

Creating a Framework for Simulated CT Analysis

Sarah Glomski

August 26, 2024

About Me!

My background:

- Medical imaging (CT)
- Medical device design
- Surgical robotics

Last summer:

- aRTist CT scans
- Out-of-plane detector tilt

Overview: CT Artifacts

• A few common artifacts

With beam hardening artifacts Without beam hardening artifacts

1. Object					
	2. Scan				\checkmark
		3. Geometry			Ň
Select an object of interest.	Place object in NSI cabinet,		4. Reconstruction		Ň
		Place object in NSI cabinet, select scan settings. Use geometry tool to estimate cabinet geometry.	Use CTW to	5. Visualization	
	select scan settings.		reconstruct data, enter scan/ geometry settings.	Use Dragonfly to visualize the rec volume.	

1. Object					
	2. Scan				
		3. Geometry			\backslash
Select an object of interest.	Place object in NSI cabinet,		4. Reconstruction		Ň
		ace object in SI cabinet, elect scan ettings. Use geometry tool to estimate cabinet geometry.	Use CTW to	5. Visualization	
	select scan settings.		reconstruct data, enter scan/ geometry settings.	Use Dragonfly to visualize the rec volume.	

• How might we simulate these steps?

1. Object				
	2. Scan			
Select an object of interest.		3. Geometry		
	Place object in NSI cabinet, select scan settings.	4. Reconstruct		on
		Use geometry tool to estimate cabinet geometry.	Use CTW to reconstruct data, enter scan/ geometry settings.	5. Visualization
				Use Dragonfly to visualize the rec volume.

Phantom	aRTist	Inherently	Recon	E1695
(Fins Redux)	software	known/variable		analyses

1. Object				
	2. Scan			
		3. Geometry		
Select an object of interest.	Place object in NSI cabinet,		4. Reconstruction	
		Use geometry	Use CTW to	5. Visualization
	select scan settings.	cabinet geometry.	reconstruct data, enter scan/ geometry settings.	Use Dragonfly to visualize the rec volume.

Phantom	aRTist	Inherently	Recon	E1695
(Fins Redux)	software	known/variable		analyses

• How might we integrate/automate these steps?

1. Object					
	2. Scan				
Select an object of interest.		3. Geometry			
	Place object in NSI cabinet, select scan settings.		4. Reconstruction		
		Use geometry tool to estimate cabinet geometry.	Use CTW to reconstruct data, enter scan/ geometry settings.	5. Visualization	
				Use Dragonfly to visualize the rec volume.	

Introducing the Artifacts Tutorial

Goals:

- 1. Run simulations of CT cabinet misalignments,
- 2. Manage the reconstruction settings,
- 3. Analyze the resulting reconstructions, and
- 4. Visualize the artifacts that are caused by the misalignments.

- Smooth interfaces between steps
- Easily repeatable for automation (whole process or subprocesses)

Located in my git repo: https://git.lanl.gov/e-6/members/students/sarahglomski

Artifacts Tutorial

Author: Sarah Glomski Last Modified: 8/26/24

Description

The goal of this code is to provide a framework for:

1. Running simulations of CT cabinet misalignments,

2. Managing the reconstruction settings,

Analyzing the resulting reconstructions, and
 Visualizing the artifacts that are caused by the misalignments

aRTist Simulations

Running simulations of CT cabinet misalignments

+ 7 cells hidden

Recon Automation

Managing the reconstruction settings

+ 4 cells hidden

Recon Volume Analysis

Analyzing the resulting reconstructions

+ 7 cells hidden

Artifact Videos

Visualizing the artifacts that are caused by the misalignments

+ 3 cells hidden

Fins Redux Phantom

- Used in the Artifacts Tutorial
- Square AI fins around HDPE cylindrical rod

Simulated in aRTist

- Difficult to reconstruct due to harsh lines
- Emphasizes cone beam artifacts and vertical beam offsets
- Leeds makes a similar MicroCT phantom with cylindrical fins

https://leedstestobjects.com/index.php/phantom/microct-set/

Cone beam artifacts

Accounting for CT Artifacts

- All can be simulated in aRTist, but not all are accounted for in Recon
- Used vertical beam offsets in the Artifacts Tutorial

