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We study social comparisons and status seeking in an interconnected 
society. Individuals take costly actions that have direct benefits and 
also confer social status. A new measure of interconnectedness—
cohesion—captures the intensity of incentives for seeking status. 
Equilibria stratify players into social classes, with each class’s 
action pinned down by cohesion. A network decomposition algorithm 
characterizes the highest (and most inefficient) equilibrium. 
Members of the largest maximally cohesive set form the highest 
class. Alternatively, players not belonging to sets more cohesive than 
the set of all nodes constitute the lowest class. Intermediate classes 
are identified by iterating a cohesion operator. We also characterize 
networks that accommodate multiple-class equilibria. (JEL D11, 
D85, Z13)

Since at least Veblen’s (1899) classic study on conspicuous consumption, econ-
omists and social scientists have recognized that social comparisons influence 

individual decisions and welfare. Recent empirical studies establish that “happiness” 
depends on relative rather than absolute levels of wealth or consumption, especially 
within one’s own community.1 People compare their income, their consumption, 
their assets, their effort or output at work, and their performance in school to those 
of people around them and strive to maintain their position among family, friends, 
neighbors, coworkers, and peers with similar demographics.2

This paper studies social comparisons and status seeking in an interconnected 
society. Players are embedded in a social network, and each player’s neighbors con-
stitute his individual reference group. Since players’ social contacts can overlap, 
players are indirectly connected to many others in society, and actions distant in the 
network can spill over through the links. In this context, we study a simultaneous 

1 For a review of this literature see Clark, Frijters, and Shields (2008). 
2 Veblen (1899), Merton (1938), and Duesenberry (1949) provide classic discussions of conspicuous consump-

tion and social comparisons. More recent work by Frank (1985a, 1999, 2007) provides evidence from economics, 
sociology, and psychology on the implications of status considerations for salaries, workplace incentives, consump-
tion of luxury goods, savings, prices, happiness, health, laws, inefficiency, and inequality. 
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move game in which actions not only have intrinsic costs and benefits but also confer 
status. Specifically, we assume that individuals lose status when they are lower on 
the totem pole in terms of their actions and that the status loss is more pronounced 
when their actions are further below those of higher ranked neighbors. The per-
sonal intensity of status losses is captured by link-specific parameters. The analysis 
uncovers how these parameters and the network structure shape equilibrium actions 
and the formation of social strata.

Our main finding is that a novel measure of interconnectedness, which we call 
cohesion, determines equilibrium outcomes. Cohesion captures both the number of 
links and the importance of links for status comparisons within a subset of nodes.3 
The more cohesive a set is, the more its members compare themselves to other 
players within the set, who are also comparing themselves to one another, leading to 
a form of “rat race,” which in equilibrium may yield a high level of status seeking 
activity. New links between players can positively or negatively impact the cohesion 
of different sets, which can then increase or decrease overall equilibrium activity. 
Thus adding connections between different segments of society could diffuse or 
exacerbate the losses from status seeking.

The analysis indicates that the cohesion of segments of society is a driver of 
spending and thus yields predictions for spending patterns, including conspicuous 
consumption and charitable contributions. In our model, cohesion derives from 
three sources: agents’ intrinsic values from spending, social links among agents, 
and the weights agents place on status comparisons with neighbors in the social 
network. Increases in the parameters capturing intrinsic values and status compari-
sons, as well as changes in social connections that increase cohesion, generate more 
spending. Such comparative statics might explain, for example, trends in charitable 
contributions. Consider a set of people, e.g., wealthy individuals, who value charita-
ble giving and for whom contributions confer status. As this set of donors becomes 
more interconnected, through friendships per se or through media comparisons, 
cohesion increases. A small number of individuals with high intrinsic motivation to 
give can amplify their peers’ desire to contribute, inducing them to donate more than 
they would in the absence of any social pressure.

The Giving Pledge (http://givingpledge.org)—“a commitment by the world’s 
wealthiest individuals and families to dedicate the majority of their wealth to philan-
thropy”— could be one such instance, which mirrors activities in charitable giv-
ing more generally. This movement, started by Bill and Melinda Gates and Warren 
Buffet, encourages the world’s wealthiest individuals (“billionaires,” according to 
the website) to pledge to give away more than half of their wealth. The website doc-
uments the motivations and intentions of those who join the cause with photos, pro-
files, and pledge letters. The Pledge virtually connects this set of people to one other. 
Lists of donor names and pledges are ubiquitous in fundraising campaigns, small 
and large, along with receptions, dinners, ball games, and other events where donors 

3 Morris (2000) finds that a version of cohesion plays a central role in the analysis of a model of contagion in 
networks. In that context, the cohesion of a set of nodes is defined as the minimum proportion of links each node 
has within the set, whereas in our setting the cohesion of a set is the minimum number of (weighted) links each 
node has within the set. 

https://givingpledge.org/
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meet face-to-face. While such lists and events could encourage giving through sev-
eral channels (e.g., gift exchange, sense of community), our analysis pinpoints a 
critical feature of the network structure—cohesion—that enhances philanthropy.

