Receptor Signaling Networks: Receptors

Sudarshan Rajagopal

Departments of Medicine and Biochemistry

sudarshan.rajagopal@duke.edu

Information Processing by the Body

Receptors

G protein-coupled receptors

Largest superfamily of receptors -~ 800 in the human genome

Earl Sutherland

- Work done in the 1950-1960s
- Primary messenger: Epinephrine
- Bound to cell surface that led to activation of adenylyl cyclase
- Second messenger: cyclic AMP
- Activation of glycogen phosphorylase

Martin Rodbell and Al Gilman

Intracelluler signal -Second messenger

- Rodbell 1971 Transduction required the first messenger, a transducer that required GTP, amplifier that generates second messenger
- Gilman 1980 Isolated heterotrimeric G protein, which requires GTP for activity

Bob Lefkowitz

- Developed radioligand binding assays for GPCRs
- 1971: Labeled β-adrenergic receptors and demonstrated their GTP regulation
- 1970-80s: Isolated and determined their biochemistry
- 1980s: Cloned β2AR receptor superfamily
- 1990s: Arrestins

Richard Axel and Linda Buck

Odorant Receptors and the Organization of the Olfactory System

- 1991 described the family of odorant receptors (type of GPCR)
- Found that every single olfactory receptor expresses one and only one odorant receptor

Brian Kobilka

- 1980s: Worked in Lefkowitz lab, cloning the β2AR
- 2006: First structure of a nonrhodopsin GPCR, the b2AR
- Followed this by structures of other receptors, including those complexed to heterotrimeric G proteins

GPCRs are the most common receptors in the genome

- ~ 800 human GPCRs in 5 families
 - Glutamate (Family C)
 - Rhodopsin (Family A)
 - α , β , γ , δ groups
 - Adhesion
 - Frizzled/Taste2
 - Secretin (Family B)
- 2004 Nobel Prize in Physiology/Medicine: Axel and Buck
- 2012 Nobel Prize in Chemistry: Lefkowitz and Kobilka

Architecture conserved from bacteria

Diversity of Rhodopsin family ligand binding

Nature Chemical Biology 8, 670–673 (2012)

Outline

- Introduction to GPCRs
- Basics of GPCR Signaling
- GPCRs in disease
- Drugs targeting GPCRs

Extracellular

Extracellular

Extracellular

cAMP kinetics

https://www.moleculardevices.com/en/assets/app-note/dd/flipr/live-cell-gi-and-gs-coupled-gpcr-second-messenger-signaling-on-flipr-tetra#gref

Rhodopsin

doi: https://doi.org/10.1371/journal.pcbi.1001031.g004

Arrestin recruitment

Stolen from Researchgate

Heterotrimeric G proteins

- 1950-60s: Hormone-stimulated production of cAMP (Nobel Prize for Sutherland)
- 1980s: Isolation of heterotrimeric G proteins (Nobel Prize for Gilman and Rodbell)
- Composed of
 - Gα (16 different subunits)
 - Gβ (5 different subunits)
 - Gγ (12 different subunits)

Activation of heterotrimeric G proteins

Heterotrimeric G-proteins: a short history, Volume: 147, Issue: S1, Pages: S46-S55, First published: 02 February 2009, DOI: (10.1038/sj.bjp.0706405)

$G\alpha$ subfamilies

• Gs

 Stimulates adenylyl cyclase (stimulates formation of cAMP)

• Gi/o

 Inhibits adenylyl cyclase (decreases cAMP levels)