Examples	Calculated by Geometry Estimation?	Accounted for in Recon?
Beam center offset (vertical, horizontal)		
In-plane detector tilt		$\mathbf{\otimes}$
Out-of-plane detector tilt	\mathbf{x}	$\mathbf{\otimes}$
Center of rotation shift	$\mathbf{\otimes}$	$\mathbf{\otimes}$
Beam hardening (dishing)	$\mathbf{\otimes}$	$\mathbf{\otimes}$
Focal spot blur	\mathbf{x}	$\mathbf{\otimes}$
Metal artifacts	\mathbf{x}	$\mathbf{\otimes}$
Ring artifacts	\mathbf{S}	

Using the Tutorial: Simulating Beam Offsets

- Artistlib: package used to automate the scanning process
 - Setup geometry
 - Beam energy
 - Phantom material
 - Scan parameters
 - Documentation: <u>https://artist.bam.de/files/aRTist-Scripting.pdf</u>
- Output: tiff stack

• Example: Add a vertical beam offset and iterate from -5 mm to +5 mm.

Recon Overview

- CT Workshop (Recon) runs by continuously updating the ReconInput.txt file
 - Has instructions on which step of the reconstruction process to execute
 - Common File Specs
 - Calibration of Raw Files Tab
 - Median filter between calibration and attenuation
 - Raw file to Attenuation Tab
 - Filter raw files
 - Raw file Resize

- Detector Geometry
- Scan specifications
- Sinogram Generation Tab
- Centering Tab
- Ring Removal
- Sinogram filtering and resizing
- Additional Sino Processing

- Sinogram Background for 0 padding
- Region of Interest
- Half Image Options
- General Reconstruction Options

ReconInput - Notepad			- 0	
File Edit Format View Help				
//	Detector	eometry		
panel_dist_mm	800.0	// Distance from source to panel, L (L = any consistent length unit, mm in Fla	shCT)	
obj_dist_mm	400.0	// source to object centerline radius		
panel_horiz_pix	1200	// number of pix in panel rows, horizontal direction (to calc the horizontal c	enter)	
panel_vert_pix	1200	<pre>// number of pix in panel column, vertical direction (to calc vert_center)</pre>		
pixel_horiz_mm	0.125	// horizontal pixel size in panel, L (used for horizontal scaling, panel dista	nces)	
pixel_vert_mm	0.125	// vertical pixel size in panel, L (used for vertical scaling, cone angle, ver	t center)	
vert_cen_offset_mm	0.0	<pre>// offset of perpendicular from source to center of panel, + = down, L units</pre>		
horiz_cen_offset_mm	0.0	<pre>// horizontal distance in L units from panel center to beam center + = right</pre>		
crop_horiz_pix	1200	// number of pix in cropped region, horizontal direction		
crop_vert_pix	1200	// number of pix in cropped region, vertical direction		
offset_horiz_pix	0	// distance from panel left to crop region left, + = right (used for calibrati	on)	
offset vert pix	0	// vert pixel dist from panel to cropped region, top left corners, + down (ver	t cent)	
// example for 360 degree	a scan			
opt scan angle	0	//0 = 360 circle, 1 = 180 + fan angle, 2 = 180 stopping 1 short, 3 = 180 with	redundant point at	180
rotations	1885	// Number of rotations (raw files) used to make a singer (1 + last raw index		100
scan angle	0	<pre>// angle (deg) of last raw file after rotations -1 intervals. User input for</pre>	opt scan angle = 1 o	nlv
//	Sinogram	eneration Tab		
opt_sin_create_rec	0	<pre>// 0 = do not create sinograms in recon, 1 = create sinograms</pre>		
sino_create_first	0	<pre>// Index of first sinogram file to be created (row index of raw file, min = 0)</pre>		
sino_create_last	1199	<pre>// Index of last sinogram file to be created (row index of raw file, max = num // Index of last sinogram file to be created (row index of raw file, max = num</pre>	rows-1)	
MB_per_sino_block	15000	// Number of MB of memory (MB = 1024 * 1024 bytes) allowed for one block of s1	nos	
//	Centering	Tab		
ont center	л	// A = don't center: 1 = 1 nass: 2 = 2 nass: 3 = 2 nass from nrevious file: A	= manual	
		Ln 45. Col 4 100% W	(indows (CRLF) UTF-8	

Recon Overview

 Tutorial for running aRTist data through CT Workshop: <u>\\e6vault\Students\2024\aRTistRecon</u>

Step 1: Start a New Reconstruction Project

Alamos

1.1) Click New Reconstruction. This will prompt a pop-up window with the New Recon Setup information.