Our research departs from previous theoretical work on status seeking by con-
sidering—at the same time—“local” status concerns and “upward looking” com-
parisons. Modeling local status concerns naturally calls for a network formulation. 
In contrast, the first models of status seeking involve anonymous individuals in a 
large population. In Frank’s (1985b) model, individuals care about both their own 
consumption and status, where the latter is defined by an individual’s position in the 
distribution of consumption in the population. Building on Frank (1985b), Hopkins 
and Kornienko (2004) analyze the equilibria of a status seeking game with a utility 
function that is multiplicative in consumption and status. Due to a rat race, status 
concerns lead to lower utility at every income level, even as incomes increase. In 
both models, players overspend on conspicuous consumption relative to the social 
optimum. Moreover, a player’s status in equilibrium is determined exactly by his 
position in the initial income distribution. Hence, excessive equilibrium consump-
tion has no actual effect on a player’s standing in the social hierarchy.

In line with our model, much empirical work supports the hypothesis that status 
comparisons are local: an individual’s satisfaction with his standing in the social 
hierarchy is based on his reference group. Evidence suggests that the composition 
of reference groups is partly driven by demographics.4 Luttmer (2005) finds that 
an individual’s self-reported happiness declines in the earnings of neighbors with 
similar educational attainment but is relatively insensitive to the earnings of neigh-
bors with different levels of education. Reference groups may include large social 
circles, but can also be small, as in Neumark and Postlewaite (1998), who show 
that the income of a woman’s in-laws is predictive of whether she enters the labor 
market. While some research suggests that people may choose their reference group, 
we consider a snapshot in time when the network is formed and exogenously given. 
It is clear that exogenous exposure to various social environments is an important 
force driving status concerns and “spontaneous comparisons” are often unavoidable 
(Crosby 1976; Mussweiler and Bodenhausen 2002).

Prior theoretical work that incorporates local status concerns assumes that players 
compare themselves to both their inferior and their superior neighbors. Ghiglino and 
Goyal (2010) build a network model in which each player’s utility depends on the 
difference between his consumption and the average neighborhood consumption. 
They find that each player’s consumption is proportional to his centrality in the 
network. In general, centrality does not cluster players into classes with similar 
actions, so Ghiglino and Goyal do not obtain the natural class stratification that our 
framework delivers. In our model, players compare themselves only to their supe-
riors: they consider their rank and look up, rather than down, when comparing their 
actions to those of neighbors. This hypothesis is articulated in the classic works 
of Veblen (1899) and Duesenberry (1949) and also echoed in the modern study 
of Frank (1985a). Loewenstein, Thompson, and Bazerman (1989) provide support 

4 See Festinger (1954); Frank (1985b); van de Stadt, Kapteyn, and van de Geer (1985); Luttmer (2005); and 
Kuhn et al. (2011). 
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for the hypothesis in an experiment on dispute resolution where subjects were con-
cerned more with disadvantageous than with advantageous inequality. Some empir-
ical evidence for the hypothesis can be found in the study of Ferrer-i-Carbonell 
(2005), which shows that self-reported life satisfaction of West Germans is affected 
by higher but not lower income individuals in reference groups. We borrow the 
exact formulation of status concerns from Stark and Wang (2005), who also review 
the literature on “relative deprivation,” which validates the upward comparisons 
specification.

Our preliminary results concern the welfare losses that arise from status seek-
ing. We show that the status game is supermodular, which then implies that the set 
of Nash equilibria forms a lattice and delivers comparative statics with respect to 
payoff parameters. All players are worse off in equilibria that exhibit higher status 
seeking activity, and welfare in the maximum and minimum equilibria is decreasing 
with respect to the status concern parameters. Increases in status concerns lead to 
higher equilibrium actions. Thus, our analysis upholds—in a network setting—pre-
vious results and contentions that status concerns can lead to distorted status seeking 
patterns (cf. Frank 1985b, Hopkins and Kornienko 2004, and Ghiglino and Goyal 
2010). When players have identical direct costs and benefits for actions, there exists 
an equilibrium in which all players take the same low action, equivalent to the opti-
mal action in the absence of any status concerns. In all other equilibria, players “run 
in place to stay ahead.” They take costly high actions in order to maintain their status 
and reduce their utility loss from being outranked by their neighbors. Increased sta-
tus seeking activity is thus “wasteful,” in that it generates Pareto inferior equilibria. 
However, we should point out that our welfare comparative statics do not extend to 
a setting in which actions also have positive externalities in addition to the assumed 
negative status externalities.

The substantive results of our research relate the shape of equilibria to the cohe-
sion of sets of nodes in the network. Equilibria are characterized by a partition of the 
players into status classes such that all players forming each class take an identical 
action. This action is sufficiently low so that all members have incentives to keep up 
with their class and sufficiently high so that no one wants to move into a higher class. 
The former bound depends on the cohesion of the group of players who attain a status 
at least as high as the given class; the latter depends on the cohesion of the group of 
players who have strictly higher status with the addition of any single player from the 
class under consideration.

