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Introduction Classification Methods Discussion and Future Work
Head Injury Binary Classification Task Advanced Classification Task Discussion
* Football athletes are d.ispropo.rtionately 5 classes. 4l | . The performance. of .the ML model in comparison to
affected by head injuries, making up 12.8% ' 2 e . CHASSES. impact non-impact walking simpler methods indicates that a more complex model
of all sports-related head trauma 1and 19.4% | Thresholding Algorithms Machine 1earning may be needed. o
of all sports-related concussions ', vl DA on ncummyhed * 5algorithms were developed—each with a different * Grad-CAM was used to create heatmaps of relevant * Implementing out-of-set classification should be the next

* Wearable sensors, such as the Data Acquisition System for

e . . . . . step towards increasing model accuracy.
Head Response (DASHR), can be used to characterize head threshold(s) that was optimized with respect to accuracy. features during the following experiments:

* Currently, these classifiers could help to reduce the

. . . . - | 11 - 1) The length of the input dat led 1 . . . .. .
impact exposure (HIE) and in jury by recordi ng the head’s L Lower bound hnear accelerat}on threshold (LB LLAT) ) The ength o ¢ Inpu da a was varied from 100 | 2 flation of HIE and suppott improve J injury ok
near acceleration and rotational velocity dutine activit . Uppet bound hnear. acceleration threshold (UB LAT) ms to 2100 ms to determine the effects of overtitting. development

Y S > iil. Lower bound duration threshold (LB DT) 2) The kernel size was varied from 5 to 11 to determine '

* The high prevalence of false positives in recorded head v. Combined IB LAT and IB DT * However, with a maximum accuracy of 92.5%, the false

the effects of model scope.

impact data means that data processing is critical to drawing v. Combined UB LAT and I.B DT 3) The number of feature maps was varied from 128 to positive rate (FPR) 1s still higher than ideal. The lower the
accurate conclusions about athletic exposure and injury risk.? e The aloorith . . b . PR, the most accurately injury risk curves can be created
Classifiers gorithms were tested on 1) synulated data and 256 to determine the effects of model complemty. to quantify the HIE in high school football
. . . 2) field data to compare the optimized threshold values. ¢ Grad-CAM revealed that the MI. model sometimes . Anplvi Y bined LBgL AT and I.B DT. hreshold
* Some researchers use basic thresholding algorithms to Machine T earning overfit to features that were specific to the simulated pplylng a combined LB an thresholder to
eliminate false positive impacts. 10 Gs 1s a common linear 3 N . dataset. Weargble sensing .df?VlCGS in the field would b? a simple
acceleration threshold (LAT) for wearable sensors.2 * A 1D-CNN (referred to as the ML model”) was tgamed S N o o solution to lowering the number of false positive events.
* 1-D Convolutional Neural Networks (CNNs) are a common on simulated data, as had been pr§v1ously achieved”. I f\ sssss o Limitations
machine learning (ML) model used to classify temporal * The ML model was tes.ted. on 1) simulated data and. I e e * Both training sets were unbalanced and had drastically
activity data, such as valid and invalid head impacts. One 2) field data to determine 1f the dataset could be reliably o o ,\ sssssssss o different compositions, which skewed the accuracy of the
such model had been developed previously for this task. augmented. I o | classifiers and subsequent comparisons between them.
* Gradient—weighted Class Activation Mapping (Grad—CAM) Aﬂ&lﬁ/&l& Fig 3. Correct heatmap fjger(msgimulated valid impact. Fig 4. Cotrect heatma;e;;r simulated walking, Future Work
can be used to identify which features of the data the model * Recetver operating characteristic (ROC) curves were R e . R st S e Tmbrovements to the model should be made cautiousl
has deemed to be relevant during the decision-making generated for each classifier. /L«__ MWW’\ \W Witi the risk of overfitting increasing as the model ¥
prOCEss. PPt posive. TN troe nemtve, e meeve, | Classification Metrics: o [ s o= S — accuracy approaches 100%.
Predicted _FP Jvk/ - * The addition of out-of-set classification would allow
Data Collect: Valid impact | Fiighg sonmpact FPR = oorm o L o | o h o f - . researchers to discard outliers, creating a pipeline for
aATa oliection iz;l; it -~ =i TPR = TPZPFN ig 5. ncoirrect catmap for simulated valid impact. ig 6. Incorrect heatmap for simulated walking; more reliable data.
: Actual [ p _ TP+TN * A multi-headed model (k=5 and k=11) was developed * Implementing multi-class classification may improve the
Simulated Data ron- i N Accuracy = TN rrprEn based on insights from Grad-CAM. results for the advanced classification task.
* The Data Acquisition System for Head Response (DASHR) et

* Grad-CAM should be used to further improve the
transparency of the model’s confidence in decision

Results making, and researchers could use video footage to
reexamine the classifications made with low confidence.

