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I. Background  

Quantifying Head Injury in Sports  

Football is the most common organized sport to produce head injuries, making up 12.8% of all 
sports-related head injuries and 19.4% of all sports-related concussions [1]. A rise in the interest 
of sports-related concussion emerged from early neuropsychological studies, which found links 
between head impact exposure and long term cognitive function [2] [3]. It is now known that 
concussions exist on a spectrum [4], and that repeated subconcussive events may lead to long 
term neurodegeneration (CTE) [5] [6] [7] [8]. In response to this research, many governmental, 
academic, and private organizations have allocated resources to improving diagnostics [9] [10] 
[11], treatment [12] [13] [14], and legislation [15] [16] [17] in the area of sports-related brain 
injury.  

Though the exact linear and angular acceleration quantities needed to cause concussive and 
subconcussive impacts are not agreed upon, several studies have aimed to quantify them. For 
example, by reconstructing video-taped NFL concussions with a Hybrid III dummy, a mean peak 
linear acceleration of 98 ± 28 g among concussed players was able to be discerned, with a half-
sine duration of 15 ms [18]. A peak linear acceleration of 70-75 g was also suggested to delineate 
the concussions threshold for padded impacts [18]. Using the HIT System to create a large 
database of concussive (n=57) and subconcussive (n=300,977) events in football players, mean 
rotational features were also able to be discerned [19]. The average concussive impact resulted in 
a rotational acceleration of 5022 rad/s2 and rotational velocity of 22.3 rad/s, while the average 
subconcussive impact yielded a rotational acceleration of 1230 rad/s2 and rotational velocity of 
5.5 rad/s [19]. Based on this data, a 50% concussion risk criterion was determined to be a 
rotational acceleration of 6383 rad/s2 and a rotational velocity of 28.3 rad/s [19]. These injury 
risk values are useful for creating head injury risk curves [19], which help to characterize 
concussive and subconcussive impacts and inform safer design decisions. However, these values 
can easily be misinterpreted as an all-or-nothing threshold. In reality, the probability of head 
injury is non-deterministic in nature, but has been best quantified with a logarithmic spectrum.  

The heightened interest in this field has led to the development of several kinematic devices that 
record head impact data. These include devices fastened to a helmet or headband, cast within a 
mouthguard or earpiece, or attached directly to the skin [20]. It is important to consider the 
coupling mechanism of the device to the head and to consider how accurately this represents the 
kinematic loading conditions of the brain, which can be approximated as the center of gravity of 
the head [21]. It is important that this data be cautiously analyzed and interpreted in a 
biomechanical context given the effect that published research can have on public safety in 
sports.  

The Data Acquisition System for Head Response (DASHR) is an earpiece device that couples 
relatively well with the ear canal [22]. As with other devices, it measures linear acceleration and 



angular velocity with an accelerometer and gyroscope [23]. However, rather than discarding data 
that does not meet a preset linear acceleration threshold, all data is stored in the DASHR for 
analysis. Although this eliminates the possibility for real-time impact analysis, the completeness 
of the kinematic data allows for various post-processing methods to be explored. This includes 
algorithmic and machine learning techniques, which could eventually allow for a real-time 
classifier like the Stanford mouthguard [24].  

As with other sensors, the DASHR is prone to spikes in measured acceleration and rotation when 
it is handled outside the ear, re-seated in the ear canal, or even due to random glitches in the 
hardware [25]. These spikes in the vector quantities can masquerade as “impacts” in the 
kinematic data, which can lead to the over-reporting of head injury data and improper 
characterization of head impact biomechanics. One approach to combat this discrepancy is to 
cross-validate the wearables data by manually labeling the data obtained from the DASHRs in 
the players’ ears during practice. However, this process is extremely time-consuming, as it 
requires researchers to watch many hours of video footage to label the data properly [26]. Rather 
than repeating this task to process data from every athletic exposure, it would be useful to 
develop a method to accurately classify the data and remove false positive impacts in a time-
efficient manner.  

Thresholding Algorithms 

Thresholding is a common technique for excluding data that is likely erroneous [25][27]. In 
theory, if the natural distribution of the data is well understood, thresholds for improbable data 
could be set with reasonable confidence. Oftentimes, however, these thresholds are set based on 
an incomplete understanding of head injury biomechanics, which can lead to bias in the dataset 
[27]. In the context of head injury, many wearable sensors have a linear acceleration threshold 
that must be exceeded before data collection can occur. These linear acceleration thresholds 
(LATs) are not agreed upon in the literature, but are often set to 10 Gs [25][27] as a lower bound 
for what is considered a head impact.  

By adding these lower bound thresholds, some of the low-g data is excluded from the dataset. To 
what extent this is valid depends on the goal of the data analysis. For the purposes of quantifying 
head injury accurately, it is important to consider how many of the excluded data are actually 
head impacts (ie. false negatives), versus how many of the included data are still non-impacts (ie. 
false positives) [28].  

The true positive rate (TPR) and false positive rate (FPR) are metrics used to describe the 
efficacy of a classifier, which can be as simple as a thresholding algorithm. Their mathematical 
definitions are shown below, where TP is the number of true positives, TN is true negatives, FP 
is false negatives, and FN is false negatives. In the context of head injury, the FPR is of great 
concern. 



𝑇𝑃𝑅	 = 	
𝑇𝑃
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𝐹𝑃

𝐹𝑃	 + 	𝑇𝑁 

It has been established that high-g non-impacts (caused by glitches or touching the device, for 
example) generally have lower peak durations than true impacts, and oftentimes have higher 
peak magnitudes [29]. Thus, if these high-g non-impacts are falsely included in the 
characterization of head impacts (which contributes to the FPR), there will not only be a higher 
number of recorded impacts, but also a higher average magnitude per impact. Therefore, to 
achieve an accurate representation of the typical head impact, it is important to try to minimize 
the FPR with the classifiers that are being developed.  

Given the simplicity of thresholding scripts, it is unlikely that these classifiers will ever be 
perfect (ie. a TPR of 100% and an FPR of 0%). In an attempt to further minimize the FPR, more 
complex techniques can be applied to this classification task.  