Since the maximum equilibrium exhibits the highest and most inefficient level 
of status seeking, we pursue the characterization of this equilibrium for our third 
set of results. The characterization of equilibrium social strata suggests that players 
who belong to more cohesive segments of society have more incentives to strive for 
status. Based on this intuition, we show that status classes in the maximum equi-
librium can be determined using the following top-down procedure. The highest 
status class consists of the union of all sets of players that have maximum cohesion. 
Then the second highest class is formed by the remaining players who belong to 
any maximally cohesive superset of the highest class, and so on. Actions for each 
class are pinned down by the cohesion of the set of players who achieve at least the 
same status as the class. Alternatively, we construct a bottom-up characterization 
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of the maximum equilibrium. The lowest status class is formed by those players 
who do not belong to any set that is more cohesive than the entire set of nodes, the 
next lowest class consists of the remaining players who are not part of sets that are 
more cohesive than the set that excludes the lowest class, and so on. While both the 
top-down and the bottom-up characterizations involve the inspection of a collection 
of sets that grows exponentially in the number of players, we are able to develop 
an algorithm that computes the maximum equilibrium in polynomial time. We also 
establish that each player’s action in the maximum equilibrium is given by the high-
est cohesion achieved by a set that includes him.

The existence of class equilibria, in which players are segregated in several social 
classes, also depends on cohesion. We establish that there exists a class equilibrium 
if and only if there is a strict subset of players whose cohesion falls whenever a 
single player is added. Such a group of players serves as the highest status class in 
an equilibrium, and the condition above guarantees that no outside player has incen-
tives to emulate it.

The paper makes two main technical advances. First, it provides an understand-
ing of the key role that cohesion plays in the emergence of social strata. Second, 
it employs the concept of cohesion to characterize the maximum equilibrium via 
a decomposition of the network into social status classes. The decomposition fea-
tures a complex combinatorial structure, demonstrated by the alternative top-down 
and bottom-up derivations of the maximum equilibrium as well as by the underly-
ing polynomial-time algorithm. The graph theoretical techniques we develop could 
prove useful in other settings where networks can be parsed using similar criteria.

The rest of the paper is organized as follows. The next section introduces the 
social status game. Section II establishes the lattice structure of the equilibrium 
set and highlights the inefficiencies of equilibria with high status seeking activity; 
it also provides comparative statics with respect to the benefit and status parame-
ters. In Section III, we define cohesion and show how the cohesion of different sets 
in the network underlies the status classes that emerge in equilibrium. Section IV 
constructs two algorithms that identify the maximum action equilibrium: one starts 
from the highest status class and works down, the other starts at the lowest class and 
works up. Multiple-class equilibria are studied in Section V, and concluding remarks 
are provided in Section VI.

I.  The Social Status Game

A finite set ​N​ of players participates in the following social status game. Each 
player ​i ∈ N​ simultaneously picks an action ​​a​i​​ ∈ [0, ∞)​ that has private benefits 
and costs as well as social status implications. Let ​a = ​(​a​i​​)​i∈N​​ ∈ ​[0, ∞)​​ N​​ denote the 
realized action profile; as usual, ​​a​−i​​​ denotes the action profile of players other than ​
i​. Actions may reflect the consumption level for a luxury good, the size of the con-
tribution to a public good, or the amount of effort expended in a contest. The payoff 
function ​​u​i​​ : ​[0, ∞)​​ N​ → ℝ​ of player ​i ∈ N​ is specified by

	​ ​u​i​​ (a)  = ​ α​i​​ ​a​i​​ − ​ ​a​ i​ 2​ __ 
2
 ​ − ​ ∑ 

j∈N
​​​ ​β​ij​​ max(​a​j​​ − ​a​i​​ , 0),​
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where ​​α​i​​ ≥ 0​ and ​​(​β​ij​​ ≥ 0)​j∈N​​​ represent the benefit and status parameters, respec-

tively, of player ​i​.5 The first two terms capture standard linear benefits, ​​α​i​​ ​a​i​​​ ,  
and quadratic costs, ​​a​ i​ 2​/2,​ of action ​​a​i​​​ for player ​i​. In the case of a car purchase, ​​
α​i​​​ would quantify the individual utility from the car; for charitable contributions, 
​​α​i​​​ could represent the “warm glow” (​Andreoni 1990)​ from the donation. The status 

loss term ​​∑ j∈N​ ​​ ​β​ij​​ max (​a​j​​ − ​a​i​​ , 0)​ captures ​i​’s status concerns. Player ​i​ experiences 
a disutility when her action is lower than that of her neighbors, and ​​β​ij​​​ represents the 
weight that player ​i​ places on a particular player ​j​. This specification of status losses 
was introduced by Stark and Wang (2005) in the context of a model of relative depri-
vation. In the introduction, we provided empirical support for the “local” (player ​i​’s 
reference group for status comparisons includes only players ​j​ such that ​​β​ij​​ > 0​)  
and “upward looking” (player ​i​ suffers status losses only relative to players ​j​ with 
​​a​j​​ > ​a​i​​​) nature of status concerns embedded in our model.

