
Valid impacts 
• Head impact data was simulated via drop tests with post-

mortem human surrogate (PMHS) heads in lacrosse helmets.
• Drop tests were performed on 2 PMHS for 7 common 

impact locations and 3 drop heights, each with 4 repeat trials. 

• Two Data Acquisition System for Head Response (DASHR) 
earpieces (left and right) were used to record the head’s linear 
acceleration and rotational velocity at 1000 Hz. 

• The valid impact data was pre-processed to exclude all tests 
that did not meet a 10g linear acceleration threshold (LAT) 
and 3 ms duration threshold (DT). 

Invalid impacts 
• Running/walking and standing still data were simulated while 

wearing the DASHR earpiece. 
• High-g non-impact data consisted of  flicking, pressing, and 

re-situating the DASHR in the ear while either standing still 
or walking to simulate background noise. 

• The high-g non-impact data was then processed to exclude all 
tests that did not meet the 10g LAT and 3 ms DT. This was 
not repeated for the running/walking and standing still data.
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Head Injury 
• Mild traumatic brain injury (mTBI), or concussion, resulting 

from an impact or inertial loading of  the head or sub-
concussive head loading is a common and complex problem 
in youth contact sport athletes.

• Football athletes are disproportionately affected by head 
injuries and concussions, making up 12.8% of  all sports-
related head traumas and 19.4% of  all sports-related 
concussions [1]. 

• Quantifying head injury in high school tackle football is 
essential for determining a player’s injury risk per athletic 
exposure. This involves the use of  wearable devices that 
measure kinematic head impact data during football practices 
and games. 

• The high prevalence of  false positives in recorded head 
impact data means that data processing is critical to drawing 
accurate conclusions about athletic exposure and injury risk. 

Deep Learning
• 1-D Convolutional Neural Networks (CNNs) are a common 

deep learning model used to classify temporal activity data, 
such as valid and invalid head impacts. 

• After the model has been trained and tested, the accuracy of  
the valid impact predictions is measured by the model’s 
precision, whereas the completeness of  these predictions is 
measured by the model’s recall. 

Training Set 
• 4 classes of  data:
        1)   Valid impact 
        2)   High-g non-impact
        3)   Running/walking
        4)   Standing still
• Training set data was 

simulated via: 
        1)   Drop test data from
              helmeted PMHS heads
     2-4)   Activity data from 
              worn DASHR
• In total, 453 samples were used in the training set with 

the distribution shown above. 
• 100 ms segments of  linear acceleration and rotational 

velocity data were used as model inputs (see Fig. 3). 
• A 10g LAT and 3 ms DT were used to isolate valid 

impacts and high-g non-impact events. These data 
segments were shifted to begin 10 ms prior to the peak 
linear acceleration. 

Conclusions
• Deep learning has the potential to be a valuable tool for 

classifying head impact data as valid and invalid. This is a 
critical step in the process of  analyzing head impact data 
prior to reporting athletic exposure rates. 

• The overall model performance was good with an 
accuracy of  84.6% ± 2.0. 

• The model performed best for valid impacts and worst for 
running/walking. This trend may be related to the relative 
training set sizes for these classes. 

• Varying the model hyperparameters of  kernel size and 
number of  features did not significantly influence the 
accuracy of  the model. 

Limitations
• All training set data was collected via simulated activities. 
• The training set was unbalanced, including 66.9% valid 

impacts versus a combined 33.1% invalid impacts. This 
may have skewed the accuracy of  the model. 

• The training set data was not augmented and therefore 
may have resulted in overfitting. 

• The uninformed model achieved a 62.3% ± 0.2 accuracy, 
which was above average. This indicates that the pre-
processing techniques and/or model conditions were 
prone to overfitting. 

Ongoing & Future Work
• Investigation of  the relevant features in the current model 

through saliency mapping. 
• Augmentation of  the current dataset to correct for skewed 

sample sizes and potential overfitting. This will improve 
model robustness.

• Addition of  more data—both to the existing classes and 
to new classes—for increased model robustness and 
advanced activity classification. This includes low-g 
behavioral activities associated with head impact.  

• Implementation of  “out of  set” classification for 
increased model generalizability and precision. 

• Collection of  data from athletes during practices and 
games. This will improve the validity of  the study. 