1.2) Select the folder containing the CT projection data you want to reconstruct.

CT Workbench V3.3.3	- 🗆 ×
Options Tools Help	
Start a new reconstruction project.	New Reconstruction
Load a Previous Reconstruction Input File	Load Recon Input
Convert/Average/Correct, Rename and Renumber Image Sequence	Image Utilities
Create a RecVol for Visualization	Create RecVol
Calibrate Digital Radiography	Calibrate DR
Image Viewer	Viewer
Cleanup Project Files	Cleanup Project
C:\Users\382154\AppData\Local\Programs\LANL\Recon C	T Workbench\V3.3.3

8.7) Change the Input Type to FlashCT.

8.8) Click Don't calibrate - input files in working dir.

Using the Tutorial: Selecting Recon Settings

• Can either run Recon "from scratch"

• Or edit the ReconInput.txt file and re-run the final reconstruction step

• Example: Account for a vertical beam offset and iterate from -5 mm to +5 mm.

Actual offset: -5 mm

+5 mm

Using the Tutorial: Selecting Recon Settings

Can also reconstruct specific slices

Actual offset: -5 mm

Using the Tutorial: Analyzing Rec Volumes

- Packages:
 - Pillow E
 - NDT image toolkit
 - Matplotlib
 - OpenCV

- E1695 analyses:
 - Edge Response Function (ERF)
 - Line Spread Function (LSF)
 - Modulation Transfer Function (MTF)
 - MTF₁₀

Using the Tutorial: Analyzing Rec Volumes

- Compare different scans quantitatively with:
 - Max/mean value plot
 - Mirrored plot
 - Cross section plot
 - Finding fins

Find fins on different scans and compare qualitatively with colored images •

> Slice 1000 (top fin for 0 deg tilt): (top fin for 10 deg tilt):

Out-of-plane tilt: 0 deg

Out-of-plane tilt: 10 deg

FinsReduxPhantomTilt10Scan

FinsReduxPhantomBaselineScan

Slice 1011

Slice 1011

FinsReduxPhantomTilt10Scan

Find fins on different scans and compare qualitatively with colored images •

> Slice 1000 (top fin for 0 deg tilt): (top fin for 10 deg tilt):

FinsReduxPhantomBaselineScan

Out-of-plane tilt: 0 deg

Slice 1000

Slice 1011

• Account for different offsets and compare qualitatively with gifs

Reconstructions from bottom to top

• Morph to show same slice with varying levels of artifact intensity

Challenges Faced Along the Way

- Roadblocks
 - Updating aRTist version for automation
 - aRTist settings
 - Wi-Fi troubles
 - Broken card reader
 - Covid
 - Love/hate relationship with AskIT
 - Love/hate relationship with remote work
- aRTist quirks there are many!
 - List of helpful hints so you don't have to struggle like I did
 - In my git repo: <u>https://git.lanl.gov/e-6/members/students/sarahglomski</u>
- We made it! I am very grateful to Matt and Shannon for their support and flexibility throughout this project.

Future Work

- Creating more example artifacts using the existing Artifacts Tutorial
- Further developing the Artifacts Tutorial
 - Turn the Jupyter notebook into an interactive training program
 - Add a GUI with example problems to work through
 - Use examples of both extreme and subtle artifacts
 - Show how combinations of artifacts interact

Thank you! Questions?

- School email: <u>sarah.glomski@duke.edu</u>
- Personal email: <u>sarah.glom52@gmail.com</u>
- Personal phone: 480-340-3068
- Git repo: <u>https://git.lanl.gov/e-6/members/students/sarahglomski</u>