Let ​α​ denote the vector of direct benefits ​​(​α​i​​ )​i∈N​​​ , ​β​ the matrix of social com-
parison weights ​(​β​ij​​​)​i, j∈N​​​ , and ​u​ the corresponding collection of payoff functions ​​
(​u​i​​)​i∈N​​​. We refer to the strategic-form game defined above as the status game with 
parameters ​(α, β )​.

The matrix ​β​ is interpreted as a weighted network; ​​β​ij​​​ is the weight of the 
directed link ​ij​.6 Alternatively, the social comparison weights ​β​ may be derived 
from an unweighted (directed) network ​g = (​g​ij​​​)​i, j∈N​​​ , in which ​​g​ij​​ ∈ { 0, 1}​ for all ​

i, j ∈ N​ and ​​g​ij​​ = 1​ is interpreted as the existence of a social link from player ​i​ to  
player ​j​ (​​g​ii​​ = 0​ for all ​i ∈ N​ ).7 In this case, ​​N​i​​ = {  j ∈ N | ​g​ij​​ = 1}​ constitutes 
player ​i​’s reference group or neighbors. We can take an unweighted network ​g​ as 
a primitive of the model describing the structure of social connections and allow 
for any specification of status parameters ​β​ such that ​​β​ij​​ > 0​ if and only if ​​g​ij​​ = 1​.  
In examples, we consider two salient profiles of status parameters ​β​ derived from 
an unweighted network ​g​. Under aggregate status concerns, we simply set ​β = g​. 
Alternatively, analogous to peer effect models, we can assume that each neighbor 
has the same normalized weight, ​​β​ij​​  = ​ g​ij​​ / (| ​N​i​​ | + 1)​ for all ​i, j ∈ N​.8 In this latter 
specification, which we call normalized status concerns, the number of individuals 
in player ​i​’s reference group has little effect on her status loss per se; it is the fraction 
of ​i​’s neighbors in ​g​ (from the “inclusive” neighborhood ​​N​i​​ ∪ { i}​) who outrank her 
that factors into her status loss. To take an example from charitable giving, aggregate 
status concerns highlight the possibility that an individual could feel worse being the 
lowest contributor out of 100 acquaintances versus the lowest contributor out of 10. 
While we employ aggregate and normalized status concerns in examples and illus-
trations, it should be emphasized that our results hold for general status parameters.

Mathematically, the status loss term features both ordinal and cardinal aspects of 
social comparison. A player’s loss of social status depends on the set of neighbors 
who outrank him as well as the degree by which they do so. This is an import-
ant aspect of interpersonal comparisons. For example, assume that people compare 

5 For notational convenience, define ​​β​ii​​  =  0​. 
6 We allow for the possibility that ​​β​ij​​  ≠ ​ β​ji​​​. 
7 The network ​g​ is undirected if ​​g​ij​​  = ​ g​ji​​​ for all ​i, j  ∈  N​. 
8 In both specifications, we can scale the status losses by a constant factor relative to the quadratic costs. 
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themselves with others on the basis of the brand of their cars. Imagine an individual 
who owns a Toyota (inexpensive car), and consider the following scenarios:

	 (i)	 Most of the individual’s neighbors also own a Toyota but one owns a BMW 
(medium-priced car).

	 (ii)	 Most neighbors own a Toyota but one owns a Ferrari (expensive car).

	 (iii)	 All of the individual’s neighbors own BMWs.

In a model of purely ordinal social comparisons, the individual would experience 
the same status satisfaction in scenarios (i) and (ii). This seems implausible because 
the individual might feel particularly unsuccessful compared to the Ferrari owner. In 
a cardinal world, where the individual compares the quality of his car to the average 
quality of neighbors’ cars, scenarios (ii) and (iii) may be identical. In particular, 
purchasing a BMW would have an identical effect on the individual’s status in both 
scenarios. It seems reasonable that the individual would have more incentives to 
upgrade his car in scenario (iii) because he needs to catch up with his entire neigh-
borhood rather than a single high-status neighbor. Our simple model of social com-
parisons can distinguish between the three cases.

Extensions of the Model.—The model and the underlying results can be easily 
generalized in two distinct directions. First, we can allow for more general action 
costs than the quadratic specification in the benchmark model. Indeed, all the results 
extend to a setting in which each player ​i​ incurs a cost ​​f​i​​ (​a​i​​)​ for taking action ​​a​i​​​ , 
where ​​f​i​​​ is a differentiable function such that ​​f ​ i​ ′ ​ (0)  =  0​ and ​​f ​ i​ ′ ​​ is continuous, strictly 
increasing, and unbounded.