Machine Learning  

Machine learning models have been developed to classify head impact data from football players 
[24] [26] [25]. These models were trained on kinematic data from other wearables, such as the 
Stanford Mouthguard. The purpose of this research is to develop a similar method for pre-
processing raw DASHR data and feeding it into a machine learning model to distinguish between 
valid and invalid head impact data. Valid impact data is defined to be a true head impact, 
whereas invalid data includes high-G non-impact data that would arise from turning the DASHR 
on/off or situating/adjusting the DASHR in the ear. Other common activities such as 
running/walking and standing still have been designated their own output classes so as to aid in 
the overall labeling process.  

Recent research has been done in the broader area of human activity tracking using advanced 
models [30][31][32]. One example is the 1D CNN-LSTM, which combines the feature 
recognition of a Convolutional Neural Network (CNN) with the longitudinal strengths of a Long 
Short Term Memory model (LSTM). With a fully-labeled set of practice data, more advanced 
models can be developed to find long-term trends that relate head impacts to behavioral 
activities. These models could provide insight into how certain variables, such as the player 
position, play called, and activity performed all lead into the risk of head impact and injury.  

Machine learning relies on the existence of extensive datasets which allow the model to find 
subtle trends over time and revise its accuracy through an iterative process. A robust dataset is 
therefore of ultimate importance in training and testing machine learning models, and must be 
sufficiently representative of the target population. Any level of bias and skewing could lead to 
overfitting of the model to the training set, which limits the model’s generalizability and 



accuracy beyond the training set. When testing the model, a higher accuracy is clearly preferable, 
but a model with 100% accuracy would not be ideal as it would almost certainly be overfit to the 
training set, and would therefore have limited generalizability.  

Another way of examining the extent to which a model is skewed by the dataset is to create a 
randomized model, which is trained on a training set with randomized label conditions, then 
tested on a test set with correct labels. For a model with a balanced dataset, the accuracy should 
statistically be around 25% (or 1 in 4 for the 4 classes). Datasets that yield a higher performance 
with randomized labels are inherently flawed in that they are biased to perform better, and so 
their reported accuracy from a fully-trained model will be artificially inflated.  

DASHR Impact Classifier 

Previous work has been made to develop a CNN that classifies DASHR data into the 4 classes: 
valid head impact, high-g non-impact, running/walking, and standing still [28]. The model was 
trained and tested using simulated data, as explained later in the methods section. Simulated data 
has been used in the literature to train models as a proof of concept prior to introducing field 
data, which is oftentimes more complex [24]. The reported accuracy of Liu’s model was 84.6% ± 
2.0% (n=10), which appears to be a decent level of accuracy, and is not high enough to indicate 
obvious overfitting. However, when trained on a randomized training set, the model achieved an 
accuracy of 62.3% ± 0.2%, which is well above the expected 25% for a perfectly balanced 
dataset. Part of this inflated performance is likely due to the fact that the dataset is heavily 
skewed to include more valid head impacts than any other condition, as shown in Figure 1.  

 

Figure 1. Distribution of the simulated dataset across the 4 classes.  

With an inherently biased dataset, the reported accuracy is no longer an objective metric for 
evaluating the performance of the fully-trained CNN. A more in-depth analysis is required to 
determine how the model is achieving this level of accuracy, and whether the features it chooses 
to focus on during its predictions are correct or irrelevant to the context of this problem. This 



involves opening the black box of machine learning to visualize results in an easily-interpretable 
manner for the human.  

Opening the Black Box of Machine Learning  

Since the creation of machine learning techniques, there has been significant interest in the 
interpretability of the results. Because machine learning is often intended to surpass human 
classifying capabilities, it provides an opportunity for researchers to learn from the model rather 
than the other way around. However, there exists a balance between the interpretability of the 
results and the faithfulness to the model’s complexity. Viewing a multi-dimensional matrix of 
tensors is not easily interpretable, while viewing only the final class predictions is unfaithful to 
the model’s complexity. A line must be drawn defining how much explanation is required for 
humans to make sense of the results, and many attempts at such a method have been made.  

Selvaraju et al. (2017) introduced Gradient-weighted Class Activation Mapping (Grad-CAM) as 
an effective way to visualize CNN predictions in the context of input data, allowing a peek into 
the black box of machine learning [33]. Grad-CAM is a useful technique for identifying bias 
within a dataset and failure modes within a model. Although the technique was originally 
developed for 2D CNN models (image classifiers), the same principle can be applied to 1D CNN 
models (time-series classifiers).  

Grad-CAM relies on the convolutional feature maps to provide insight into which features were 
most prominent in the time-series input and which features were used for predicting the output 
class. By generating a heatmap of relative importance of the input data, the prediction process 
can be more easily interpreted by the human.  

Another topic of debate is the trustworthiness of the model’s decision-making process. If there is 
no easily-interpretable explanation for why a model makes a certain prediction, does this 
discount the model’s results? Selvaraju et al. (2017) discuss the value of Grad-CAM in the 
context of increasing the user’s trust in the model to make the correct image classification based 
on the explanation it gives [33]. This, however, relies on the expertise of the user in his/her own 
visual classification technique, or in other words, having full confidence that he/she knows the 
ground truth label of the image. With less intuitive classification tasks like temporal kinematic 
data, it is important to think critically about the interpretability of the results, and whether this 
should inform the validity of the model’s results.  

  



II. Methodology  

Simulated Data Collection   

Liu had previously created a simulated dataset to serve as a preliminary CNN training set [28]. 
Data was simulated for each of the 4 conditions listed below:  

Table 1. Classifications for CNN dataset.  

Class Number  Activity 

0 High-g non-impacts 

1 Valid head impacts 

2 Standing still  

3 Running/walking  

 

To simulate the valid impact data, post-mortem human surrogate (PMHS) heads were used in 
drop tests inside lacrosse helmets. The drop tests were performed on 2 PMHS for 7 common 
impact locations and 3 drop heights, as shown in Table 2. 4 repeat trials were performed for each 
combination of impact location and drop height. 2 DASHRs were placed in each earpiece and set 
to record linear acceleration and rotational velocity at a sampling frequency of 1000 Hz.  

Table 2. Drop test conditions for helmeted PMHS heads. 

Impact Location Drop Height 

Facemask 

 
8 cm 

Frontal 

Frontal oblique right  
50 cm 



Parietal left 

Parietal right 

 
90 cm 

Occipital 

Vertex 

 

Invalid impacts, which include classes 0, 2, and 3, were simulated by a study author performing 
activities with the DASHR in a controlled environment. Running/walking and standing still data 
were simulated while wearing the DASHR. High-g non-impact data consisted of flicking, 
pressing, and re-situating the DASHR in the ear while either standing still or walking to simulate 
background noise.  