• Gq/11

- Activates phospholipase C
- G12/13
 - Activates Rho GTPases

	Family	Subtype	Effectors	Expression	Disease relevance	Pharmacological modulation	
and of Dharma	$G_s \alpha$	$\begin{array}{l} G_{s(S)}\alpha \\ G_{s(L)}\alpha \\ G_{s(XL)}\alpha \\ G_{olf}\alpha \end{array}$	Adenylyl cyclases $\uparrow (G_{s,s(XL),olf}\alpha)$ Maxi K channel $\uparrow (G_s\alpha)$ Src tyrosine kinases (c-Src, Hck) $\uparrow (G_s\alpha)$ GTPase of tubulin $\uparrow (G_s\alpha)$	$G_s \alpha$: ubiquitous $G_{olt} \alpha$: olfactory neurons, certain CNS ganglia; digestive and urogenital tract	$G_{s(XL)}\alpha$: brachydactyly, trauma-related bleeding tendency, neurological problems $G_s\alpha$: McCune–Albright syndrome, cholera, pseudohypoparathyroidism type Ia/b, teatoteicecia	G _s α: CTX G _{olf} α: CTX	
1/7 /C1)	$G_{i/o}\alpha$	$\begin{array}{l} G_{o1}\alpha\\ G_{o2}\alpha\\ G_{i1-i3}\alpha\\ G_{z}\alpha\\ G_{t1/2}\alpha\\ G_{gust}\alpha\end{array}$	Adenylyl cyclase $\downarrow (G_{i,o,z}\alpha)$ Rap1GAPII-dependent ERK/MAPkinase activation $\uparrow (G_i\alpha)$ Ca^{2+} channels $\downarrow (G_{i,o,z}\alpha)$ K^+ channels $\uparrow (G_{i,o,z}\alpha)$ GTPase of tubulin $\uparrow (G_i\alpha)$ Src tyrosine kinases (c-Src, Hck) $\uparrow (G_i\alpha)$ Rap1GAP $\uparrow (G_z\alpha)$ GRIN1-mediated activation of Cdc42 $\uparrow (G_{i,o,z}\alpha)$ cGMP-PDE $\uparrow (G_i\alpha)$ $G_{mug}\alpha$: ?	$G_{o1-2}\alpha$: neurons, neuroendocrine cells, astroglia, heart $G_{i1-i3}\alpha$: neurons and many others $G_{z}\alpha$: platelets, neurons, adrenal chromaffin cells, neurosecretory cells $G_{t1}\alpha$: rod outer segments, taste buds $G_{t2}\alpha$: cone outer segments $G_{gust}\alpha$: sweet and/or bitter taste buds, chemoreceptor cells in the airways	testototototosis, adenomas or pruntary and thyroid $G_i \alpha$: whooping cough, adrenal and ovarian adenomas $G_t \alpha$: congenital cone dysfunction, night blindness	$\begin{array}{l} G_{o(1/2)} \boldsymbol{\alpha} \colon PTX \\ G_{i1 \cdot i3} \boldsymbol{\alpha} \colon PTX \\ G_{z} \boldsymbol{\alpha} \colon \boldsymbol{\gamma} \\ G_{t1/2} \boldsymbol{\alpha} \colon PTX, \ CTX \\ G_{gust} \boldsymbol{\alpha} \colon PTX \end{array}$	G. Mill
	$G_{q/11} \alpha$	$\begin{array}{c} G_q \alpha \\ G_{11} \alpha \\ G_{14} \alpha \\ G_{15} \alpha \\ G_{16} \alpha \end{array}$	Phospholipase $C\beta$ isoforms \uparrow p63-RhoGEF \uparrow ($G_{q/11}\alpha$) Bruton's tyrosine kinase \uparrow ($G_q\alpha$) K ⁺ channels \uparrow ($G_q\alpha$)	$G_{q/11}\alpha$: ubiquitous $G_{15/16}\alpha$: hematopoietic cells	$G_{q/11}\alpha$: dermal hyperpigmentation and melanocytosis?	$\begin{array}{l} G_{q/11}\alpha;\; YM\text{-}254890 \\ G_{14}\alpha;\; ? \\ G_{15}\alpha;\; ? \\ G_{16}\alpha;\; ? \end{array}$	igan & E. Koste
	$G_{12/13}\alpha$	$\begin{array}{c} G\alpha_{12} \\ G\alpha_{13} \end{array}$	Phospholipase D ↑ Phospholipase Cε ↑ NHE-1 ↑ iNOS ↑ E-cadherin-mediated cell adhesion: ↑ p115RhoGEF ↑ PDZ-RhoGEF ↑ Leukaemia-associated RhoGEF (LARG) ↑ Radixin ↑ Protein phosphatase 5 (PP5) ↑ AKAP110-mediated activation of PKA ↑ HSP00 ↑	Ubiquitous	Recent SNPs identified but no disease correlation yet	$G_{12}\alpha$: ? $G_{13}\alpha$: ?	nis Heterotrimeric G-protei
	${ m G}eta/\gamma$	β_{1-5} γ_{1-12}	PLC β s \uparrow Adenylyl cyclase I \downarrow Adenylyl cyclases II, IV, VII \uparrow PI-3 kinases \uparrow K ⁺ channels (GIRK1,2,4) \uparrow Ca ²⁺ (N-, P/Q-, R-type) channels \downarrow P-Rex1 (guanine nucleotide exchange factor for the small GTPase Rac) \uparrow c-Jun N-terminal kinase (JNK) \uparrow Src kinases \uparrow Tubulin GTPase activity \uparrow G-protein-coupled receptor kinase recruitment to membrane \uparrow Protein kinase D \uparrow Bruton's tyrosine kinase \uparrow p114-RhoGEF \uparrow	$\beta_1\gamma_1$: retinal rod cells $\beta_{3\gamma_8}$: retinal cone cells β_5 : neurons and neuroendocrine organs $\beta_{5(L)}$: retina Most cell types express multiple β and γ subtypes	$G\beta_3$: atherosclerosis, hypertension, metabolic syndrome	Gβγ: ?	s: a short history