• Continued exploration of  other deep learning models (ie. 
General Adversarial Network, or GAN, Long Short-Term 
Memory, or LSTM) or potential combinations of  these 
models (ie. CNN-LSTM) for activity classification. 
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Fig 3. Linear acceleration and rotational velocity over time for a valid impact (left ear DASHR data from frontal drop test 

from 50 cm) (left) and invalid impact (flicking DASHR while standing still) (right).

Fig 2. The Data Acquisition 

System for Head Response 

(DASHR) earpiece on a 

dummy head. 

Deep Learning
• A 1-D Convolutional Neural Network (CNN) was 

trained in TensorFlow to classify segments of  linear 
acceleration and rotational velocity data into 4 classes. 

• The model was trained for 10 epochs with a categorical 
cross entropy loss function, using a mini-batch gradient 
descent training algorithm with a batch size of  32. 

• The kernel size and number of  features were varied to 
determine the effects on model accuracy. Accuracy 
values were averaged over 10 trials. 

Model Architecture

Test Set
• 25% of  the training set was randomly set aside as the test 

set for model evaluation (n=114). 
• Model precision, recall, and overall accuracy were 

calculated as follows:

Input layer
Input [(None, 100, 2)]

Output [(None, 100, 2)]

Convolutional 

layer

Input [(None, 100, 2)]

Output [(None, 90, 256)]

Convolutional 

layer

Input [(None, 90, 256)]

Output [(None, 80, 256)]

Dropout layer
Input [(None, 80, 256)]

Output [(None, 80, 256)]

Max pooling 

layer

Input [(None, 80, 256)]

Output [(None, 40, 256)]

Flatten layer
Input [(None, 40, 256)]

Output [(None, 10240)]

Dense layer
Input [(None, 10240)]

Output [(None, 100)]

Dense layer
Input [(None, 100)]

Output [(None, 4)]

Model Performance
• Using a kernel size of  5 and 128 features, the model 

achieved an overall accuracy of  84.6% ± 2.0. 
• A permutation test revealed that the trained model 

performed significantly better (p<0.01) than an 
uninformed model (62.3% ± 0.2 accuracy). 

Hyperparameters
• The model performed best with a kernel size of  11 and 

256 features, achieving an accuracy of  85.8% ± 2.0.
• However, varying the kernel size and number of  features 

did not significantly affect model accuracy. 

Where:  

TP = true positive, 

FP = false positive, 

TN = true negative, 

FN = false negative. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃

 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁

Confusion Matrix
• Overall, the model performed best for valid impacts, with 

a precision of  90.1% and a recall of  92.8%.
• On average, the model had the most difficulty predicting 

running/walking, with a precision of  87.5% and a recall 
of  only 46.7%. 

• The model was most often confused between running/
walking and standing still, with a binary accuracy of  
66.7%. 

• Valid impacts and high-g non-impacts had a binary 
accuracy of  89.5%. 

Table 3. Confusion matrix showing the number of  samples 

predicted for each class (% of  actual class) for k=5, f=128. 

Predicted Class

Valid 

impact

High-g 

non-impact

Running/

walking

Standing 

still

Valid 

impact 

(n=69)

64 (92.8%) 4 (5.8%) 1 (1.4%) 0 (0%)

High-g 

non-impact

(n=27)

6 (22.2%) 21 (77.8%) 0 (0%) 0 (0%)

Running/

walking

(n=15)

1 (6.7%) 2 (13.3%) 7 (46.7%) 5 (33.3%)

Standing 

still

(n=3)

0 (0%) 0 (0%) 0 (0%) 3 (100%)
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Fig. 4. Precision and recall values calculated for each class (k=5, f=128). 

Table 2. Overall model accuracy for different kernel sizes and 

numbers of  features. 

Number of  Features (f)

64 128 256

3 83.9% ± 2.6 83.0% ± 2.6 83.9% ± 2.4 

5 83.5% ± 3.3 84.6% ± 2.0 78.7% ± 6.4 

7 81.7% ± 2.2 81.8% ± 3.8 82.6% ± 3.7 

9 83.9% ± 3.2 83.5% ± 2.6 83.3% ± 1.9 

11 82.7% ± 2.6 84.5% ± 2.1 85.8% ± 2.0 
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Table 1. Drop test conditions for helmeted 

PMHS heads.

Impact Location Drop Height

Facemask
8 cm

Frontal

Frontal oblique right

50 cmParietal left

Parietal right

90 cmOccipital

Vertex

Fig 1. Parietal right impact 

location (as indicated by the 

crosshair) on the lacrosse 

helmet in which the head was 

placed. 
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