Labeled Field Data  

High school football practices were attended and DASHRs were distributed to the appropriate 
players. Throughout the practice, a handful of players were watched at any given time and their 
activities were recorded and timestamped.  

The DASHR data was downloaded and converted so that it was prepared for analysis. 
Timestamps were aligned by inputting the start time when the DASHRs were turned on, and 
performing a visual verification that the resultant accelerometer trend matched the expected data 
given the time stamped activities. The resulting dataset had the distribution shown in Figure 2. 



 

Figure 2. Distribution of the field dataset across the 4 classes.  

Preprocessing Techniques 

Raw DASHR data exists in the form of binary files, which must first be converted to MATLAB 
workspace variables. Once imported into MATLAB, the raw, continuous data can be plotted and 
examined using plotfullfig. MATLAB scripts were used to set linear acceleration thresholds, 
which isolated segments of data in which the threshold was met or exceeded. The duration of the 
impact was determined, and also had a threshold. Temperature and light were also checked to 
determine whether the DASHR had a high chance of being coupled to the ear.  

Using an app developed by a Duke alumni, subsets of the DASHR data were extracted and 
placed into individual workspace variables–one for each impact. The option to specify linear 
acceleration threshold and linear acceleration spike duration allow for specific types of events to 
be isolated.  

Since 10 Gs is a common linear acceleration trigger set on triggered kinematic recording devices, 
this was selected as the linear acceleration threshold (LAT) for impact data and high-G non-
impact data. This LAT was chosen so that all isolated events, whether true impacts or false 
positives, would simulate those that are blindly extracted from practice data. This was done to 
take advantage of the fact that thresholding will likely be done prior to feeding real test data into 
the model. The data stored in the dataset was cropped such that 2000 ms before the peak in linear 
acceleration and 100 ms after the peak were included in the dataset.  

Since it is known that impacts last a relatively long time, and many flukes in data collection 
occur as spikes over short periods of time, a linear acceleration spike duration threshold was set 
to 3 ms. It is important to keep thresholding procedures consistent between the training set data 



and the standard preprocessing procedure so that the training set accurately represents the data 
that will be fed into the model during testing.  

Basic Thresholding Algorithms 

5 basic thresholding algorithms were created to attempt a binary classification task between 
Class 0 (high-g non-impacts) and Class 1 (valid head impacts). These algorithms were developed 
using either an upper bound or lower bound for peak linear acceleration, peak duration, or a 
combination of these characteristics. The algorithms were tested on both simulated and field data 
to determine if there were differences in performance between these two datasets.  

For each thresholding algorithm, the threshold was varied to iterate over a sufficient range of 
values, and the thresholder accuracy was calculated for each value to determine which threshold 
is optimal. These optimal thresholds, along with the range of values tested, are shown for each 
thresholding algorithm in Table 3.  

Table 3. Parameters and optimal thresholds for each of the 5 thresholding algorithms 
developed and tested on simulated and field data.  

Number Thresholder Tested Value 
Range 

Optimal 
Threshold Value 
(Simulated Data) 

Optimal 
Threshold Value 

(Field Data) 

1 

Lower bound 
linear 

acceleration 
threshold (LB 

LAT) 

10 Gs - 350 Gs 12.7 Gs 154.8 Gs 

2 

Upper bound 
linear 

acceleration 
threshold (UB 

LAT) 

10 Gs - 350 Gs 158.2 Gs 10.0 Gs 

3 

Lower bound 
duration 

threshold (LB 
DT) 

2 ms - 100 ms 7.0 Gs 15.0 ms 



4 
Combined LB 

LAT and LB DT 
10 Gs - 350 Gs, 
2 ms - 100 ms 

12.1 Gs, 
11.0 ms 

12.1 Gs, 
96.0 ms 

5 
Combined UB 

LAT and LB DT 
10 Gs - 350 Gs, 
2 ms - 100 ms 

159.6 Gs, 
7.2 ms 

10.0 Gs, 
3.0 ms 

 

In the case of the binary classification task, these classifiers will produce 1 of possible 4 
outcomes per input. These outcomes are shown in Table 4 below.  

Table 4. Binary classification outcomes, where TP is true positive, TN is true negative, FP is 
false positive, and FN is false negative. 

 
Predicted 

High-g non-impact Valid head impact 

Actual  
High-g non-impact TN FP 

Valid head impact FN TP 

 

The 5 classifiers were scored according to overall accuracy, which is defined below, where TP is 
the number of true positives, TN is true negatives, FP is false positives, and FN is false 
negatives.  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦	 = 	
𝑇𝑃	 + 	𝑇𝑁

𝑇𝑃	 + 	𝑇𝑁	 + 	𝐹𝑃	 + 	𝐹𝑁 

It is important to note that overall accuracy is not a complete measure of a classifier’s efficacy. 
Receiver operating characteristic (ROC) curves were also generated to visualize the relationship 
between the TPR and FPR for each classifier. A perfect classifier will have 100% TPR and 0% 
FPR, but this is not realistic given the dataset. In practice, the best classifiers are those that show 
a steep rise in TPR for initial increases in FPR, followed by a plateau in TPR for subsequent 
increases in FPR. The area under the curve (AUC) for each ROC curve provides insight into how 
well the ROC curve follows the ideal shape, with a perfect ROC curve achieving an AUC of 1. 
An AUC of 0.5 represents a non-discriminating classifier, which has a linear ROC curve and 
cannot effectively classify between the two groups.  

 



Grad-CAM 

The principle of operation behind Grad-CAM is as follows:  

1. A CNN is fully trained on a dataset of time-series data. The CNN is composed of several 
layers, including an input layer, 2 convolutional layers, a dropout layer, a max pooling 
layer, a flattening layer, and 2 dense layers. It accepts a series of linear acceleration and 
rotational velocity data (stacked) and outputs a single classification between classes 0 and 
3. 

2. A separate model is constructed, copying the fully-trained input layer and 2 convolutional 
layers from the original CNN. This model is called the Last Convolutional Layer model 
because it accepts the same input as the CNN, but outputs several convolutional feature 
maps that indicate which features are strongest in the input data, and where they occur. 
The number of convolutional feature maps, f, determines the number of features the 
model can look for.  

3. The same time-series input is fed into both the CNN and the Last Convolutional Layer 
model. Both the predicted class and the convolutional feature maps are recorded while a 
function, tf.GradientTape, records extra information on the trainable backend variables 
for further analysis.  

