK structure.

## An M-theory example

The diagonal action of $U(1) \subset S p(3)$ on $\mathbb{H}^{3}$ has fixed point set $\mathbb{C P}^{2}$, and gives rise to an $S U(3)$-equivariant picture

$$
\begin{array}{ccc}
f^{-1}(0)=S^{5} & \subset & \mathbb{H P P}^{2} \backslash \mathbb{C P}^{2} \\
\downarrow & & \downarrow \\
\mathbb{C P}^{2} & \longleftarrow & \Lambda_{-}^{2} T^{*} \mathbb{C P}^{2}=\mathbb{X}
\end{array}
$$

and $\mathbb{H P}^{2} / U(1) \approx S^{7}[A W]$.
Lemma [CMS]. The 3-form on $\mathbb{X}$ defining the BS metric is

$$
\begin{gathered}
\varphi=\mu(X\lrcorner \Omega)+\frac{\mu}{1048576}(\cot 2 t)^{2} \nabla X^{b} \wedge \alpha_{1}+\lambda \alpha_{123} \\
\lambda=\frac{f^{3 / 2}\left(\sqrt[3]{(f-2)^{2}\left(64+(f-2)^{2} f^{2}\right)}+f(f((3 f-10)+4)+8)\right.}{32(2-f)^{5 / 2}}, \mu=-\frac{2048 \sqrt{6}\left(\sqrt{(f-2)^{2}\left(64+(f-2)^{2} f^{2}\right)}+f(f-2)^{2}\right)}{(2-f)^{3 / 2}} .
\end{gathered}
$$

## Nilpotency

Theorem [Sw]. For $G$ compact simple,

$$
f\left(\left\langle e_{1}, e_{2}, e_{3}\right\rangle\right)=B\left(e_{1},\left[e_{2}, e_{3}\right]\right)
$$

is a Morse-Bott function on $\mathbb{G r}_{3}(\mathfrak{g})$. Critical points are subalgebras. The unstable manifold determined by an $\mathfrak{s u}(2)$ is QK with twistor space $\mathscr{U} / \mathbb{C}^{*}$, where $\mathscr{U}$ is the associated complex nilpotent orbit.

Example. $\mathfrak{s u}(3)$ has two TDA's up to conjugacy: $\mathfrak{s u}(2)$ and $\mathfrak{s o}(3)$.
(i) $\mathfrak{s u}(2)$ gives rise to the Wolf space $\mathbb{C P}^{2}=S U(3) / U(1) S U(2)$.
(ii) $\mathfrak{s o}$ (3) gives an 8-dimensional incomplete QK manifold, covered by the total space of the rank 3 vector bundle

$$
\mathbb{V} \longrightarrow \mathbb{L}=S U(3) / S O(3)
$$

which can be identified with an open subset of $G_{2} / S O(4)$.

## 8-manifolds of cohomogeneity one

There are 3 compact Wolf spaces in dimension 8. Remarkably, all admit an action by $S U(3)$, with principal orbits $S U(3) / U(1)_{1,-1}$ and two ends chosen from

$$
S^{5}, \quad \mathbb{C P}^{2}, \quad \mathbb{L}=\frac{S U(3)}{S O(3)}
$$

| $\mathbb{G r}_{2}\left(\mathbb{C}^{4}\right)$ | $S U(4) / U(2) S p(1)$ | $\mathbb{C P}^{2}, \mathbb{C P}^{2}$ |
| :--- | :--- | :--- |
| $\mathbb{H P}^{2}$ | $S p(3) / S p(2) \operatorname{Sp}(1)$ | $\mathbb{C P}^{2}, S^{5}$ |
| $G_{2} / S O(4)$ | $G_{2} / S U(2) S p(1)$ | $\mathbb{C P}^{2}, \mathbb{L}$ |
| $S U(3)$ | $S U(3)^{2} / \Delta S U(3)$ | $S^{5}, \mathbb{L}$ |

In the last case, the action is $P \mapsto \bar{Q} P Q^{-1}$. Mapping $P$ to $\bar{P} P$ converts this to conjugation.

