
Binary Classification Task 
 

2 classes:
 
Thresholding Algorithms
• 5 algorithms were developed—each with a different 

threshold(s) that was optimized with respect to accuracy. 

• The algorithms were tested on 1) simulated data and 
2) field data to compare the optimized threshold values. 

Machine Learning
• A 1D-CNN (referred to as the “ML model”) was trained 

on simulated data, as had been previously achieved2. 
• The ML model was tested on 1) simulated data and 

2) field data to determine if  the dataset could be reliably 
augmented. 

Analysis
• Receiver operating characteristic (ROC) curves were 

generated for each classifier.

Simulated Data
• The Data Acquisition System for Head Response (DASHR) 

was used to record linear acceleration and rotational velocity 
data for 4 activity classes: 

        Valid impact (post-mortem human surrogate drop tests)
        High-g non-impact (flicking, re-seating the DASHR)
        Running/walking
              Standing still
 
    Composition:

Field Data
• The DASHR was used to record kinematic activity data for 

high school football players during practices.
• Player activities were tracked and categorized into the same 

4 classes. These data serve as verified ground truths. 
 
    Composition:
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Head Injury 
• Football athletes are disproportionately 

affected by head injuries, making up 12.8% 
of  all sports-related head trauma and 19.4%
 of  all sports-related concussions1. 

• Wearable sensors, such as the Data Acquisition System for 
Head Response (DASHR), can be used to characterize head 
impact exposure (HIE) and injury by recording the head’s 
linear acceleration and rotational velocity during activity. 

• The high prevalence of  false positives in recorded head 
impact data means that data processing is critical to drawing 
accurate conclusions about athletic exposure and injury risk.2 

Classifiers
• Some researchers use basic thresholding algorithms to 

eliminate false positive impacts. 10 Gs is a common linear 
acceleration threshold (LAT) for wearable sensors.2

• 1-D Convolutional Neural Networks (CNNs) are a common 
machine learning (ML) model used to classify temporal 
activity data, such as valid and invalid head impacts. One 
such model had been developed previously for this task. 

• Gradient-weighted Class Activation Mapping (Grad-CAM) 
can be used to identify which features of  the data the model 
has deemed to be relevant during the decision-making 
process.

Discussion
• The performance of  the ML model in comparison to 

simpler methods indicates that a more complex model 
may be needed. 

• Implementing out-of-set classification should be the next 
step towards increasing model accuracy.

• Currently, these classifiers could help to reduce the 
inflation of  HIE and support improved injury risk 
development. 

• However, with a maximum accuracy of  92.5%, the false 
positive rate (FPR) is still higher than ideal. The lower the 
FPR, the most accurately injury risk curves can be created 
to quantify the HIE in high school football.

• Applying a combined LB LAT and LB DT thresholder to 
wearable sensing devices in the field would be a simple 
solution to lowering the number of  false positive events.

Limitations
• Both training sets were unbalanced and had drastically 

different compositions, which skewed the accuracy of  the 
classifiers and subsequent comparisons between them.

Future Work
• Improvements to the model should be made cautiously, 

with the risk of  overfitting increasing as the model 
accuracy approaches 100%. 

• The addition of  out-of-set classification would allow 
researchers to discard outliers, creating a pipeline for 
more reliable data.

• Implementing multi-class classification may improve the 
results for the advanced classification task.

• Grad-CAM should be used to further improve the 
transparency of  the model’s confidence in decision 
making, and researchers could use video footage to 
reexamine the classifications made with low confidence. 

• Addition of  more data—both to the existing classes and 
new classes—for increased model robustness and 
advanced activity classification. This includes low-g 
behavioral activities associated with head impact. 

• Other moderately complex classifiers (ie. Support Vector 
Machine) and machine learning models (ie. General 
Adversarial Network, or GAN, Long Short-Term Memory 
model, or LSTM) should be explored in parallel. 
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Advanced Classification Task
 

 4 classes:
 
Machine Learning
• Grad-CAM was used to create heatmaps of  relevant 

features during the following experiments:
      1) The length of  the input data was varied from 100
          ms to 2100 ms to determine the effects of  overfitting. 
      2) The kernel size was varied from 5 to 11 to determine
          the effects of  model scope. 
      3) The number of  feature maps was varied from 128 to
          256 to determine the effects of  model complexity.
• Grad-CAM revealed that the ML model sometimes 

overfit to features that were specific to the simulated 
dataset.

• A multi-headed model (k=5 and k=11) was developed 
based on insights from Grad-CAM.

Binary Classification Performance
• Accuracy and ROC curves were plotted for each of  the

6 classifiers, as shown in Figures 7 and 8 below.

• The combined LB LAT & LB DT had the highest 
accuracy at 92.5%. This outperformed the ML model, 
which had an accuracy of  89.5%. 

• The LB DT had the highest area under the curve (AUC) 
with 76.4%.

• The two datasets also had drastically different 
compositions, which led to skewing of  the accuracy data. 

• The uneven dataset composition led to skewed accuracy 
for both datasets, but especially for the field data. 

Grad-CAM Insights
• Grad-CAM could be used to diagnose both specific 

classification decisions and general trends in the dataset.

• Reducing the input length from 2100 ms to 100 ms 
reduced this effect, as shown in Figure 9, but led to a 
TPR of  25.3% for running/walking, as shown in Table 2.

• Increasing the kernel size from 5 to 11 helped increase 
the model’s TPR for running/walking to 44.6%. 

• Changing the number of  feature maps did not 
significantly affect model accuracy or TPR.

• The multiheaded model did not perform significantly 
differently than the original ML model.

Fig 2. Linear acceleration and rotational velocity over time for a valid impact (frontal drop test from 50 cm) (left) and high-g 
non-impact (flicking DASHR) (right). 

Fig 1. DASHR on a dummy head. 
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i. Lower bound linear acceleration threshold (LB LAT)
ii. Upper bound linear acceleration threshold (UB LAT)
iii. Lower bound duration threshold (LB DT)
iv. Combined LB LAT and LB DT
v. Combined UB LAT and LB DT

Table 2. Mean TPR for different kernel sizes and number of  feature maps 
(input length=100 centered, n=10).

Number of  feature maps

128 256

Kernel 
size

5

Class 1 Class 2 Class 1 Class 2

73.3% 98.4% 78.0% 98.1%

Class 3 Class 4 Class 3 Class 4

66.2% 25.3% 81.8% 25.0%

11

Class 1 Class 2 Class 1 Class 2

63.9% 95.8% 75.0% 99.3%

Class 3 Class 4 Class 3 Class 4

55.7% 44.6% 54.9% 38.2%

Fig 3. Correct heatmap for simulated valid impact.

Fig 5. Incorrect heatmap for simulated valid impact.

Fig 4. Correct heatmap for simulated walking.

Fig 6. Incorrect heatmap for simulated walking.

Fig 7. Accuracy for each classifier for simulated and field data. Fig 8. ROC curve for each classifier for simulated data. Fig 9. Accuracy for different input durations 
for simulated data.

Classification Metrics:
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Table 1. Binary classification task outcomes, where TP=true positive, 
FP=false positive, TN=true negative, FN=false negative.
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