Lecture 4 - Biased agonism

Sudarshan Rajagopal

Departments of Medicine and Biochemistry

sudarshan.rajagopal@duke.edu

Smith and Rajagopal, Journal of Biological Chemistry 2016

Smith and Rajagopal, Journal of Biological Chemistry 2016

What Effects can a Biased Agonist have on Physiology?

D.G. Soergel et al. / PAIN 155 (2014) 1829–1835

What Effects can a Biased Agonist have on Physiology?

D.G. Soergel et al. / PAIN 155 (2014) 1829–1835

Pluridimensional efficacy and bias at GPCRs

Copyright © 2016 by The Author(s)

Structure-based discovery of opioid analgesics with reduced side effects

Nature volume 537, pages185–190 (2016)

Structure based ligand discovery for the µOR

nature

A Manglik et al. Nature 1–6 (2016) doi:10.1038/nature19112

Discovery of a novel $G_{i/o}$ -biased µOR agonist

nature

Structure-guided optimization towards a potent biased µOR agonist

nature

A Manglik et al. Nature 1–6 (2016) doi:10.1038/nature19112^{og [drug] (M)}

PZM21 is an analgesic with reduced on-target liabilities

A Manglik *et al. Nature* 1–6 (2016) doi:10.1038/nature19112

nature

Structural Basis of GPCR Biased Agonism

Angiotensin and biased analogs induce structurally distinct active conformations within a GPCR, Volume: 367, Issue: 6480, Pages: 888-892, DOI: (10.1126/science.aay9813)

Similarities in the active GPCR conformation when binding G protein and arrestin

DOI: 10.1021/acs.chemrev.6b00177

Copyright © 2016 American Chemical Society

DEER spectroscopy to probe the effects of biased ligands at the AT_1R

Cell 2019 176468-478.e11DOI: (10.1016/j.cell.2018.12.005) Copyright © 2018 Elsevier Inc.<u>Terms and Conditions</u>

Data from different pairs for each ligand

Cell 2019 176468-478.e11DOI: (10.1016/j.cell.2018.12.005) Copyright © 2018 Elsevier Inc.<u>Terms and Conditions</u> Distance (Å)

Conformations associated with different ligands

Spatial bias

Different modes of GPCR intracellular signaling

ACS Chem. Neurosci. 2018, 9, 9, 2162–2172

When trafficking and signaling mix: How subcellular location shapes G protein-coupled receptor activation of heterotrimeric G proteins

Traffic, Volume: 20, Issue: 2, Pages: 130-136, First published: 22 December 2018, DOI: (10.1111/tra.12634)

Trends in Pharmacological Sciences

Terms and Conditions

Trends in Pharmacological Sciences

Terms and Conditions

Signaling from microdomains

Cell

Volume 185, Issue 7, 31 March 2022, Pages 1130-1142.e11

A GLP-1 CAMP

Α

Endosomal signaling by non-GPCRs

Review of cytokine receptor trafficking

Endosomal signaling

Intracrine signaling by VEGF

Endocytosis can promote or inhibit specific RTK signaling

GPCR Endosomal Signaling

Modified from Dean Staus

JBC

Robert H. Oakley et al. J. Biol. Chem. 1999;274:32248-3225 The American Society for Biochemistry and Molecular Biology, Inc.

Colocalization of β arr2-GFP with the internalized β 2AR, V2R, and β 2AR-V2R and V2R - β 2AR chimeras.

JBC

Robert H. Oakley et al. J. Biol. Chem. 1999;274:32248-3225

The American Society for Biochemistry and Molecular Biology, Inc.

Robert H. Oakley et al. J. Biol. Chem. 1999;274:32248-32257

 β -Arrestin binding site is located in the ear domain of β 2-adaptin.

Stéphane A. Laporte et al. J. Biol. Chem. 2002;277:9247-9254

The American Society for Biochemistry and Molecular Biology, Inc.