 $CTX = cholera toxin; PTX = pertussis toxin; \uparrow = enhances function; \downarrow = reduces function; YM-254890 = a cyclic depsipeptide isolated from$ *Chromobacterium*sp QS3666.

h Journal of Pharmacology vol 147 (S1)

The $G\alpha$ and $G\beta\gamma$ interaction motifs

- N-terminus of Gα interacts with the βγ subunits
- N-terminus is also palmitoylated or myristoylated
- C-terminal helix interacts with the receptor

Selectivity in GPCR–G-protein signaling

- Many GPCRs couple to multiple classes of G proteins
- Many G proteins couple to multiple GPCRs
- Bioinformatics approach to identify structural motifs responsible for the GPCR:G protein interaction

Subtype-specific residues and Ga selectivity barcode

 Interface positions are primarily in helix 5 of Gα

 While some residues are highly conserved, others are responsible for the specificity for GPCR:Gα coupling

T Flock et al. Nature 1–6 (2017) doi:10.1038/nature22070

Model for interaction between GPCR and $\mbox{G}\alpha$

nature

Structural evidence for importance of α 5CT

Nat Chem Biol (2021). https://doi.org/10.1038/s41589-021-00841-3

Assessing all 60 GBy combinations with GaoA

Β Venus intensity GaoA Gγ 13 12 10 9 11 (%) G_β1 200 Gβ2 180 Gβ3 160 Gβ4 140 Gβ5 120 100 80 60 Ε 40 Response amplitude 20 GαoA Gγ 0 13 12 9 8 11 Gβ1 Gβ2 G_β3 Gβ4

Cell Syst. 2021 Apr 21;12(4):324-337.e5.

Gβγ: Translocation to different compartments

Α

Cell Syst. 2021 Apr 21;12(4):324-337.e5.

G protein-coupled receptor kinases (GRKs)

- 3 subfamilies
 - GRK2
 - Contain a PH domain for interaction with PIP2
 - Require recruitment by Gβγ to the receptor
 - GRK4
 - Palmitoylated
 - Visual
 - Only expressed in the visual system
 - Prenylated

Activation Mechanism of GRKs

Sangivamycin (Sgv): adenosine analogue with a 180 nM inhibition constant (Ki) against GRK1

GRK1 αN interacts with same cleft as $G\alpha$ in Rho

Nature 595, 600–605 (2021)

Modeling the Rhodopsin C-terminus in GRK1

Nature 595, 600–605 (2021)

Different phosphorylation sites at the β 2AR

- At the β2AR, different serines are phosphorylated by GRK2 and GRK6
- In addition, there are phosphorylation sites for other kinases (PKA, ATM, etc.)
- These different sites are responsible for homologous and heterologous desensitization and specific interactions with β arrestins