## Parallel 4-forms

Corollary. The vector bundle $\mathbb{V}$ over $\mathbb{L}$ admits three distinct $S U(3)$-invariant parallel 4-forms with stabilizer $S p(2) S p(1)$.
The one corresponding to $G_{2} / S O(4)$ is

$$
\begin{gathered}
\frac{3 \sin ^{2}(t) \cos ^{2}(t)}{t^{2}} \mathbf{b} \mathbf{b} \boldsymbol{\beta}+\frac{\sqrt{3} \sin (2 t)}{t} \mathbf{b} \tilde{\boldsymbol{\beta}}+\frac{\sin ^{2}(t) \cos ^{2}(t)}{t^{2}} \mathbf{a} \tilde{\boldsymbol{\beta}} \boldsymbol{\epsilon}-\frac{-5 \sin (2 t)+\sin (6 t)+4 t \cos (2 t)}{128 \sqrt{3} t^{3}} \boldsymbol{\gamma} \boldsymbol{\epsilon} \boldsymbol{\epsilon} \\
+\frac{\sin ^{4}(t)(\cos (2 t)+\cos (4 t)+1)}{2 \sqrt{3} t^{4}} \mathbf{b b b} \mathbf{a} \boldsymbol{\epsilon}+\frac{\sqrt{3}(2 t \cos (2 t)-\sin (2 t))}{8 t^{3}} \mathbf{b} \boldsymbol{\beta} \mathbf{a} \boldsymbol{\epsilon} \\
+\frac{3(2 t \sin (4 t)+\cos (4 t)-1)}{4 t^{4}} \mathbf{a b} \mathbf{a b} \boldsymbol{\beta}+\frac{\sin ^{2}(t)(5 t-6 \sin (2 t)-3 \sin (4 t)+t(13 \cos (2 t)+5 \cos (4 t)+\cos (6 t)))}{96 \sqrt{3} t^{5}} \mathbf{a b} \boldsymbol{\epsilon} \boldsymbol{\epsilon} \boldsymbol{\epsilon} \\
+\frac{\sin ^{3}(2 t)(\sin (2 t)-2 t \cos (2 t))}{32 t^{6}} \mathbf{a b b} \mathbf{a} \boldsymbol{\epsilon} \boldsymbol{\epsilon}-\frac{\sin ^{3}(2 t) \cos (2 t)}{8 t^{3}} \mathbf{a} \boldsymbol{\gamma} \mathbf{a} \gamma
\end{gathered}
$$

## Closed 4-forms

If $M$ has an $\operatorname{Sp}(n) \operatorname{Sp}(1)$-structure then

$$
\begin{aligned}
\nabla \Omega \in T^{*} \otimes(\mathfrak{s p}(n)+\mathfrak{s p}(1))^{\perp} & \cong E H \otimes \Lambda_{0}^{2} E S^{2} H \\
& \cong\left(E \oplus E^{\prime} \oplus \Lambda_{0}^{3} E\right) \otimes\left(H \oplus S^{3} H\right)
\end{aligned}
$$

has 6 irreducible components if $n \geqslant 3$.
Lemma [Sw]. If $n \geqslant 3$ the condition $d \Omega=0$ implies that $\nabla \Omega=0$ and so the holonomy reduces.

If $n=2$, one can have $d \Omega=0$ without $M$ being Einstein:
Theorem [CMS]. $G_{2} / S O(4)$ admits $S U(3)$ invariant closed non-parallel 4-forms with stabilizer $\operatorname{Sp}(2) S p(1)$.

## Proof

$G_{2} / S O(4)$ does not admit a $U(1)$ commuting with $S U(3)$, but there is still a circle action and vector field $X$ tangent to the orbits.

The stabilizer of an exterior form is always preserved by a linear deformation

$$
\Omega \rightsquigarrow \Omega+N \cdot \Omega,
$$

where $N \in \mathfrak{g l}(8, \mathbb{R})$ satisfies $N \cdot(N \cdot \Omega)=0$.
In our case, we can take $N=f(t) d t \otimes X$ to preserve closure, where $f$ is smooth and odd around the end points $t=0, \frac{\pi}{4}$, so

$$
\Omega \rightsquigarrow \Omega+f(t) d t \wedge(X\lrcorner \Omega), \quad 0 \leqslant t \leqslant \frac{\pi}{4} .
$$