IB:FLAG

Overexpression β 2-adaptin C-terminal subdomain inhibits the agonist-mediated internalization of β 2AR.

Stéphane A. Laporte et al. J. Biol. Chem. 2002;277:9247-9254

Internalized AT_1R colocalizes with β -arrestin PNAS and pERK

Overlay HA-AT1aR GFP-βarrestin 2 а NS Ang II

Louis M. Luttrell et al. PNAS 2001;98:5:2449-2454 ©2001 by National Academy of Sciences

Louis M. Luttrell et al. PNAS 2001;98:5:2449-2454

Effects of siRNA-suppressed β -arrestin2 (β arr2) expression on the kinetic pattern of ERK1/2 activation following stimulation of the AT1A receptor.

The American Society for Biochemistry and Molecular Biology, Inc.

Effects of silencing β-arrestin2 (βarr2) expression on the subcellular distribution of phospho-ERK1/2 following different periods of stimulation of the AT1A receptor.

Time-dependent subcellular distribution of phospho-ERK1/2 and β-arrestin2 (βarr2)-RFP after stimulation of the AT1A receptor.

Seungkirl Ahn et al. J. Biol. Chem. 2004;279:35518-35525 The American Society for Biochemistry and Molecular Biology, Inc.

JBC

G protein endosomal signaling

Endosomal cAMP generation

Nat Chem Biol. 2009 Oct; 5(10): 734–742.

Inhibiting endocytosis decreases cAMP

Nb80–GFP detects activated β_2 -ARs in the plasma membrane and endosomes.

nature

Time (min)

nature

Internalized β_2 -ARs contribute to the acute cAMP response.

R Irannejad *et al. Nature* **000**, 1-5 (2013) doi:10.1038/nature12000

nature

GPCR Megaplexes as a Source for Endosomal GPCR Signaling?

Nature Structural & Molecular Biology volume 26, pages1123–1131(2019)

CryoEM structure of the Megaplex

Different spatial and temporal patterns

Annu. Rev. Biochem. 2021. 90:5.1–5.29

$G\beta\gamma$: the forgotten signaling molecule

В

GBy can signal at specific subcellular locations

Masuho et al., 2021, Cell Systems 12, 1–14

Receptor signaling from other locations

If different ligands promote signaling from different locations, we refer to this as "location bias"

mGlu5 expressed on the nuclear membrane

THE JOURNAL OF BIOLOGICAL CHEMISTRY VOL. 283, NO. 20, pp. 14072–14083,

And couples to nuclear Gq

Quis (permeant) vs DHPG (impermeant) – transcriptional changes in neurons

THE JOURNAL OF BIOLOGICAL CHEMISTRY VOL. 287, NO. 8, pp. 5412–5425, February 17, 2012

Proposed model of cell surface and intracellular mGlu5 receptor activation by glutamate.

GPCRs in the Golgi

β1AR signaling from Golgi

Golgi pool is distinct from endosomal pool

Activates Gs at the Golgi

Rapamycin induced recruitment of Nb80 blocks Gs signaling

OCT3 transporter needed for impermeant ligands to get to the Golgi

OCT3

Different effects of membrane permeant and impermeant antagonists

Location-encoded signaling
β2AR signaling from endosomes

Endosomal signaling regulates transcription

Optogenetic activation of cAMP

PCK1

cAMP signal

doi : 10.1038/nchembio.1665

Temporal Bias

Nature Communications volume 7, Article number: 10842 (2016)

Differentiating the effects of spatial and temporal bias at the PTH1R

SCIENCE SIGNALING 5 Oct 2021 Vol 14, Issue 703 DOI: 10.1126/scisignal.abc5944

Characterization of a Gs-biased PTH analog generated by amino acid isomerization

Location bias of PTH7d signaling

Molecular changes induced by PTH7d

Differential pharmacological actions of PTH7d, PTHWT, and LA-PTH in mice

Proposed model for location bias in cAMP and PTHR pharmacology