4. A function, tf.gradient, uses the information stored by GradientTape to calculate the 
gradient, or derivative, of the predicted class tensor with respect to the convolutional 
feature maps.  

5. A weight for each channel of the gradient is calculated using the tf.reduce_mean function 
to take the global average pooling (GAP) for each convolutional feature map. Then, 
ReLU activation is used to determine which features were most relevant to the prediction 
process.  

6. The gradient data is then normalized and reshaped such that it provides a heatmap of 
relative importance to the prediction process. If the input data is t time points in length 
and each convolutional layer has a kernel size k, the length of the heatmap will be t-2*(k-
1). This is slightly shorter than the input data because data is lost in a convolution on the 
edges of the input. The heatmap can be viewed by itself as a relative indicator of 
relevance over time, or it can be layered over the input data to provide specific insight 
into which features were relevant in the prediction process.  

The following snippet of code was used to visualize the heatmap of relevance over time.  

def grad_cam(last_conv_model, input_data, class_index, 

print_grads=False): 

 # Compute the gradients of the class score with respect to the 

feature maps 

 with tf.GradientTape() as tape: 



     # tf will now start recording tensor values for automatic 

differentiation 

     last_conv_output, preds = last_conv_model(input_data) # shapes 

(1, t-2*(k-1), f), (4,) 

     class_output = preds[:, class_index] # shape (1,) 

 if class_index != np.argmax(preds): 

   print('Error: Prediction class index is wrong.') 

   print(class_index, np.argmax(preds)) 

 grads = tape.gradient(class_output, last_conv_output) 

 if print_grads: 

   print(grads) 

 # Apply global average pooling to the gradients 

 pooled_grads = tf.reduce_mean(grads, axis=(0, 1)) 

 last_conv_output = last_conv_output[0] 

 heatmap = last_conv_output @ pooled_grads[..., tf.newaxis] 

 heatmap = tf.squeeze(heatmap) 

 heatmap = tf.maximum(heatmap, 0)/tf.math.reduce_max(heatmap) 

 return heatmap.numpy() 

Grad-CAM often attempts to derive gradients and ends up with all 0s or all nans. This is due to 
the numerical instability of the gradient calculation, which utilizes the function tf.norm() to 
normalize the data. When tf.norm() attempts to divide 0 by 0, it returns nan instead of 1. Thus, 
several of the gradients were not calculable and were therefore excluded from the analysis.  

An early hypothesis for the non-real gradients was that they occurred when the model did not 
particularly show a strong preference towards the predicted class relative to the other classes. 
However, this is likely not the case due to the high occurrence rate of this issue across all classes, 
and regardless of prediction correctness or model accuracy. There does seem to be high 
variability in the occurrence of this issue from model to model. In some models, nearly every 
gradient is non-real, whereas in others, all gradients are real. There does not appear to be a 



pattern to the non-real gradient problem, however it should be examined more thoroughly with 
the implementation of stabilized gradient calculation functions.  

Experimental Setup  

There are two main questions that will be tested with the use of Grad-CAM on the current CNN 
dataset.  

Experiment 1: How does cropping the input to exclude/include certain features affect the overall 
accuracy of the model?  

In the GWDD report by Patrick Liu, it is stated that the time-series input is 2100 ms in length, 
which would include the full length of the data stored in the training set [28]. However, certain 
features of the simulated data make it highly predictable, such as the long pause in movement 
followed by the small uptick in rotational velocity that can be seen in the helmeted drop tests 
used for the valid impact condition, as shown in Figure 3.  

 

Figure 3. Example plot of linear acceleration and rotational velocity over 2100 ms for Class 1.  

These repetitive, artificial features are a result of the testing environment and pre-processing 
techniques used, and are not representative of the target environment. It is hypothesized that 
cropping out these features will reduce the accuracy of the model, indicating that the model was 
focusing on features that are irrelevant to the target population.  

Liu previously explored the idea of cropping the 2100 ms dataset to only include that last 100 
ms, as shown in Figure 4 [28]. This would, in theory, eliminate the repetitive features described 
above. However, because the pre-processing technique crops every input to have the peak 
acceleration occur at 2000 ms, the first half of the peak is cropped out in this scenario. Plus, with 
two convolutional layers that each reduce the length of the time-series data by k-1, this cropping 



technique would eliminate some seemingly very important features for classification. Thus, it is 
hypothesized that this version of the dataset will result in a low performance due to the loss of 
pertinent information.  

 

Figure 4. Example plot of linear acceleration and rotational velocity over 100 ms for Class 1.  

The idea of centering and zooming in on the data is then explored, with 100 ms and 50 ms 
subsets of the data centered around the peak accelerations. An 2100 ms example of a high-g non-
impact is shown in Figure 5 below. Some of the high-g non-impact samples have long peak 
durations that last more than 50 ms, as shown in Figure 6 for the 50 ms cropped and centered 
condition, which crops out the latter end of the peak. It is hypothesized that without a full view 
of this information, the model will perform worse, and so the accuracy of the 50 ms model will 
be lower than that of the 100 ms model.  



 

Figure 5. Example plot of linear acceleration and rotational velocity over 2100 ms for Class 0.  

 

Figure 6. Example plot of linear acceleration and rotational velocity over 50 ms (centered) for 
Class 0.  

The running/walking data is often periodic in shape, with a period of ~350 ms, as shown below 
in Figure 7. Figure 8 shows a 100 ms cropping of this same input, where the periodic nature is no 
longer seen. Because these periods are longer than the cropped input lengths, it is hypothesized 
that the accuracy of the model will be lower with respect to class 3 as the length of the input 
decreases.  



 

Figure 7. Example plot of linear acceleration and rotational velocity over 2100 ms for Class 3.  

 

Figure 8. Example plot of linear acceleration and rotational velocity over 100 ms for Class 3.  

Class 2 is generally composed of random noise, as shown in Figure 9. Cropping this to 100 ms 
yields an input similar to Figure 10, where the linear acceleration still looks random, but the 
rotational velocity appears to have a slight trend that the model may mistake for the feature of 
another class.  



 

Figure 9. Example plot of linear acceleration and rotational velocity over 2100 ms for Class 2.  

 

Figure 10. Example plot of linear acceleration and rotational velocity over 100 ms for Class 2.  