Non-kinase activities of GRKs

GRK isoform	Binding partner	Function	Reference
	Ga _q	Regulation of Ga_q signaling	[27,28]
	mGluR1	Regulation of G protein signaling in a phosphorylation-independent manner	[29]
	Gβγ	Regulation of G $\beta\gamma$ -stimulated signaling	[31]
	PDGFRB	Phosphorylation of PDGFR β by GRK2 reduces PDGFR β signaling	[78,79]
	HDAC6	GRK2 associates with and phosphorylates HDAC6 to enhance $\alpha\text{-tubulin}$ deacetylase activity and cell motility	[81]
	Akt	Interaction of GRK2 with Akt inhibits Akt activity	[82]
	p38	Phosphorylation of p38 by GRK2 impairs MKK6-induced p38 activation	[88]
GRK2	APC	Interaction of GRK2 with APC inhibits canonical Wnt signaling	[89]
Ghitz	GIT1	Interaction between GRK2 and GIT1 is important for GRK2-mediated cell motility	[90]
	CDK2	Phosphorylation of GRK2 by CDK2 is important for cell cycle progression	[91]
	MEK	GRK2 negatively regulates CC chemokine ligand 2-induced ERK activation by the interaction with MEK	[93]
	IRS-1	Phosphorylation of IRS-1 by GRK2 mediates endothelin-1-induced insulin resistance	[94]
	clathrin	Interaction of GRK2 with clathrin promotes GPCR internalization	[95]
	PI3K	Translocation of PI3K to the plasma membrane is involved in GPCR internalization	[96]
	HSP90	Interaction of GRK2 with HSP90 at the mitochondria promotes pro-death signaling after ischemic injury	[100]
	β-arrestin1	Phosphorylation of β -arrestin1 by GRK5 down-regulates G protein-independent signaling	[80]
	HDAC5	Phosphorylation of HDAC5 promotes maladaptive cardiac hypertrophy	[83]
	p105	Interaction with p105 results in inhibition of lipopolysaccharide-induced ERK activation	[84]
	ΙκΒα	Regulation of NF-KB signaling	[85,86]
GRK5	γ-tubulin centrin pericentrin	Co-localization of GRK5 with γ -tubulin, centrin, and pericentrin is important for regulation of microtubule nucleation and cell cycle progression	[92]
	p53	Phosphorylation of p53 by GRK5 inhibits DNA damage-induced apoptosis	[106]
	raptor	Grk5l, which is the closest homolog of GRK5 in zebrafish, interacts with raptor, and regulates mTOR signaling	[108]
GRK6	GIT1	GRK6 cooperates with GIT1 to enhance Rac1 activity, and promotes engulfment of apoptotic cells	[43]

Watari et al. Journal of Molecular Signaling 2014, 9:1

The β -arrestins

- Finger loop interacts with the GPCR transmembrane core
- Polar core between two globular domains binds to the phosphorylated GPCR C terminus
- Acts as a scaffold for a number of signaling proteins

Science

MAAAS

The Arrestin Fold

CASPET PHARMACOLOGICAL REVIEWS

Yuri K. Peterson, and Louis M. Luttrell Pharmacol Rev2017;69:256-297Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics

Phosphorylation barcode for arrestin interaction

Cell Volume 170, Issue 3, 27 July 2017, Pages 457-469.e13

β -arrestins interact with a wide array of proteins

- Mass-spectrometry-based interactome demonstrates a wide array of proteins interact with the β-arrestins
 - Kinases, Phosphatases
 - Trafficking proteins
 - Small GTPases
 - Metabolic enzymes
 - Cytoskeletal proteins

Functionally discrete arrestin pools

PHARMACOLOGICAL REVIEWS

(ASPET

Yuri K. Peterson, and Louis M. Luttrell Pharmacol Rev2017;69:256-297Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics

Diverse cellular functions of arrestin scaffolds

PHARMACOLOGICAL

REVIEWS

Yuri K. Peterson, and Louis M. Luttrell Pharmacol Rev

2017;69:256-297 Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics

RGS proteins – G protein deactivation

https://doi.org/10.3389/fnmol.2020.00005

RGS proteins bind to specific sites in $G\alpha$

Copyright © 2020 Elsevier Inc. Terms and Conditions

Specificity of RGS proteins

Cell DOI: (10.1016/j.cell.2020.08.052) Copyright © 2020 Elsevier Inc.<u>Terms and Conditions</u>

Specificity of RGS proteins can be modified

Outline

- Introduction to GPCRs
- Basics of GPCR Signaling
- GPCRs in disease
- Drugs targeting GPCRs

GPCRs in action: Regulation of thyroid hormones

GoF mutations in disease

Table 1

Diseases caused by activating mutations in G-protein-coupled receptors (GPCR)

