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Introduction Methods Conclusions and Future Work

Head Injury Training Set Distribution of Training Set Deep Learning Conclusions

* Mild traumatic brain injury (m'TBI), or concussion, resulting * 4 classes of data: * A 1-D Convolutional Neural Network (CNN) was * Deep learning has the potential to be a valuable tool for
from an impact or inertial loading of the head or sub- 1) Valid impact : trained in TensorFlow to classify segments of linear classifying head impact data as valid and invalid. This is 2
concussive head loading 1s a common and complex problem 2) High-g non-impact O acceleration and rotational velocity data into 4 classes. ctitical step in the process of analyzing head impact data
in youth contact sport athletes. 3) Running/walking * The model was trained for 10 epochs with a categorical ptior to reporting athletic exposure rates.

* Football athletes are disproportionately atfected by head 4) Standing still 303 (70%) cross entropy loss function, using a mini-batch gradient * The overall model performance was good with an
injuries and concussions, making up 12.8% ot all sports- * Training set data was descent training algorithm with a batch size of 32. accuracy of 84.6% *+ 2.0.
related head traumas and 19.4% ot all sports-related simulated via: * The kernel size and number of features were varied to * The model performed best for valid impacts and worst for
concusstons [1]. 1) Drop test data from a Valid impact determine the effects on model accuracy. Accuracy running/walking. This trend may be related to the relative

* Quantifying head injury in high school tackle football is helmeted PMHS heads = High-g non-impact values were averaged over 10 trials. training set sizes for these classes.
essential for determining a player’s injury risk per athletic 2-4)  Activity data from = Running/walking Model Architecture * Varying the model hyperparameters of kernel size and
€Xposure. This involves the use of wearable devices that worn DASHR Standing still S—— number of features did not signiﬁcantly influence the
measure kinematic head impact data during football practices * In total, 453 samples were used in the training set with fnput layer layer accuracy of the model.
and games. the distribution shown above. Limitations

. The high prevalence of false p051t1v§s in rec.o.rded head | e 100 ms segments of linear acceler.atlon and roFatlonal COﬂvli‘;fOﬁal Pl Lo * All training set data was collected via simulated activities.
impact data means that data processing 1s critical to drawing velocity data were used as model inputs (see Fig. 3). { + The training st was unbalanced, including 66.9% valid
accurate conclusions about athletic exposure and injury risk. * A 10gLAT and 3 ms DT were used to isolate valid P impacts versus a combined 33.15 /o invalid impacts. This

Deep Learning impacts and high-g non-impact events. These data layer mav have skewed the accuracy of the model

* 1-D Convolutional Neural Networks (CNNs) are a common segments were shifted to begin 10 ms prior to the peak . Thz rainine set data was 16 t};u mented anci therefore
deep learning model used to classify temporal activity data, linear acceleration. h 5 lted it 5
such as valid and invalid head impacts. 5 Linear Acceleration for Valid Impact 5 Linear Acceleration for Invalid Impact Ay aYe resulted i over ltjtlﬂg.

v v ;b R I * The uninformed model achieved a 62.3% * 0.2 accuracy.

* After the model has been trained and tested, the accuracy of : 2 | Test Set which was above average. This indicates that the pre- ’
the valid impact predjcti()ns 1s measured by the model’s ——/ x»» —— _ﬁy e 25% of the training set was randomly set aside as the test processing techniques fna /or model conditions were
precision, whereas the completeness of these predictions is oo ... set for model evaluation (n=114). prone to overfitting:
measured by the model’s recall. A  Rotationsi Velocity for Valid impact 5 Rotatonsl Velocityfor Invald Impact * Model precision, recall, and overall accuracy were Ongoing & Future Work

ol 3 [ S I AN P calculated as follov&;if Where: N * Investigation of the relevant features in the current model
Data Collection Ay = a —<\ \/\ Precision = — —p IP = true positive, through saliency mapping.
| \‘;0/ P — Recall = —F FP = false positive, * Augmentation of the current dataset to correct for skewed
Valid imp 4acts Fig 3. Linear acceleration and Trlr:t:)ional velocity over time for a valid impact (left car DASHI:::: from frontal drop test o TP+TN TN = true negative’ Samp le sizes and p otential overﬁtting. This will improve
* Head impact data was simulated via drop tests with post- from 50 cin) (eft) and invalid impact (flicking DASHR while standing stil) (right) Accuracy = o rprrn FIN = false negative. model robustness.
mortem human surrogate (PMHS) heads in lacrosse helmets. * Addition of more data—both to the existing classes and
* Drop tests were performed on 2 PMHS for 7 common to new classes—tor increased model robustness and
impact locations and 3 drop heights, each with 4 repeat trials. Results advanced activity classification. This includes low-g
behavioral activities associated with head impact.
Model Performance Confusion Matrix . .Implementemon of “out. of §§t” c121551ﬁca.t1.on for
mm e * Using a kernel size of 5and 128 features, the model * Overall, the model performed best for valid impacts, with mcrease;d model generalizability and precision.
Frontal 8 em achieved an overall accuracy of 84.6% * 2.0. a precision of 90.1% and a recall of 92.8%. * Collection of data from athletes during practices and
Frontal oblique right * A permutation test revealed that the trained model * On average, the model had the most difficulty predicting games. This will improve the validity of the study.
Parietal left >0 cm Fig 1. Parietal right impact Fig 2. The Data Acquisition performed significantly better (p<0.01) than an running/walking, with a precision of 87.5% and a recall * Continued GXPIOI?tiOH of other deep learning models (le.
Pag::;:iht . ;{ﬁgi{ %ﬁ}i}ii;e OASIR enmece or™€ uninformed model (62.3% * 0.2 accuracy). of only 46.7%. | General Adversarial Network,. Of GAN, Lpng Short-Term
Vertex - e, e dummyhead Hyperparameters * The model was most often confused between running/ Memory, or LSTM) or potential combinations of these
* The model performed best with a kernel size of 11 and walking and standing still, with a binary accuracy of models (ie. CNN-LSTM) for activity classification.
* 'Two Data Acquisition System for Head Response (DASHR) 2506 features, achieving an accuracy of 85.8% * 2.0. 66.7%o.
earpieces (left and right) were used to record the head’s linear * However, varying the kernel size and number of features ¢ Valid impacts and high-g non-impacts had a binary
acceleration and rotational velocity at 1000 Hz. did not significantly affect model accuracy. accuracy of 89.5%. Ack led Ref.
* The valid impact data was pre-processed to exclude all tests T Precision and Recall for Each Class T ————— cknowleagements & Reterences
that did not meet a 10g linear acceleration threshold (LAT) humbers of features. ’ 100 N == o predicted for each class (% of actual class) for k=5, f=128. | | |
and 3 ms duration threshold (DT). ooz ot R (0 of 2 73 f Predicted Class We acknowledge Duke Bass Connections - Brain & Soclety,
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* High-g non-impact data consisted of flicking, pressing, and o 5 | 835% 55 EBAGHE20H 78.7% * 64 g S - support of this study.

re-situating the DASHR 1n the ear while either standing still 3 ol ff i c@20 EUEEER 00 0% References
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