A second relevant generalization of the model incorporates payoff externalities 
that are orthogonal to strategic considerations (unlike the assumed status external-
ities). These externalities can be represented by adding a term of the form ​​e​i​​ (​a​−i​​ )​  
(or ​​e​i​​ (​a​​N​i​​​​  )​ for local externalities) to player ​i​’s payoff function. Such externalities 
clearly do not affect any player’s strategic decisions and leave the set of equilib-
rium action profiles unchanged. This means that the characterizations of equilib-
rium action levels and status classes from Sections III–V apply to the case with 
externalities verbatim. However, the welfare comparative statics in the next section 
(Propositions 3 and 4) do not extend to the setting with externalities.

II.  Preliminary Results and Comparative Statics

We study the pure strategy Nash equilibria of this game, to which we simply refer 
as equilibria henceforth. We first characterize best responses and demonstrate that 
the game is supermodular. Due to the additive and linear features of pairwise com-
parisons embodied in the status loss term, a player’s marginal status loss is a step 
function in her action and her best response is isotone with respect to other players’ 
actions. With this structure, an intuitive formulation of the best response dynamics 
yields the minimum and the maximum equilibria.
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We show that higher action equilibria are Pareto-dominated by lower action equi-
libria. We further conduct comparative statics on utility function parameters, finding 
that higher status concerns lead to equilibria with higher actions and lower utility for 
all. After establishing these characteristics of the equilibrium set, we turn to network 
features in Section III.

A. Best Responses

To gain some intuition for the structure of best responses, note that player ​i​ must 
weigh the marginal cost of action ​​a​i​​​ , which is simply ​​a​i​​​ , against the marginal pri-
vate benefit ​​α​i​​​ and the marginal effect on his status. We can rewrite ​i​’s status loss as 
follows:

	​​   ∑ 
{   j∈N | ​a​j​​ > ​a​i​​}

​​​ ​β​ij​​ (​a​j​​ − ​a​i​​ ).​

For any action profile ​​a​−i​​​ of ​i​’s opponents, the expression above is piecewise linear 
in ​​a​i​​​ , with kinks at the finite set of points ​{ ​a​j​​ | j ∈ N }​. A marginal increase in ​i​’s 
action at a point ​​a​i​​​ that is not a kink creates a marginal improvement in ​i​’s status 
of ​​∑ {   j∈N   |  ​a​j​​>​a​i​​}​ ​​ ​β​ij​​​. Thus, the marginal incentives for ​i​ to reduce her status loss are 
summarized by the following function of the action profile:

	​ ​r​i​​ (a)  = ​   ∑ 
{   j∈N  | ​a​j​​>​a​i​​}

​​​ ​β​ij​​ .​

The first preliminary result formalizes the intuition that a best response needs to 
balance the marginal cost of higher actions with the marginal gain in direct benefits 
and the marginal reduction in status loss. The proof of this and all other results of 
the paper can be found in the Appendix.

Lemma 1: Each player ​i​ has a unique best response to any pure action profile of 
her opponents ​​a​−i​​​ , which is given by

	​ ​B​i​​ (​a​−i​​ )  :=  min{ ​a​i​​ | ​a​i​​  ≥ ​ α​i​​ + ​r​i​​ (​a​i​​ , ​a​−i​​ )}.​

Let ​B :  ​[0,  ∞)​​ N​  → ​ [0,  ∞)​​ N​​ denote the best response function defined by ​
B(a) = ​(​B​i​​ (​a​−i​​ ))​i∈N​​  ​. For any action profile ​a​ , consider the sequence ​​(​B​​ t​ (a))​t≥0​​​ 
obtained by iterating the best response function starting at the action profile ​a​. We 
call this sequence the best response dynamics initiated at ​a​ , and we say that the best 
response dynamics initiated at ​a​ converges in finite time to an action profile ​​a ̃ ​​ if 
there exists ​t  ≥  0​ such that ​​B​​ t​ (a) = ​B​​ t+1​ (a) = ​a ̃ ​​. The latter condition implies that ​​
a ̃ ​​ is an equilibrium of the status game. Our second preliminary result shows that the 
best response dynamics takes a finite number of values.

Lemma 2: For any action profile ​a​ , the best response dynamics initiated at ​a​ takes 
a finite number of values.
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To analyze the convergence of the best response dynamics and its relation to Nash 
equilibria, we introduce the following notation and definitions for orders and func-
tions. Let ​⪰​ denote the partial order on ​​ℝ​​ N​​ defined by

	​ ∀ x, y  ∈ ​ ℝ​​ N​ : x ⪰ y  ⇔  ​x​i​​  ≥ ​ y​i​​ ,  ∀ i  ∈  N.​

Note that ​​ℝ​​ N​​ endowed with the order ​⪰​ constitutes a lattice. A function ​f : C → D​ 
with ​C, D  ⊆ ​ ℝ​​ N​​ is isotone if ​f (x) ⪰  f (y)​ for any ​x, y ∈ C​ with ​x ⪰ y​. Similarly, ​
f  : C → D​ with ​C ⊆ ℝ, D ⊆ ​ℝ​​ N​​ is isotone if ​f (x) ⪰  f (y)​ for any ​x ≥ y​ in ​C​. 
Note that the generic variables ​a, u(a), α​ can be viewed as elements of the lattice 
​( ​ℝ​​ N​, ⪰)​. It follows from Lemma 1 that the best response function ​B​ is isotone.