GPCR gene (OMIM)	Receptor (IUPHAR)	Gain-of-function disease	Reference
Family A GPCR			
FSHR	follitropin (FSH)	ovarian hyperstimulation syndrome	Smits et al., 2003; Vasseur et al., 2003
KSHV-GPCR		Kaposi's sarcoma	Arvanitakis et al., 1997
MC2R	melanocortin (MC_2)	ACTH-independent Cushing's syndrome	Swords et al., 2002
LHR	lutropin (LHCG)	male-limited precocious puberty,	Shenker et al., 1993; Martin et al., 1998;
		seminoma, Leydig-cell tumor	Liu et al., 1999a
RHO	rhodopsin	congenital stationary night blindness	Robinson et al., 1992; Rao et al., 1994
TSHR	thyrotropin (TSH)	hyperthyroidism, thyroid carcinoma	Parma et al., 1993; Russo et al., 1995
Family B GPCR			
PTHR1	PTH/PTHrP (PTH ₁)	Jansens's metaphyseal chondrodysplasia	Schipani et al., 1995
Family C GPCR			
CASR	calcium-sensing (CaS)	dominant and sporadic hypoparathyroidism	Baron et al., 1996
Other GPCR			
SMOH	smoothened (SMO)	sporadic basal-cell carcinoma	Xie et al., 1998
Full-length receptor name	es are given under 'Abbreviatior	ns' at the beginning of the chapter.	

LoF mutations in disease

Table 2

GPCR gene (OMIM)	GPCR (IUPHAR)	Loss-of-function disease	Reference
Family A GPCR			
AGTR2	angiotensin (AT_2)	X-linked mental retardation	Vervoort et al., 2002
AVPR2	vasopressin (V_2)	nephrogenic diabetes insipidus (NDI), partial NDI	Rosenthal et al., 1992; Sadeghi et al., 1997
EDNRB	endothelin (ET _B)	Hirschsprung's disease	Puffenberger et al., 1994
FPR1	N-formyl-peptide (FPR)	juvenile periodontitis	Gwinn et al., 1999
FSHR	follitropin (FSH)	ovarian dysplasia, amenorrhea, secondary amenorrhea	Aittomäki et al., 1995; Beau et al., 1998
GNRHR	GnRH (GnRH)	hypogonadotropic hypogonadism	de Roux et al., 1997; Layman et al., 1998
GPR54	GPR54	hypogonadotropic hypogonadism	de Roux et al., 2003; Seminara et al., 2003
LGR8	LGR8 (INSL3)	cryptorchidism	Gorlov et al., 2002
LHR	lutropin (LHCG)	pseudohermaphroditism, hypospadias	Kremer et al., 1995; Misrahi et al., 1997
MC1R	melanocortin (MC_1)	UV-induced skin damage	Valverde et al., 1995
MC2R	melanocortin (MC ₂)	ACTH resistance syndrome	Clark et al., 1993; Tsigos et al., 1993
MC4R	melanocortin (MC ₄)	dominant and recessive obesity	Vaisse et al., 1998; Yeo et al., 1998;
			Farooqi et al., 2000
P2RY12	purinoceptor $(P2Y_{12})$	bleeding disorder	Hollopeter et al., 2001
OPN1SW	blue opsin	color blindness	Weitz et al., 1992
RGR	retinal GPCR	retinitis pigmentosa	Morimura et al., 1999
RHO	rhodopsin	retinitis pigmentosa	Dryja et al., 1990
TBXA2R	thromboxane (TP)	bleeding disorder	Hirata et al., 1994
TRHR	TRH	isolated central hypothyroidism	Collu et al., 1997
TSHR	thyrotropin (TSH)	hypothyroidism, thyroid hypoplasia	Biebermann et al., 1997
Family B GPCR			
GHRHR	GHRH	dwarfism	Wainraich et al., 1996
GPR56	GPR56	bilateral frontoparietal polymicrogyria	Piao et al., 2004
PTHR1	PTH/PTHrP (PTH ₁)	Blomstrand chondrodysplasia	Jobert et al., 1998
MASS1 (VLGR1)	MASS1	febrile seizures, Usher syndrome	Nakayama et al., 2002; Weston et al., 2004
Eamily C CDCD			
CASP	coloium consing (Cor)	hunomorathuroidian	Pollok at al. 1002
CASK	calcium-sensing (CaS)	nyperparamyroidism	rollak et al., 1995
Other GPCR			
FZD4	frizzled/wnt (FZD ₄)	exudative vitreoretinopathy	Robitaille et al., 2002
OA1	ocular albinism type 1	ocular albinism	Bassi et al., 1995

Full-length receptor names are given under 'Abbreviations' at the beginning of the chapter.