* Addition of more data—both to the existing classes and

was used to record linear acceleration and rotational velocity
data for 4 activity classes:
@ Valid impact (post-mortem human surrogate drop tests)

® High-o non-impact (flicking, re-seating the DASHR)

9 Running/walking Binary Classification Performance Grad-CAM Insights new classes—for increased model robustness and
Standing still * Accuracy and ROC curves were plotted for each of the ¢ Grad-CAM could be used to diagnose both specific advanced activity classification. This includes low-g
" 6 classifiers, as shown in Figures 7 and 8 below. ' ' iq ' : S - : -
Composition: > g classification decisions and general trends in the dataset. behavioral activities associated with head impact.

* Other moderately complex classifiers (ie. Support Vector
Machine) and machine learning models (te. General
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100 4 = :imulated Data | 100 Table 2. Mean TPR for different kernel sizes and number of feature maps

Q)

Linear Acceleration for Valid Impact

Q.
Left Earpiece (g)

in Left Earpiece ({

Accuracy (%)

Linear Acceleration

—— LB LAT & LB DT

4000 |- size Class 1 Class 2 Class 1 Class 2

4000 - / “x“ A~ N ~ —— UB LAT & LB DT

\ ‘,4;:"\; [ ~ A \_ / \ . - T T T T T T
2000 - I\ \«{\ 2000 |- f VAN \ /\ —— . LB LAT UB LAT LB DT LB LAT UB LAT ML Model 0 20 40 60 80 100 0-

0 0 0 0
M NN —— LBlar  UBLAT o positive tove 2100 200 100 100 (centered) 30 (centered) 63.9% 95.8% 75.0% 99.3%
A v/ \

Velocity in Left Earpiece (deg/s)

Acknowledgements & References

Q
Rotational Velocity in Left Earpiece (deg/s) L Accelerat

/> h b T Fig 7. Accuacy for cach classifer for simulated and field data, Fi 5. ROC carve for each classifier for simulated data Fig 9. Accuracy fo ot nput duraions e e , , |
P e e w e w e 0w e w0 @ % e % w o om % w We acknowledge Duke Bass Connections - Brain & Society,
Fig 2. Lincar acceleration and rotational velocity over time for a valid impact (frontal drop test from 50 cm) ief) and high-g * The combined LB LAT & LLB DT had the highest * Reducing the input length from 2100 ms to 100 ms Duke Institute for Brain Sciences (DIBS), Duke Pratt School of
nonimpact (ficking DASHD (reh accuracy at 92.5%. This outperformed the ML model, reduced this effect, as shown in Figure 9, but led to a Engineering, and the Department of Biomedical Engineering.
Field Data which had an accuracy of 89.5%. TPR of 25.3% for running/walking, as shown in Table 2. References
« The DASHR was used to record kinematic activity data for . Th; 1;163 g/T had the highest area under the curve (AUC) e Eﬁcreas;nglg, t}%eplifrfnel size fror/n 5111:{(1? 11thei566do /mcrease l. Gaw,C.E. et al.., (2016). Emergency department V.iS.itS for head
high school football players during practices. ) ‘%’E - do. oo b deasticalle difF . C}f mode Sh (E)f fuf}fﬂéng walking S'd -070. injury in the United States. BMC Emergency Medm.me, }6(1).
* Player activities were tracked and categorized into the same ¢ two ¢ atasetshg ;Ol 51 rlzlstlc.a Y fl Ereﬂt q . a.r}gmg I efr;um erccl) | cature mapsTPlR not 2. Wu» L.C.et al.? (2021). Head. Impact sensor triggering bias
4 classes. These data serve as verified ground truths %(ilmpos1t1ons, which led to skewing of the accuracy data. significantly affect model accuracy or - introduced by linear acceleration thresholding. Annals of
a0 . e uneven dataset composition led to skewed accuracy T.he multiheaded mod.el. did not perform significantly Biomedical Engineering, 49(12), 3189-3199.
Composition: for both datasets, but especially for the field data. differently than the original M. model. 3. Liu, P., (2021). Graduation With Departmental Distinction Thesis.