Experiment 2: How do the kernel size and number of convolutional feature maps affect the 
accuracy of the model? 

After determining the optimal input data length, the kernel size will be varied from a standard 
size of 5 to a large size of 11, as previously explored by Liu [28]. Generally, larger kernel sizes 
are used for identifying features with longer periods, and are worse at identifying short features. 
The number of feature maps outputted by the convolutional layers of the CNN were also varied 
from a standard size of 128 to a large size of 256. More feature maps generally means that the 
model can scan for more features, but comes at the cost of higher computational requirements.  



Because the dataset is composed of both short features (ie. a head impact) and long features (ie. 
running/walking), the size of the kernel may affect which features are more easily identified. 
Varying the number of feature maps is generally done to see whether the model needs more 
complexity to achieve better accuracy.  

 

  



III. Results  

Classifier Accuracy 

Figure 11 shows the resulting accuracy of each classifier using the optimized threshold values for 
both simulated and field data. Both the thresholding scripts and the ML model results are 
included, which illustrates the relative efficacy of each. Among the simulated data, the classifier 
with the highest overall accuracy was the combined LB LAT and LB DT (LAT=12.1 Gs, 
DT=11.0 ms), with an accuracy of 92.5%. This outperformed the ML model, which achieved an 
accuracy of 89.5%.  

 

Figure 11. Accuracy for each classifier for simulated and field data. 

Comparing the results for simulated and field data, there is not an apparent trend in the data. In 
some cases, accuracy is higher for the field data (ie. for the LB LAT and LB DT separately), but 
in others this trend is flipped (ie. the combined LB LAT and LB DT). In the case of the LB LAT 
classifier, an overall accuracy of 98.5% was achieved, which is seemingly great. However, Table 
3 shows that 154.8 Gs was selected as the optimal threshold for field data, which is much higher 
than the 12.7 Gs selected for the simulated data. The distribution of the field data is such that the 
true head impacts made up only 1.06% of the overall dataset, as opposed to making up 66.9% of 
the simulated dataset. This results in a skewed accuracy value, as the size of the classes are not 
accounted for. When the threshold is blindly varied over a range of values in cases such as this, it 
can result in an optimal threshold that performs well in terms of theoretical accuracy, but would 
not perform as well with a balanced dataset. This phenomenon illustrates how the uneven 
distribution of the field dataset likely skewed the results of the classifiers. Therefore, the field 
data was excluded from further analysis, and the simulated data was analyzed as a proof of 
concept for what could be done once the field data is more balanced.  



ROC Curves 

Further analysis was performed on the thresholding algorithms to determine whether the overall 
accuracy values were indicative of good classifier performance. Figure 12 shows ROC curves 
that were plotted for each of the 5 thresholding algorithms using simulated data. The AUC is 
shown in the legend for each classifier.  

 

Figure 12. ROC curve and AUC for each classifier for simulated data. 

The two thresholding algorithms that tied with the highest AUC were the LB DT and the 
combined UB LAT and LB DT with an AUC of 0.795. The combined LB LAT and LB DT 
performed slightly worse, with an AUC of 0.735, despite having the highest overall accuracy of 
the thresholding algorithms.  

Interestingly, the LB LAT and UB LAT had inverted ROC curves, which makes sense given that 
the directionality of the threshold was all that changed between the two algorithms. The UB LAT 
achieved an AUC of 0.713, which is the complement of the LB LAT’s AUC of 0.287. This 
illustrates that the UB LAT was much better at completing the binary classification task than the 
LB LAT, despite only having an accuracy that was 6.2% higher (85.27% vs 79.07%).  

ML Experiments with Grad-CAM 

Experiment 1  

The effect of varying the input data length can be seen in Figure 13 from the mean accuracy 
across 10 models. The hypothesized trends were seen to hold true for the experiment.  



 

Figure 13. ML model accuracy for different input data lengths (k=5, f=128, n=10). 

A one-way ANOVA revealed the accuracy of the 100 ms group was significantly different from 
both the 200 ms and 2100 ms groups (p<0.0001 and p<0.0001, respectively; see Appendix A for 
statistics). These results show that decreasing the length of the input alone significantly hindered 
the model’s performance, assuming the full feature was still within the cropping window.  

When the main peak was cut off from the cropping window, the model performed significantly 
worse. The 100 ms group was statistically different from both the 100 ms (centered) and 50 ms 
(centered) groups (p=0.0001 and p=0.0058, respectively). This shows that the 100 ms group 
must have lost pertinent information due to cropping, and that by re-centering the window 
around the peak acceleration, the model was more easily able to distinguish between classes. 
However, the 100 ms (centered) and 50 ms (centered) groups were not significantly different, 
indicating that cropping closer to the peak acceleration did not significantly hinder the accuracy 
of the model. These results indicate that the model is likely focusing on the peaks of the high-g 
non-impact samples rather than the features after the peak.  

To investigate these trends, Grad-CAM was used to examine which features the model was 
focusing on. Example heatmaps were generated for each class under each input condition, 
indicating the relevance of each time point in determining the predicted classification. To 
understand the dataset better, input data was averaged over all test cases from 10 randomly 
generated models, each with randomly partitioned training/test sets. Relevance was also 
averaged over these tests for each class. These average relevance over time graphs are shown for 
each class.  

A few key trends in Experiment 1 were visualized with Grad-CAM. First, the suspicion that the 
model was focusing on the long pause in movement for Class 1 was confirmed, as shown in 
Figure 14. The model also sometimes focused on the small uptick in rotational velocity (which 



occurred due to breaking the string), which corresponds with a drop in relevance after this point 
in Figure 15. However, this was not as common as the model focusing on the larger peak to 
determine the classification. It can also be seen in Figure 15 that the model rarely misclassified 
Class 1 as any other classes, as shown by the relatively small relevance traces for all other 
classes.  

 

Figure 14. Example heatmap over 2100 ms for Class 1.  

 

Figure 15. Average relevance over 2100 ms for Class 1.  

When the input data is shortened to 200 ms, the model can no longer focus on as much of the 
long pause in movement, but it still focuses a bit on the early lack of movement, as shown by the 
small peak in relevance in Figure 17. As shown in Figure 16, the model focuses more on the 
latter parts of the peak when compared to Figure 14. The slightly worse performance of the 
model can be seen by the larger relevance traces for classes 0 and 2 in Figure 17.  



 

Figure 16. Example heatmap over 200 ms for Class 1.  