The following corollary stems from the observation that whenever ​a​ and ​B(a )​ 
are ranked in the order ​⪰​ , the fact that ​B​ is isotone implies that the best response 
dynamics initiated at ​a​ forms a chain in the lattice ​( ​ℝ​​ N​ , ⪰)​. By Lemma 2, the 
dynamics takes only a finite set of values, so the chain must become constant in a 
finite number of steps.

Corollary 1: For any action profile ​a​ such that ​a ⪰ B(a)​ ​(B(a) ⪰ a)​ , the best 
response dynamics initiated at ​a​ converges in finite time to an equilibrium of the 
status game that is dominated by (dominates) ​a​ in the order ​⪰​.

B. Lattice Structure and Inefficiencies of Equilibria

In this section, we establish that the equilibrium set has a lattice structure and 
relate this structure to inefficiencies due to status seeking. The equilibrium set is 
bounded by an equilibrium with the lowest actions and one with the highest actions. 
We show that higher action equilibria are Pareto dominated. Striving for status leads 
to a rat race in which everyone overspends to maintain their standing, in many cases 
leading to higher costs but no status gains. Conducting comparative statics, we 
further show that increases in any status concern parameter ​​β​ij​​​ (weakly) lower all 
individuals’ utilities. When player ​i​ cares more about her standing relative to ​j​ , she 
increases her action, leading to higher overall actions, and costs again outweigh any 
potential status benefits.

The first result demonstrates that the set of equilibria has a lattice structure. The 
proof establishes that the status game is supermodular and then applies the results of 
Milgrom and Roberts (1990).

Proposition 1: The set of equilibria of the status game with parameters ​(α, β )​ 
is a sublattice of ​( ​ℝ​​ N​, ⪰)​. There exist a minimum equilibrium ​​ a _ ​​ and ​a​ maximum 
equilibrium ​​_ a ​​. Both ​​ a _ ​​ and ​​_ a ​​ are isotone functions with respect to each individual 
parameter ​​α​i​​​ and ​​β​ij​​​.

Note that if all players enjoy the same direct benefits from actions (​​α​i​​ = ​α​j​​ ,   
∀ i, j ∈ N​ ), so that the social network is the sole source of asymmetry, then at the 
minimum equilibrium each player takes an action equal to the common benefit 
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parameter, which is the optimal action in the absence of any status concerns. In this 
case, the minimum equilibrium does not precipitate any status losses.

We next prove that, when initiated at extreme points of the range of best responses, 
the best response dynamics converges in finite time to the extremal equilibria.

Proposition 2: The best response dynamics initiated at the action profile ​​( ​α​i​​ )​i∈N​​​ 
converges in finite time to ​​ a _ ​​ , while the one initiated at ​​​(​α​i​​ + ​∑ j∈N​ 

 
 ​​ ​ β​ij​​)​​

i∈N
​​​ converges 

in finite time to ​​
_

 a ​​.

The following example provides a simple illustration of convergence to the max-
imum equilibrium. We will use the network structure and payoffs from this example 
to illustrate several subsequent results.

Example 1 (Best Response Dynamics): Consider the undirected network ​g​ pic-
tured in Figure 1 connecting the set of players ​N = { 1, 2, …  , 7}​. The existence of a 
link between nodes ​i​ and ​j​ indicates that ​​g​ij​​ = ​g​ji​​ = 1​; if there is no link between ​i​ 
and ​j​, then ​​g​ij​​ = ​g​ji​​ = 0​. Suppose that players have aggregate status concerns, i.e., ​
β = g​. To highlight the effects of status seeking, we assume that actions have no 
direct benefits, i.e., ​​α​i​​ = 0​ for all ​i​. Clearly, in the minimum equilibrium, ​​​ a _ ​​i​​ = 0​ 
for all players ​i​. We show that in the maximum equilibrium players 1, 2, 3, and 
4 take action ​3​ , while players 5, 6, and 7 take action ​1​. The convergence of the 
best response dynamics to the minimum equilibrium, starting from the profile in 
which every player ​i​ takes action ​​a​i​​ = 0​ , occurs immediately. To compute the max-
imum equilibrium, follow Proposition 2 and initiate the best response dynamics at 
​a = ​(​α​i​​ + ​∑ j∈N​ ​​ ​β​ij​​ )​i∈N​​  =  (3, 4, 3, 3, 3, 1, 1)​. Using Lemma 1, we find the next 
term in the best response dynamics, ​B(a ) = (3, 3, 3, 3, 1, 1, 1)​. At this action profile, 
player 2 drops his action from ​4​ to ​3​ since there are no status benefits from taking a 
higher action than all his neighbors. Similarly, player 5 drops his action from ​3​ to ​1​ 
because his marginal cost for keeping up with player 2 is 3, while his marginal status 
benefit is only ​1​. At the next iteration of the best response function, no player has 
an incentive to further reduce his action, and we obtain ​​B​​ 2​ (a) = (3, 3, 3, 3, 1, 1, 1 )   
= B(a )​. By Proposition 2, the profile ​(3, 3, 3, 3, 1, 1, 1 )​ constitutes the maximum 
equilibrium, as claimed.