Multiple mechanisms underlie LoF mutations

V2 Vasopressin receptor mutations

- conserved residues within mammalian AVPR2 and fish vasopressin receptors
- Only two different residues within mammalian AVPR2 and fish vasopressin receptors
- O position of a missense mutation found in NDI patients
- position not analyzed in this ortholog screen

	total	hit by mutation
conserved residues	40%	62%
partially conserved residues	24%	26%
non-conserved residues	36%	12%

Expression and adenylyl cyclase stimulation of V2R and V2R(R137H) in HEK-293 cells

Larry S. Barak et al. PNAS 2001;98:1:93-98 ©2001 by National Academy of Sciences

V2R(R137H) is not expressed at the PM

Larry S. Barak et al. PNAS 2001;98:1:93-98 ©2001 by National Academy of Sciences **Receptor-GFP** Distribution

βarrestin2-GFP and V2R or V2R(R137H)

(+) AVP

(-) AVP

V2R

V2R(R137H)

Larry S. Barak et al. PNAS 2001;98:1:93-98

©2001 by National Academy of Sciences

βarrestin-GFP Distribution

βarrestin2 association with and phosphorylation of V2R and V2R(R137H)

Larry S. Barak et al. PNAS 2001;98:1:93-98

©2001 by National Academy of Sciences

Expression of V2R, V2R(R137H,Ala6), and V2R(R137H,T362)

Rhodamine Anti-HA Labeling

Larry S. Barak et al. PNAS 2001;98:1:93-98 ©2001 by National Academy of Sciences

Rescue of the R137H mutation

Larry S. Barak et al. PNAS 2001;98:1:93-98 ©2001 by National Academy of Sciences

A pharmacological chaperone to rescue R137H V2R expression

From: Functional Rescue of the Constitutively Internalized V2 Vasopressin Receptor Mutant R137H by the Pharmacological Chaperone Action of SR49059 Mol Endocrinol. 2004;18(8):2074-2084. doi:10.1210/me.2004-0080 Mol Endocrinol | Copyright © 2004 by The Endocrine Society

Rescue of receptor expression increases cAMP response

From: Functional Rescue of the Constitutively Internalized V2 Vasopressin Receptor Mutant R137H by the Pharmacological Chaperone Action of SR49059 Mol Endocrinol. 2004;18(8):2074-2084. doi:10.1210/me.2004-0080 Mol Endocrinol | Copyright © 2004 by The Endocrine Society

Outline

- Introduction to GPCRs
- Basics of GPCR Signaling
- GPCRs in disease
- Drugs targeting GPCRs

GPCRs are a common drug target in the genome

Nat Rev Drug Discov. 2017 Jan;16(1):19-34

GPCRs are still an active area for drug discovery

- GPCRs are still an active area for drug discovery
- Still a number of orphan GPCRs for which no endogenous ligand have been identified

Nature Reviews | Drug Discovery

Nat Rev Drug Discov. 2017 Jan;16(1):19-34

GPCR drug targets

Established target families

Nature Reviews | Drug Discovery Nat Rev Drug Discov. 2017 Dec;16(12):829-842

In-trial target families

Nature Reviews | Drug Discovery

Nat Rev Drug Discov. 2017 Dec;16(12):829-842

Substance	Brand name	Indications	Targets*	Approval year
Droxidopa	Northera	Orthostatic hypotension	ADRB1–3, ADA2A/B/C and ADA1A/B/D	2014
Dulaglutide	Trulicity	Type 2 diabetes	GLP1R	2014
Hydrocodone bitartrate	Hycodan	Narcotic cough	OPRD and OPRM	2014
Naloxegol	Movantik	Opioid-induced constipation	OPRM	2014
Netupitant	Akynzeo	Nausea and/or vomiting	NK1R	2014
Olodaterol	Striverdi respimat	COPD	ADRB2	2014
Suvorexant	Belsomra	Insomnia	OX2R and OX1R	2014
Tasimelteon	Hetlioz	Non-24-hour sleep-wake disorder	MTR1A and MTR1B	2014
Vorapaxar	Zontivity	Cardiovascular risk reduction	PAR1	2014
Aripiprazole lauroxil	Aristada	Schizophrenia	5HT1A, 5HT2A and DRD2	2015
Brexpiprazole	Rexulti	Depression	5HT2A, 5HT1A, DRD2 and 5HT7R	2015
Cangrelor	Kengreal	Percutaneous coronary intervention	P2Y12	2015
Cariprazine	Vraylar	Schizophrenia and bipolar disorder	DRD3 and DRD2	2015
Eluxadoline	Viberzi	Irritable bowel syndrome	OPRM and OPRD	2015
Flibanserin	Addyi	Hypoactive sexual desire disorder	5HT2A and 5HT1A	2015
Parathyroid hormone	Natpara	Hypoparathyroidism	PTH1R and PTH2R	2015
Rolapitant	Varubi	Nausea and/or vomiting	NK1R	2015
Selexipag	Uptravi	Pulmonary hypertension	PI2R	2015
Sonidegib	Odomzo	Basal cell carcinoma	SMO	2015
Lixisenatide	Adlyxin	Type 2 diabetes	GLP1R	2016
Pimavanserin	Nuplazid	Parkinson disease psychosis	5HT2A	2016
Abaloparatide	Tymlos	Osteoporosis	PTHR1	2017
Etelcalcetide	Parsabiv	Hyperparathyroidism	CASR	2017
Naldemedine	Symproic	Opioid-induced constipation	OPRM	2017

