Lecture 5 – Engineering cell signaling responses

Sudarshan Rajagopal

Departments of Medicine and Biochemistry

sudarshan.rajagopal@duke.edu

Information flow in cell signaling pathways

Evren U. Azeloglu, and Ravi Iyengar Cold Spring Harb Perspect Biol 2015;7:a005934^{5 by Cold Spring Harbor Laboratory Press} Interaction of multiple components with receptors leads to signal flow within multiple signaling pathways.

Α

Evren U. Azeloglu, and Ravi Iyengar Cold Spring Harb Perspect Biol 2015;7:a995534/ Cold Spring Harbor Laboratory Press Interaction of multiple components with receptors leads to signal flow within multiple signaling pathways.

Interaction of multiple components with receptors leads to signal flow within multiple signaling pathways.

Evren U. Azeloglu, and Ravi Iyengar Cold Spring Harb Perspect Biol 2015;7:a005534 Cold Spring Harbor Laboratory Press

Different adenylyl cyclase (AC) isoforms are activated by multiple different upstream signals.

Evren U. Azeloglu, and Ravi Iyengar Cold Spring Harb Perspect Biol 2015;7:a005934/ Cold Spring Harbor Laboratory Press

Evren U. Azeloglu, and Ravi Iyengar Cold Spring Harb Perspect Biol 2015;7:a@059534/ Cold Spring Harbor Laboratory Press

Network

Motifs

Dynamical Models

Evren U. Azeloglu, and Ravi Iyengar Cold Spring Harb Perspect Biol 2015;7:a005934 ©2015 by Cold Spring Harbor Laboratory Press

Regulatory motifs

&CSH &

The spectru

Evren U. Azeloglu, and Ravi Iyengar Cold Spring Harb Perspect Biol 2015;7:a@05934y Cold Spring Harbor Laboratory Pressa

Activity states of components in a positivefeedback loop in a bistable system

Evren U. Azeloglu, and Ravi Iyengar Cold Spring Harb Perspect Biol 2015;7:a995534 Cold Spring Harbor Laboratory Press

Emergent properties of signaling networks

- Bistability
- Ultrasensitivity
 - Small changes in ligand/receptor can cause a large change in activity of a downstream effector.
 - Can be produced by cooperativity, multistep regulation, activator/inhibitor levels
- Redundancy and robustness
 - Multiple inputs into ERK pathway, Coherent feedforward motifs
- Oscillatory Behavior
 - Couple positive- and negative-feedback loops can lead to sustained oscillation

Belousov-Zhabotinsky Reaction

- Reactions that remain far from equilibrium with oscillating behavior
- Due to a system that has a reaction inhibitor and reaction promoter which diffuse across the medium at different rates.

T cell receptor signaling

Overview of TCR signaling

NATURE REVIEWS | IMMUNOLOGY VOLUME 13 | APRIL 2013 | 257

Negative feedback of TCR signaling

NATURE REVIEWS | IMMUNOLOGY VOLUME 13 | APRIL 2013 | 257

Spatiotemporal control of LAT

NATURE REVIEWS | IMMUNOLOGY VOLUME 13 | APRIL 2013 | 257

Mechanisms of TCR mediated inside-out signaling to integrins

NATURE REVIEWS | IMMUNOLOGY VOLUME 13 | APRIL 2013 | 257

T cells selectively filter oscillatory signals on the minutes timescale

PNAS 2021 Vol. 118 No. 9 e2019285118

Systematically probing the transmission of periodic signals in T cells using optogenetics

CD69 expression is sensitive to fast, minutescale oscillations in T cell stimulus

CD69 expression is a band-stop filter that is selectively attenuated at an oscillation period of \sim 25 min

CD69 expression is a more selective temporal filter than other early T cell activation responses

Potential signaling mechanisms that sculpt selectively attenuated CD69 activation in response to specific oscillatory signals

Potential signaling mechanisms that sculpt selectively attenuated CD69 activation in response to specific oscillatory signals

T cell circuits that sense antigen density with an ultrasensitive threshold

Hernandez-Lopez et al., Science 371, 1166–1171 (2021) 12 March 2021

Design of T cells with ultrasensitive antigen density sensing

A two-step low- to high-affinity recognition circuit yields ultrasensitive antigen-density sensing

Low-to-high synNotch-to-CAR circuit: Discrimination between high- and low-density tumor cancer cell lines and 3D spheroids

Low-o-high synNotch-to-CAR circuit: Antigen density discrimination in mouse models

PC3 SKOV3

Inject

2.5M Low 1M CD4+ via caliper

Tumors

1.5M High 1M CD8+

Tumor T cells measurement

Low: Circuit vs UnT

High: Circuit vs UnT

107.0

104.8

Ε

2000 1500

PC3 (104.8)

ns, 0.232 (0.485)

0.0018 (0.0106)

Calibration of cell-intrinsic interleukin-2 response thresholds guides design of a regulatory T cell biased agonist

https://doi.org/10.7554/eLife.65777

Structure-based design and biophysical characterization of IL-2 receptor partial agonists

IL-2 receptor partial agonists elicit cell typespecific responses in vivo

IL-2-REH increases Treg frequency via selective proliferation of Foxp3+ cells

IL-2-REH selectively promotes signaling in Tregs with reduced activity on CD8+ T cells relative to IL-2

IL-2-REH exploits intrinsic differences in IL-2 signaling to elicit cell type-specific activity

IL-2-REH enhances recovery from DSS-induced colitis

Topological control of cytokine receptor signaling induces differential effects in hematopoiesis

SCIENCE

24 May 2019

Vol 364, Issue 6442

DOI: 10.1126/science.aav7532

Engineering and characterization of highaffinity DARPin binding to EpoR

Dimerization scaffolds for E2 resulting in agonism

Topological control of EpoR geometry

Signaling responses induced through variation in EpoR dimer angle

С	A_angle				
	EPO	A_R3	R4	R5	R6
STAT5 Y694	000	000		630	000
STAT3 Y705	000	000	000		
STAT1 Y701	0		000		
SHP2 Y580	000		000		
SEK1/MKK4 S257					1.20
SAMHD1 T592					
S6 S240/244	0000	000	000		
\$6 \$235/236	000	00.	000		
PLCg1 S1248					
P90RSK \$380	000		000		
mTOR S2448					
H2AX \$139					
ERK1/2 T202/Y20	4 000		00.		100000
CREB S133	000				
CleavedPARP D2	14 .				
C-Fos S32					
AKT T308	0				20422
AKT \$473	0.0		0		
4EBP1 T69					
4EBP1 T36/45					4
15	i min treatm	ent	60 mi	n treatme	ent
D	A_angle	1	A_ar	ngle	100
Call Luzata St	DA DE DE OS	, miles	S RA RI	Sea 20	THE
Y1007/8-JAK2			_	-	100
		12			
0-Y701-STAT1			-	1 -	
@-¥694-STAT5	-		-		
JAK2		-			-
IP: EpoR		_	1		
B-Y368-EpoR					
9-Y426-EpoR -		no a		-	
B-Y456-EpoR	-			-	and the
EpoR	-	-		-	-
1	5 min treatm	tnee	5 min	treatmen	nt

Signaling responses induced by variation in EpoR ECD proximity

Effects on hematopoiesis of topologically controllable EpoR ligands

Effects on hematopoiesis of topologically controllable EpoR ligands

