

Interpolation

```
# Square interpolation function
# param
# f00,f10,f01,f11: four corner values
# return: numpy vector (a,b,c,d)
```

```
def squareInterp(f00,f10,f01,f11):
    # write system of eq as matrices
    A = np.array([[0,0,0,1],[0,1,0,1],[0,0,1,1],[1,1,1,1]])
    b = np.array([f00,f10,f01,f11])
```

```
# solve Ax = b manually
d = f00
b = f10-d
c = f01-d
a = f11-b-c-d
return [a,b,c,d]
```


$$p(x, y) = axy + bx + cy + d$$

Interpolation

```
# Square interpolation function
# param
   f00,f10,f01,f11: four corner values
#
# return: numpy vector (a,b,c,d)
def squareInterp(f00,f10,f01,f11):
  # write system of eq as matrices
  A = np.array([[0,0,0,1],[0,1,0,1],[0,0,1,1],[1,1,1,1]])
  b = np.array([f00, f10, f01, f11])
  # solve Ax = b manually
  d = f00
  b = f_{10} - d
```

```
c = f01-d
```

```
a = f11-b-c-d
```

```
return [a,b,c,d]
```

p(x, y) = axy + bx + cy + d

 $\begin{cases} d = f(0, 0) \\ b + d = f(1, 0) \\ c + d = f(0, 1) \\ a + b + c + d = f(1, 1) \end{cases}$

Region of Interest Isolation

Objective 1: Increase resolution within the ROI Objective 2: Minimize surrounding tissue damage

This is very challenging

Naive Approach

Restrict beams to only ROI

ROI reconstruction (inaccurate)

ROI Reconstruction Results

Original

Dual Scan Method

Naive Approach

Full ART Reconstruction

Low Dose Interpolation Method

- Use low dose CT (reduced resolution by $\frac{1}{4}$, $\frac{1}{2}$ in each direction)
- Isolate region of interest
- Shoot high resolution CT on ROI, creating a smaller system matrix
- However, since X-rays goes through whole body, cannot easily isolate X-rays that pass through just the ROI
- Interpolate to get values at other regions

Inverse Planning

- An optimization algorithm to "optimize" the dose of radiation given to the patient
- Aim is to keep radiation within certain limits in the tumor region and keep radiation below a certain dose outside the non-tumor region

 λ_i : radiation dose, $\lambda_i \ge 0$ B_i : ith row of system matrix B x_N, x_T : indicator functions in the form of vectors,

1 if in the region of tumor, 0 otherwise and vice versa

 R_T^L, R_T^U : lower and upper limits of radiation dose in tumor region R_N : upper limit of radiation dose in non – tumor region

Inverse Planning

- Goal: Minimize the radiation dose subjected to the 3 constraints using linear programming methods (the simplex method is the most basic and most commonly used)
- However, it is often the case that the equations are not feasible and we have to add penalty terms to make them feasible:

$$R_T^L - \propto \leq \sum_{i \in S} \lambda_i B_i x_T \leq R_T^U + \beta$$
$$\sum_{i \in S} \lambda_i B_i x_N \leq R_N + \gamma$$
$$\lambda_i \geq 0$$