$\label{eq:table 1} Table \ 1 \ I \ New \ molecular \ entities \ acting \ via \ GPCRs \ approved \ by \ the \ FDA \ since \ 2014$

COPD, chronic obstructive pulmonary disease; GPCR, G protein-coupled receptor. *Listed using the protein name in UsiProt: for Discov. 2017 Dec;16(12):829-842 details on receptor nomenclature, see the IUPHAR/BPS Guide to PHARMACOLOGY (see Further information Rev Drug Discov. 2017 Dec;16(12):829-842

Receptor family	Targets*	Indications	Agents
Angiotensin	AGTR2	Catecholamine resistant hypotension	LJPC-501
Apelin	APJ	Cardiovascular disorders and insulin sensitivity	Apelin
Bile acid	GPBAR	Liver fibrosis	INT-767
Calcitonin	CALCRL	Migraine	Erenumab and ubrogepant
Chemerin	CML1	Dry eye	RX-10045
Chemokine	CCR2, CCR4 and CXCR1	HIV infection, cancer and type 1 diabetes	Cenicriviroc, mogamulizumab and reparixin
Class A orphans	GPR84, GPR35, MAS and LGR5	Ulcerative colitis, irritable bowel syndrome, autoimmune diseases, multiple myeloma and colorectal cancer	GLPG1205, PA101B, TXA127 (angiotensin 1–7) and BNC101
Complement peptide	C5AR1	Autoimmune diseases	CCX168
Free fatty acid	FFAR2	Neutrophil-driven inflammation and ulcerative colitis	GLPG0974
GPR18, GPR55 and GPR119	GPR55	Spasticity related to multiple sclerosis and epilepsy	VSN16R, cannabidiol (GWP42003) and cannabidivarin (GWP42006)
Ghrelin	GHSR	Appetite stimulant, antidiabetic, cancer cachexia, gastroparesis and digestive system disease	Unacylated ghrelin (AZP-531), anamorelin, macimorelin and ulimorelin
LPA	LPAR1	Pulmonary fibrosis	AM-152
Melanocortin	MC1R, MC3R and MC4R	Sexual dysfunction, anti-obesity and dermatological	Bremelanotide, RM-493 and afamelanotide
Motilin	MTLR	Gastroparesis	Camicinal
Prostanoid	PD2R2 (GPR44)	Asthma and allergic rhinitis	Fevipiprant and setipiprant
Relaxin	RXFP1 and RXFP2	Heart failure	Serelaxin
Tachykinin	NK3R	Polycystic ovarian syndrome	MLE-4901 and AZD4901
VIP and PACAP	VIPR1 and VIPR2	Sexual dysfunction and hypertension	Vasomera (PB1046) and vasoactive intestinal peptide

Table 2 | New GPCR target families and late-stage targets for agents currently in clinical trials

GPCR, G protein-coupled receptor; LPA, lysophosphatidic acid; PACAP, pituitary adenylate cyclase-activating peptide; VIP, vasoactive intestinal peptide. *Listed using the protein name in <u>UniProt</u>; for details on receptor nomenclature, see the IUPHAR/BPS Guide to PHARMACOLOGY (see Further information).

Nature Reviews | Drug Discovery

Nat Rev Drug Discov. 2017 Dec;16(12):829-842