Figure 1. An Undirected Seven-Player Network
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In Example 1, the minimum equilibrium obviously yields higher payoffs than the 
maximum equilibrium for all players. We next show that this conclusion extends 
to any pair of equilibria that can be ranked according to ​⪰​: that is, equilibria with 
higher actions are Pareto dominated. This result might appear straightforward, since 
each player ​i’​ s standard economic benefits are decreasing in ​​a​i​​​ for ​​a​i​​ ≥ ​α​i​​​. However, 
the ranking of players’ actions can change and the magnitude of status losses can 
decrease as we move from lower to higher equilibria. In a strategic setting, though, 
other players respond, and player ​i​’s cost increase (along with the negative external-
ities imposed by other players’ high actions) exceeds the potential gains in status at 
higher equilibria. This finding captures, in a network setting, the results of Frank’s 
(1985a) original formulation: players run ahead to stay in place.

Proposition 3: For any ranked pair of equilibria of the status game ​a  ⪰ ​a ′ ​​ , each 
player has (weakly) higher utility at ​​a ′ ​​ than at ​a​ , i.e., ​u(​a ′ ​)  ⪰  u(a )​.

The final result of this section shows that any increase in the entries of the sta-
tus concerns matrix ​β​ generates higher equilibrium activity and lower welfare. An 
increase in ​​β​ij​​​ reflects the fact that player ​i​ places additional emphasis on his status 
relative to player ​j​; all else equal, player ​i​ has more incentives to increase his action. 
Increases in status concerns could arise in many ways. Suppose, for example, that 
status concerns originate from an unweighted social network ​g​. With the aggregate 
status specification ​β = g​ , the addition of a directed link ​ij​ to ​g​ translates into an 
increase in ​​β​ij​​​ from zero to one. If instead ​β = kg​ for some intensity parameter ​
k > 0​ , an increase in ​k​ would lead to greater weights for all links, corresponding to 
greater disutility from all social comparisons. As in Proposition 3, any status gains 
resulting from the increased equilibrium activity induced by greater status concerns 
is outweighed by the higher costs (and the greater weight on social comparisons).

Proposition 4: Consider two status games with parameters ​(α, β )​ and ​(α, β′ ),​  
where ​​β​ ij​   ​ ≥ ​β​ ij​ ′ ​​  for all pairs ​i ≠ j ∈ N​. Let ​u​ and ​​u ′ ​​ denote the corresponding pay-
off functions. Then, for any equilibrium ​​a ′ ​​ of the game ​(α, β′ )​ , there exists an equi-
librium ​a​ of the game ​(α, β )​ such that ​a  ⪰ ​a ′ ​​. Conversely, for any equilibrium ​a​ of 
the game ​(α, β )​ there is an equilibrium ​​a ′ ​​ of ​(α, β′ )​ such that ​a  ⪰ ​a ′ ​​. For any ranked 
equilibria ​a  ⪰ ​a ′ ​​ of the respective games, it must be that ​​u ′ ​(​a ′ ​)  ⪰  u(a ) .​ In partic-
ular, for the minimum and maximum equilibria in the respective games, ​(​ a _ ​, ​_ a ​)​ and 
​(​ a _ ​′, ​_ a ​′ )​ , we have ​​u ′ ​(​ a _ ​′ ) ⪰  u(​ a _ ​ )​ and ​​u ′ ​( ​_ a ​′ ) ⪰  u(​_ a ​)​.

Proposition 4 offers us guidance on when we might expect an expansion in the 
set of social connections in the underlying unweighted network ​g​ to generate larger 
equilibrium losses from status seeking. In a simple setting, where the weight of 
existing links is not affected by the addition of new links (as in the case of aggre-
gate status concerns), enlarging the set of social connections will lead to higher 
equilibrium actions. However, one can imagine situations in which additional links 
reduce the weights of existing links, as in the case of normalized status concerns 
derived from ​g​. Then increased connectivity in the network ​g​ does not change all the 
entries in the matrix of status parameters ​β​ in the same direction. Thus, the particular 
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specification of status concerns ​β​ as a function of the social network ​g​ determines 
the network comparative statics. We revisit the possibility that, under normalized 
status concerns, the addition of new links may decrease actions and increase payoffs 
in the maximum equilibrium in Example 5 from Section IV.

It should be emphasized that, as explained in Section I, the welfare comparative 
statics provided by Propositions 3 and 4 do not generalize to the version of the 
model in which actions have payoff externalities different from those stemming 
from social status comparisons.