 

Figure 17. Average relevance over 200 ms for Class 1.  

When the large peak was cropped out in the 100 ms condition, the model was forced to focus 
more on the latter half of the peak, as shown by the larger amplitude in Figure 18 compared to 
Figures 17 and 15. When looking at the average relevance for Class 0 in Figure 19, it is clear that 
the model is easily confused between classes 0 and 1. This means that both the precision and 
recall of the model are lower for the 100 ms input compared to the longer inputs.  



 

Figure 18. Average relevance over 100 ms for Class 1.  

 

Figure 19. Average relevance over 100 ms for Class 0. 

When considering the role of centering and cropping around the peak, it is easiest to examine 
Class 0. Figure 20 shows that centering the input around the main peak allows the model to make 
a much more accurate differentiation between classes 0 and 1, since the relevance of Class 1 is 
much lower than it was in Figure 19. However, classes 2 and 3 begin to appear in 
misclassifications as well. Figure 21 shows an example heatmap for a correct classification of 
Class 0, whereas Figures 22 and 23 show misclassifications of classes 2 and 3 as Class 0. It is 
apparent that zooming in on the walking/jogging data causes the loss of pertinent features that 
are needed by the model to make accurate classifications.  



 

Figure 20. Average relevance over 100 ms (centered) for Class 0. 

 

Figure 21. Example heatmap over 100 ms (centered) for Class 0.  

 

Figure 22. Example heatmap over 100 ms (centered) for Class 2 (misclassified).  



 

Figure 23. Example heatmap over 100 ms (centered) for Class 3 (misclassified).  

Because the period of Class 3 is so large, the time shift added by centering caused a different 
portion of the periodic data to be used as an input. Evidently, this section of the data is more 
easily mistaken by the model for the behavior seen in Class 0. The effect of further cropping 
around the peak can be seen in Figure 24, where the model unexpectedly performs better with 
less data.  

 

Figure 24. Average relevance over 50 ms (centered) for Class 0. 

Returning back to the 2100 ms duration, the period pattern of Class 3 is easily recognized by the 
model, as shown in Figure 25. An example heatmap is shown in Figure 24, where the relevance 
is repeatedly higher around the peaks.  



 

Figure 24. Example heatmap over 2100 ms for Class 3. 

 

Figure 25. Average relevance over 2100 ms for Class 3. 

Figure 26I  shows the average relevance for Class 3 over 100 ms, where the recall of Class 3 is 
extremely poor, showing the effect of cropping out pertinent information. However, it is unclear 
whether the model performed worse due to the change in information for Class 3 or the other 
classes with discrete features (like classes 0 and 1). It is likely a combination of both, as this did 
not occur for Class 2.  



 

Figure 26. Average relevance over 100 ms for Class 3. 

Figure 27 shows the average relevance for Class 3 over 100 ms (centered). As seen before, the 
effect of shifting the cropping window was drastic for Class 3, causing the model to now mistake 
Class 0 for Class 3 instead of Class 1. The effect of increased centering can be seen in Figure 28, 
where the general misclassification trends remain the same, but the recall of Class 3 drops even 
lower.  

 

Figure 27. Average relevance over 100 ms (centered) for Class 3. 



 

Figure 28. Average relevance over 50 ms (centered) for Class 3. 

Experiment 2  

Table 5 shows the model’s accuracy for each combination of kernel size and number of feature 
maps. A 2-factor ANOVA revealed that there were no significant differences in model accuracy 
as a result of kernel size or number of feature maps (Appendix A).  

Table 5. Mean model accuracy (± standard deviation) for different kernel sizes and 
number of feature maps (input length=100 centered, n=10).  

 
Number of feature maps 

128 256 

Kernel size 
5 90.4 ± 2.6 89.7 ± 3.9 

11 90.1 ± 3.4 89.7 ± 3.5 

 

Model accuracy is commonly divided into 2 components: precision and recall, as shown in the 
equations below. Precision is a measure of the correctness of the model’s classifications, while 
recall measures the completeness of these classifications.  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦	 = 	
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛	 = 	
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 



𝑅𝑒𝑐𝑎𝑙𝑙	 = 	
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 

To further examine the performance of the model in the context of kernel size and number of 
feature maps, the model’s recall was calculated for each class, as shown in Table 6. Because the 
percentage values were cumulative over 10 models, a 2-factor ANOVA could not be performed. 
However, general trends could still be observed in the data.  

Table 6. Mean recall for different kernel sizes and number of feature maps (input 
length=100 centered, n=10).  

 Number of feature maps 

128 256 

Kernel 
size 

5 

Class 0 Class 1 Class 0 Class 1 

73.3% 98.4% 78.0% 98.1% 

Class 2 Class 3 Class 2 Class 3 

66.2% 25.3% 81.8% 25.0% 

11 

Class 0 Class 1 Class 0 Class 1 

63.9% 95.8% 75.0% 99.3% 

Class 2 Class 3 Class 2 Class 3 

55.7% 44.6% 54.9% 38.2% 

 

The Grad-CAM results do not show a significant variation in the classifications for 128 feature 
maps versus 256. The kernel size showed little effect on the results as well, except for in Class 3, 
where the model performed better with a larger kernel size of 11. An example heatmap for Class 
3 with a kernel size of 5 is shown in Figure 29, and the average relevance is shown in Figure 30. 
As discussed earlier, Class 3 showed a poor recall of only 25.3% with this condition. However, 
by increasing the kernel size to 11, the recall increased to 44.6%, as shown in Table 6. Figure 31 
shows an example heatmap with the larger kernel size, and Figure 32 shows the average 
relevance over time compared to other classes. The largest difference between Figures 29 and 31 



appears to be the width of the most relevant region, which is higher for the larger kernel size. 
This makes sense given the role of the kernel is to find features within a given window, so a 
larger kernel is able to find larger features more easily. Comparing Figures 30 and 32 
qualitatively, the latter appears to have a smoother trace for relevance over time, which makes 
sense given the larger kernel size.  

 

 

Figure 29. Example heatmap over 100 ms (centered) for Class 3 (k=5, f=128). 

 

Figure 30. Average relevance over 100 ms (centered) for Class 3 (k=5, f=128). 



 

Figure 31. Example heatmap over 100 ms (centered) for Class 3 (k=11, f=128). 

 

Figure 32. Average relevance over 100 ms (centered) for Class 3 (k=11, f=128). 

