

PRATT SCHOOL of

ENGINEERING

Development and validation of a 6YO pediatric neck computational model Bowie Shreiber, Kevin Xu, Sarah Glomski, Yumi Tsuyuki Dr. Jason Luck, BME 432 Design Class

BIOMEDICAL ENGINEERING

Background

- Leading cause of adolescent death is motor vehicle \bullet crashes (Fig. 1).
- Neck and back are most prone to injury in motor vehicle crashes.
- Pediatric necks differ in response to accelerations compared with adult necks (Fig. 2).
- Weaker musculature, smaller size, more porous bone
- Computational modeling provides inexpensive and efficient method of analyzing response to accelerations.
 - Focus generally given to adult neck
- Urgent need for 6YO neck computational model.

Iterations/Components

In total, we performed 53 iterations to arrive at our final design. Presented here are a few key designs that represent our priorities in design performance.

Final Design & Results

Test	Score
Tension	99
Compression	99
Flexion	71
Extension	15
Extension	
Angle	100
NBDLx	100
NBDLz	100
Head lag	18
EAMx	99

Objective Metric Scores for

Ten leading causes of child and adolescent death, 2016

Fig 2. Comparisons of pediatric (left two panels) and adult (right

Fig 1. Leading causes of adolescent death table

Materials and Methods

two panels) radiographs

- Developed model corridors as objective metrics for tension, compression, flexion/extension based on literature data
- Included model corridors developed from experiments by the Children's Hospital of Philadelphia (CHOP) and Naval Biodynamics Laboratory (NBDL)
- Designed several initial concepts for neck models (see Iterations) in CAD
- Created meshed models from CAD in LS-PrePost
- Ran CAD designs against corridors and tests to validate optimal performance using MATLAB and LS-DYNA programs
- Performed iterations on material and design features to arrive at final design

Key Features:

Key features

Revolute joint

Top plate rubber stopper

Goal: decouple head and

neck to delay head rotation

Basic cylinder neck

- Material: butyl rubber
- Slits and holes enable varied responses in flexion/extension
- Cylinder enhances uniform tension/compression response
- Current Industry Standard

Conclusion: Hybrid III model fails to accurately predict neck response.

ad

Neck Angle

EAMz	100	Hybrid III vs Our	Model
NASx	98	Hybrid III	Our Model
NASz	100		
Rot vel	4	20.4	63.8

Discussion

Objective Rating Metrics

Models were scored using two calculations:

- 1. Fraction of curve inside corridor / normalized cross correlation (Tension, compression, flexion, extension, head lag, , head cg, rotation velocity)
- Extrema location (Flexion, extension, NBDL (z vs 2. x, CGx, CGz), CHOP (EAMx, EAMz, NASX, NASz)) Overall scores were calculated as a weighted average of individual scores

Test	Tension/ Compression		Bending		NBDL		СНОР	
	Tension	0.1	Flexion	0.067	CGx	0.05	EAMx	0.0375
	Compression	0.1	Extension	0.067	CGz	0.05	EAMz	0.0375
			Extension Angle	0.067	Head x vs.z	0.05	NASx	0.0375
					Head Lag	0.15	NASz	0.0375
							Rot. Vel.	0.15
Total Weight		0.2		0.2		0.3		0.3

Conclusion: ABR will be used in future iterations.

Design B

high acceleration (NBDL) tests.

response during

• Our model

Hybrid III.

Our model

significant

compressive

approximates

the head-neck

responses.

Our model

closely

shows

Displacement (mm)

Future Work

- Further improve head transverse cables (right)
- Iterate top plate bumper head rotation timing
- Perfect flexion and
- Remove excessive material from plates

CG response with use of

- dimensions to modulate
- extension response

Acknowledgements

We would like to thank Dr. Jason Luck and Josue Nataren Moran for their help and support for the duration of this project.

- Revolute joint delays head rotation, improves response in high g-force acceleration

Key Results

Neck Steps

- Combine revolute joint with tapered, asymmetric neck
- Iterate shape and dimensions of top plate stopper to improve head rotation time and speed

Conclusion: Use of a revolute join improves head-neck decoupling.