Home » Lectures » Dave Morrison: Lectures

Dave Morrison: Lectures

April 10, 2019
TITLE: Charged chiral matter in G2 compactifications

ABSTRACT: Lecture postponed to September.

January 7, 2019
TITLE: Degenerations of complex structures on K3 surfaces, following Kulikov, Persson, and Pinkham

ABSTRACT: We shall review the classical theory of deformations and degenerations of complex structure on K3 surfaces, ignoring metrical aspects of the problem. Our talk will follow the 1977 Izvestija paper of Kulikov, the 1981 Annals paper of Persson and Pinkham, and the author’s PhD thesis, published in the Duke Math Journal in 1981.

January 7, 2019
TITLE: Supersymmetric torus fibrations of Calabi-Yau threefolds

ABSTRACT: We shall review the original Strominger-Yau-Zaslow (SYZ) conjecture, early work by Zharkov, Gross, and W.D. Ruan on the subject, and some results of Joyce. Together, these considerations lead us to a refined version of the original SYZ conjecture (which is somewhat orthogonal to the approach taken by Gross and Siebert). We explain how our refined conjecture is related to Batyrev’s combinatorial version of mirror symmetry for hypersurfaces in toric varieties, and to the Batyrev-Borisov extension of combinatorial mirror symmetry to complete intersections in toric varieties. This talk will be based on arXiv:1002.4921 and arXiv:1504.08337

September 9, 2018
TITLE: G_{2} spaces with K3 fibrations

ABSTRACT: Many manifolds and singular spaces with holonomy G_{2} have fibrations by K3 surfaces. These fibrations are particularly useful when the K3 surfaces are calibrated by the G_{2} 4-form. We will explore a number of properties and applications of this phenomenon.

April 13, 2018
TITLE: Collapsing metrics in string theory and M-theory

September 15, 2017
TITLE: Singularities and special holonomy in physics

ABSTRACT: One route to describing a supersymmetric quantum theory of gravity in four-dimensional spacetime begins with the proposed eleven-dimensional quantum theory of gravity known as M-theory, which is then studied on the Cartesian product of a compact seven-dimensional space and a four-dimensional spacetime. To obtain a supersymmetric theory of gravity, the compact space should be equipped with a Riemannian metric admitting a covariantly constant spinor; the latter leads to special holonomy. Geometric properties of the compact space determine physical properties of the four-dimensional theory.

Two key physical properties — non-abelian gauge fields and chiral matter — cannot be realized in this setup unless the compact space has singularities. We will present some work in progress which modifies existing constructions of compact manifolds with holonomy G2 to include (some of) the relevant singularities.

January 13, 2017
TITLE: Degenerations of K3 surfaces, gravitational instantons, and M-theory

ABSTRACT: The detailed study of degenerations of K3 surfaces as complex manifolds goes back more than forty years and is fairly complete. Much less is known about the analogous problem in differential geometry of finding Gromov–Hausdorff limits for sequences of Ricci-flat metrics on the K3 manifold. I will review recent work of H.-J. Hein and G. Chen–X. Chen on gravitational instantons with curvature decay, and describe applications to the K3 degeneration problem. M-theory suggests an additional geometric structure to add, and I will give a conjectural sketch of how that structure should clarify the limiting behavior.

NOTE: The video below is AUDIO ONLY.

September 15, 2016
TITLE: Odds and ends

September 14, 2016
TITLE: Calibrations and branes

September 13, 2016
TITLE: The role of special holonomy in string/M/F compactification

September 8, 2016
TITLE: Moduli, calibrations, and singularities

ABSTRACT: A very effective way to study singularities of Calabi-Yau threefolds is to express the singular space as a limit of smooth spaces. If the complex structure is held fixed while the Kähler class is varied, there are algebraic cycles (calibrated by a power of the Kähler form) which approach zero volume in the limit. If the Kähler class is held fixed while the complex structure is varied, there are “vanishing cycles” whose volumes approach zero in the limit. These vanishing cycles are conjectured to have special Lagrangian representatives under appropriate conditions, i.e., to be calibrated by the real part of a holomorphic 3-form. Both kinds of limit can be studied with techniques from algebraic geometry.

In this talk, we will discuss the prospects for a similar picture holding in the case of G_2 manifolds. In a limit of smooth metrics in which the volume of some associative or co-associative cycle approaches zero, what happens to the space?