A common concern with increasing the kernel size is that it may have a harder time finding 
smaller features, such as the peaks in classes 0 and 1. Table 6 shows that the recall of the model 
dropped slightly for classes 0 and 1 on average, but not considerably. This resulted in an overall 
higher accuracy of the model, indicating that it may be an ideal choice for the model moving 
forward. 

  



IV. Discussion  

Classifier Performance 

In terms of overall accuracy, the ML model performed roughly the same, or in some cases, worse 
than the basic thresholding scripts. ML requires more resources (ie. computing power, data 
storage, and data to train on, etc) than basic scripts, so if there is not a considerable increase in 
the performance, these tradeoffs may not be worth the investment. In these experiments, the 
marginal gain of using ML over simpler methods has indicated that it may not be ideal for this 
task. However, there is not enough evidence to discourage the further development of more 
complex models to complete the binary classification task. Further analysis of the ROC curve 
should also be done for the ML model to determine if its performance is truly consistent with the 
overall accuracy.  

Applications to Injury Risk Curves 

Currently, these classifiers could be implemented to help to reduce the inflation of HIE reports in 
the literature. Doing so would help the development of more accurate injury risk curves and 
characterizations of head injury, as fewer false positive impacts would be included. The 
combined LB LAT and LB DT thresholder is a simple algorithm that could be implemented to 
lower the number of false positive impacts. The algorithm could either be directly programmed 
into the wearable sensor device, or incorporated into the pre-processing phase of data analysis. A 
combined UB LAT and LB DT thresholder has the potential to further lower the number of false 
positives, but the two populations are not understood well enough for an exact threshold value to 
be suggested. Thus, it is safer to rely on the LB DT thresholding component to eliminate false 
positive events such as glitching.  

With a maximum AUC of 0.795, the thresholding algorithms did an acceptable job of 
completing the binary classification task (with an AUC between 0.8 and 0.9 being considered 
“excellent”) [34]. However, the FPR for each classifier was still higher than ideal at their 
respective maximum accuracies. For example, the combined LB LAT and LB DT had the 
highest accuracy at 92.5%, but the FPR at this threshold value was still 32%. It is important to 
minimize the FPR, since false positive impacts are often high-g and therefore skew the head 
impact characterization to be higher in magnitude. These high FPRs show that there is still 
considerable room for improvement with classifier performance. One such improvement may be 
to optimize the thresholds based on the lowest FPR for that dataset.  

Comparison of Simulated and Field Data 

The simulated and field datasets were considerably different in terms of distribution, which made 
it difficult to draw accurate comparisons between the resulting performance for each dataset. The 
collection of more field data would help increase the reliability of the data, as it is currently only 



representative of two high school football players on one day of practice. Redundant data could 
also be excluded from the dataset so that class sizes are more equal.  

Although the field data is limited, the relative frequency of true positive head impacts as 
compared to high-g non-impacts shows the importance of minimizing the FPR. If one were to 
blindly include all the collected field data, the number of reported impacts would be 67 times 
higher than in reality (134 vs 2, respectively). In the literature, it was generally seen that 21 times 
the number of impacts would be detected for a NCAA lineman (1050 vs 50, respectively) [24]. 
Additionally, the characterization of head injury would be higher in magnitude, with an increase 
of 4.4 Gs in peak linear acceleration (25.91 Gs vs 21.51 Gs, respectively) and a decrease of 190 
deg/s in peak rotational velocity (1630 deg/s vs 1820 deg/s, respectively). These 
mischaracterizations of head impact and HIE emphasize the importance of implementing a 
classifier to exclude false positive impact events.  

The overall simplicity of the simulated dataset was both a weakness and a strength of the data. 
The ideal laboratory conditions in which the simulated data was collected likely contributed to 
overfitting of the model to specific features, such as the low noise levels in the valid impacts or 
the specific quirks of the study author’s gait. However, these ideal conditions may be applicable 
in augmenting a dataset of field data, in the same sense that computer-generated data has been 
used to augment physics-informed machine learning models (PIML) [26].  

Grad-CAM Insights 

In the context of the current problem, where the data has been simulated, there are unavoidable 
differences between it and a real dataset. For example, because the valid impact data came from 
drop tests, a small uptick in rotational velocity can be seen at the time that the wire is cut for 
each drop test. This uptick would not be present in a real dataset, and so focusing on this 
confounding variable is a sign that the model may perform worse on real data, where this trend is 
not present. Other circumstantial features, such as a long period of rest before flicking the 
DASHR, should ideally be cropped out of the training set to discourage the model from finding 
correlations rather than causations. Results indicate that the model performs better with longer 
input data. However, this is likely due to the circumstantial features surrounding the simulated 
data, as shown through Grad-CAM. A qualitative observation was made that the longer input 
data also took much longer to train a model with. This was due to the higher number of 
computations that had to take place to forward/backpropagate the input data through the model. 
Thus, shorter input data would be preferable if there is not a significant loss in accuracy.  

The optimal input length was determined to be 200 ms, as it included enough pertinent 
information for the model to perform well (and not statistically different from the full 2100 ms 
data), but did not include circumstantial information from the simulated data. The 100 ms 
(centered) condition was the second most accurate, but introduced unexpected misclassifications 
involving Class 3 (running/walking) due to the time shift. This raises the question of whether the 



dataset should be augmented to include test cases where the data is time-shifted, so that the 
model focuses more heavily on the frequency content of the data. This would likely increase the 
robustness and generalizability of the model, but may lower model performance. Grad-CAM 
could be used to determine whether the model is still able to find time-shifted features within an 
augmented dataset.  

The Class 2 (standing still) results show the need for “out of set” classification, which is a catch-
all class for any test case that the model is not familiar with. The CNN also has a hard time 
recognizing low/DC frequencies, which make it hard to detect the absence of a feature. The 
addition of an “out of set” class would also reduce the occurrence of random guesses that the 
model makes when it does not find a strong connection to any class.  

Results show that there are two main types of class features: discrete/high-frequency (ie. classes 
0 and 1) and continuous/low-frequency (ie. classes 2 and 3). Continuous features were better 
classified with longer input data, likely because the period of these features was large compared 
to the input data length. In contrast, discrete features were oftentimes incorrectly/irrelevantly 
classified with longer input data. It is difficult to detect these two feature classes with the same 
kernel size. A multi-headed model would likely perform better at differentiating between these 
classes, and should be implemented in a future iteration of the model.  