If $f \neq 0$, this gives non-Einstein metrics with scalar curvature

$$
s=64-\frac{4}{3}(\tan 2 t)^{2} f(t)^{2} .
$$

## The EH formalism: Spinors

Let $\Delta_{+}+\Delta_{-}$be the spin representation of $\operatorname{Spin}(4 n)$. Then

$$
\Delta_{+}-\Delta_{-}=\Lambda_{0}^{n}(E-H)=\bigoplus_{p+q=n}(-1)^{p} R^{p, q}
$$

where $R^{p, q}=\Lambda_{0}^{p} E \otimes S^{q} H$.
Corollary. $M^{4 n}$ is spin if $n$ is even, so if $s>0$ then $\widehat{A}_{n}=0$.
The Dirac operator

$$
\Gamma\left(M, \Delta_{+} \otimes R^{p, q}\right) \longrightarrow \Gamma\left(M, \Delta_{-} \otimes R^{p, q}\right)
$$

has index $\int_{M} \operatorname{ch}\left(R^{p, q}\right) \widehat{A}(M)$.
If $s>0$ this vanishes if $p+q<n$. Used by [GMS]...
One also gets estimates on the dimension of the isometry group involving $h=c_{2}(H) \in H^{4}\left(M, \frac{1}{4} \mathbb{Z}\right)$. (E.g. $d=5+16 h^{2}$ for $n=2$.)

## Instantons

Example. Over $\mathbb{H P}^{2}$,

$$
\Delta_{+}-\Delta_{-}=\Lambda_{0}^{2}(E-H)=\Lambda_{0}^{2} E-E H+S^{2} H
$$

There are analogies with $\operatorname{Spin}(7)$ structures $(1-8+7)$.
$E-H$ can't be a vector bundle because an inclusion $H \hookrightarrow E$ would define a nowhere zero section of $E \otimes H \cong T \mathbb{H} \mathbb{P}^{2}$. Indeed, $E-H$ has rank 2 , but

$$
c(E-H)=c\left(\mathbb{C}^{6}-2 H\right)=(1-h)^{-2}=1+2 h+3 h^{2}
$$

and $c_{4} \neq 0$. By contrast,

$$
c\left(\Lambda_{0}^{2} E-H\right)=1+3 h
$$

This time the difference is a genuine vector bundle.

## Horrocks' bundle

Theorem. There exists a rank 3 complex vector bundle $V$ over $\mathbb{H}^{2}$ with $c_{2}=3 h$, and an $S U(3)$-connection with $F \in \Gamma(\mathfrak{s p}(2))$.

Recall that $E=\operatorname{ker}\left(p_{1}: \underline{\mathbb{C}}^{6} \rightarrow H\right)$. Similarly,

$$
\Lambda_{0}^{2} E=\operatorname{ker}\left(\Lambda_{0}^{2}\left(\underline{\mathbb{C}}^{6}\right) \longrightarrow \underline{\mathbb{C}}^{6} \wedge H\right)
$$

Fix a reduction of $S p(3)$ to $S U(3)$, giving $\mathbb{C}^{6}=\Lambda^{1,0} \oplus \Lambda^{0,1}$ and

$$
p_{2}: \Lambda_{0}^{2}\left(\mathbb{C}^{6}\right) \longrightarrow \mathbb{C}^{6} .
$$

Then $p_{1} \circ p_{2}$ has rank 2 everywhere.
The instanton connection on $V=\operatorname{ker}\left(p_{1} \circ p_{2}\right)$ is induced from that on $\Lambda_{0}^{2} E$ and ultimately $E$, using ADHM techniques, and there is a moduli space $S L(3, \mathbb{H}) / S U(3) \rightarrow S L(3, \mathbb{H}) / S p(3)$.

## A curiosity: $E_{8} / E_{7} \operatorname{Sp}(1)$

The signature of an ADE Wolf space equals its rank: $b_{2 n}^{+}=b_{2 n}=r$. $M^{112}$ has 8 primitive cohomology classes $\sigma_{k} \in H^{4 k}(M, \mathbb{R})$, and

$$
H^{56}(M, \mathbb{R})=\left\langle\sigma_{k} \cup h^{14-k}: k=0,3,5,6,8,9,11,14\right\rangle
$$

exhibiting 'secondary Poincaré duality' about $k=7$ :