Currently, half of the dataset relies on thresholding, while the other half does not. This pre-
processing technique is used to isolate discrete activities with peak detection, which causes an 
innate bias that the model may take advantage of. For classes with discrete events (such as Class 
0 and Class 1), the peak is located at the same point in time for all samples, with a cutoff for 
amplitude and duration. Effectively, this pre-processing technique reduces the amount of work 
the model has to do to classify a head impact. To some extent, it is ideal to take advantage of 
this, since thresholding is commonly used in pre-processing. However, if the goal is to 
eventually move away from the closed-minded idea that head injuries occur at or above a 
specific threshold, then ideally, the model could make classifications without the need for such 
pre-processing techniques. This would make more sense for why the same model is being asked 
to label both discrete and continuous events.  

The kernel size and number of feature maps did not significantly affect the accuracy of the 
model. However, these parameters did appear to have some effects on the accuracy of specific 
classes. Class 3, for example, performed better with a larger kernel size, with a higher recall 
score. The larger kernel size also appeared to discern features of the high-frequency classes 
(Classes 0 and 1) as well, indicating that it may be an ideal choice for the model moving forward. 

For classes that did not have a timed event (ie. classes 2 and 3), averaging the input data 
sometimes caused features to cancel out (destructive interference). Instead of averaging these 
input data over time to display the “typical” input sequence, it may be more valuable to perform 



a cross-correlation between the input data sequences to emphasize any time-shifted features that 
they share.  

V. Future Work  

Despite the marginal gain of using the current ML model, there is not enough evidence to 
discourage further exploration of more advanced machine learning models. Advanced models, 
such as the Long Short-Term Memory model, or LSTM, should be investigated in parallel with 
simpler classifiers, such as the Support Vector Machine, or SVM. The addition of more field data 
would help create a more robust dataset for advanced models to train on. Once more field data is 
available, simulated data should be added in different amounts to determine if it can be used to 
augment the training set. The binary classification task should continue to be addressed 
separately from the advanced classification task, as certain model parameters, like the kernel 
size, can lead to different performance on these two tasks.  

Improvements to the current ML model should be made cautiously, with the risk of overfitting 
increasing as the model accuracy approaches 100%. The next step towards improving the 
accuracy of the current ML model should be to implement out-of-set classification, with Grad-
CAM used to examine the confidence levels during the decision-making process. This would 
allow researchers to discard outliers and minimize the false positive rate, creating a pipeline for 
reliable data. Grad-CAM could be used to further improve the transparency of the model’s 
confidence in decision-making, and researchers could use video footage to reexamine the 
classifications made with low confidence. These changes would help improve the current model 
while other classifiers are explored in parallel.  

VI. Conclusions  

The purpose of this research was to explore the details surrounding the ML model that was 
created by Liu [28], and validate or invalidate these methods. Through comparisons to simpler 
classifiers, it was shown that the ML model was not adding a significant increase in the 
performance on the binary classification task. Thus, the methods of Liu were not entirely 
necessary. However, the same approach with a simpler thresholding algorithm would likely work 
as a screening technique to remove invalid head impacts from the practice data.  

The use of Grad-CAM helped to identify several areas within the simulated dataset that could be 
improved upon to increase the robustness of the current CNN, such as kernel size and cropping. 
In the future, Grad-CAM can be used to explore scenarios such as multi-label classification, 
where the input data contains more than one correct classification. With this change, more 
complex models, such as a multi-headed CNN or a CNN-LSTM, can be used to label long 
sequences of practice data without the need for thresholding in pre-processing. 



Appendix A 

Experiment 1 – Statistics  

Table 7. Summary Data. 

Input Length (ms) Mean Accuracy (%) Standard Deviation (%) 

2100  93.684 3.717 

200 92.982 2.909 

100 83.246 3.362 

100 (centered) 90.351 2.602 

50 (centered) 88.421 
3.133 

 

Table 8. One-way ANOVA. 

Source of 
Variation 

Sum of 
Squares d.f. Variance F p 

Between Groups: 703.5077 4 175.8769 17.529 0 

Within Groups: 451.5076 45 10.0335   

Total: 1155.0152 49    

 

Table 9. Tukey HSD Post-hoc Test. 

Group 1 vs Group 2: Diff=-0.7020, 95%CI=-4.7271 to 3.3231, p=0.9874 

Group 1 vs Group 3: Diff=-10.4380, 95%CI=-14.4631 to -6.4129, p=0.0000 



Group 1 vs Group 4: Diff=-3.3330, 95%CI=-7.3581 to 0.6921, p=0.1475 

Group 1 vs Group 5: Diff=-5.2630, 95%CI=-9.2881 to -1.2379, p=0.0048 

Group 2 vs Group 3: Diff=-9.7360, 95%CI=-13.7611 to -5.7109, p=0.0000 

Group 2 vs Group 4: Diff=-2.6310, 95%CI=-6.6561 to 1.3941, p=0.3547 

Group 2 vs Group 5: Diff=-4.5610, 95%CI=-8.5861 to -0.5359, p=0.0192 

Group 3 vs Group 4: Diff=7.1050, 95%CI=3.0799 to 11.1301, p=0.0001 

Group 3 vs Group 5: Diff=5.1750, 95%CI=1.1499 to 9.2001, p=0.0058 

Group 4 vs Group 5: Diff=-1.9300, 95%CI=-5.9551 to 2.0951, p=0.6543 

 

Experiment 2 – Statistics  

Table 10. Descriptive Statistics. 

COUNT balanced   

 128 256  

5 10 10 20 

11 10 10 20 

 20 20 40 

MEAN    

 128 256  

5 90.422 89.969 90.1955 

11 90.127 89.658 89.8925 



 90.2745 89.8135 90.044 

VARIANC
E    

 128 256  

5 5.01177333 13.6869211 8.91127868 

11 13.1311567 10.74184 11.3661461 

 8.61692079 11.5969713 9.90228615 

 

Table 11. Two Factor Anova. 

ANOVA    Alpha 0.05  

  SS df MS F p-value p eta-sq 

Rows 0.91809 1 0.91809 0.08626296 0.77066957 0.00239047 

Columns 2.12521 1 2.12521 0.19968293 0.65765375 0.00551615 

Inter 0.00064 1 0.00064 6.0134E-05 0.9938556 1.6704E-06 

Within 383.14522 36 10.6429228    

Total 386.18916 39 9.90228615       
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