III.  Cohesion and Equilibrium Social Classes

In this section, we study how the status concerns derived from the social net-
work shape equilibrium outcomes. We first develop a notion of interconnectedness 
of sets of players, which we call cohesion. In more cohesive sets, players compare 
themselves more to one another, amplifying the returns of higher actions for social 
status. Second, we show that equilibria exhibit a stratification of players into status 
classes. All players in the same class take an identical action and the common action 
within each class is characterized by bounds that involve the cohesion of certain sets 
of players.

A. Cohesion

We define cohesion as a measure of the intensity of incentives and social com-
parisons within a set of players. For any set ​S  ⊆  N​ and each player ​i  ∈  S​ , consider 
the standard economic benefits and the status gains obtained in social comparisons 
with other members of ​S​ resulting from an increase in ​​a​i​​​ under the assumption that ​
i​ is the lowest ranked player in ​S​. For a marginal increase in ​​a​i​​​ , player ​i​ experiences 
a marginal direct benefit of ​​α​i​​​ and a marginal reduction in status loss of ​​∑ j∈S​ ​​ ​β​ij​​ .​ 
The cohesion of ​S​ is defined by the lowest of these marginal returns to increasing ​​a​i​​​ 
among ​i ∈ S​.

Definition 1: The cohesion of a set of players ​S  ⊆  N​ is

	​ c(S )   = ​ min​ 
i∈S

​ ​​(​α​i​​ + ​∑ 
j∈S

​ ​​ ​β​ij​​)​.​

Using the convention that ​min  ∅ = ∞​ , we set ​c( ∅) = ∞​.9

In light of the discussion above, the cohesion of a set ​S​ can be interpreted as 
the highest common action that players in ​S​ have incentives to take in the absence 
of any status concerns relative to players outside ​S​ (under the assumption that 

9  For the version of the model discussed in Section I, in which player ​i​’s cost for action ​​a​i​​​ is ​​f​i​​ ( ​a​i​​ )​, the formula 
for cohesion should be modified as follows:

c(S  ) = ​ min​ 
i∈S

​ ​  ​​f ​ i​ ′−1​​​(​α​i​​ + ​∑ 
j∈S

​ ​​ ​β​ij​​)​. 
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​c(S ) > ​max​i∈S​​ ​α​i​​​; see Theorem 1 below). A set is more cohesive when its mem-
bers’ social comparisons are concentrated more within the set. When actions have 
no direct benefits and players have aggregate status concerns, the cohesion of a set 
of players is simply given by the minimum degree in the subgraph induced by those 
players, as illustrated in the following example.

Example 2 (Cohesion of Sets): Consider the status game ​(α, β )​ derived from 
the unweighted network in Figure 1 as in Example 1. We have ​c( { 1, 2, 3, 4} ) = 3​ 
since each player in the set ​{ 1, 2, 3, 4}​ has exactly three neighbors within the set. 
When player 5 is added to the set ​{ 1, 2, 3, 4}​ , its cohesion drops from 3 to 1. Indeed, ​
c( { 1, 2, 3, 4, 5} ) = 1​ because player 5 has a single neighbor in the set ​{ 1, 2, 3, 4}​. We 
can similarly compute ​c( { 1, 2, 5} ) = 1​ and ​c( { 1, 2, 6} ) = 0​.

Note that the cohesion function satisfies the following inequality:

(III.1)	​ c(S ∪ S′ )  ≥  min(c(S  ), c(S′ )),   ∀ S, S′  ⊆  N, ​

which we exploit in our proofs.

B. Status Classes

It is useful to divide players into tiers according to the magnitude of their actions. 
We show that this tier partition captures the relevant equilibrium incentives: in equi-
librium no player has incentives to move below or above her tier, and these incen-
tives depend on the cohesion of sets related to higher tiers.

For any action profile ​a​ , we divide the players into tiers as follows. Let 
​​
_
 k ​(a)​ be the number of distinct actions players take at ​a​ and ​{ ​a​​ 1​ , ​a​​ 2​ , … , ​a​​ ​

_
 k ​(a)​ }  

= { ​a​i​​ |i ∈ N }​ denote the set of distinct action levels under ​a​ , in decreasing order: 
​​a​​ 1​ > ​a​​ 2​ > ⋯ > ​a​​ ​

_
 k ​(a)​​. Denote by ​​C​k​​ (a)​ the set of players taking the ​k th​ highest 

action level under ​a​ , i.e., ​​C​k​​ (a) = { i ∈ N | ​a​i​​ = ​a​​ k​ }​. We refer to the set ​​C​k​​ (a)​ as 
status class ​k​ under ​a​ and to its members as status ​k​ players.

The partition of players into status classes allows us to identify players’ marginal 
status losses at an action profile ​a​. A member ​i​ of status class ​k​ suffers status losses 
when comparing her action to those of neighbors in higher classes. Let

	​ ​S​k​​ (a)  = ​ ∪​ h=1​ k ​ ​ C​h​​ (a)​ 

be the set of players who take one of the ​k​ highest distinct actions. The set of 
players who take strictly higher actions than ​i​ at ​a​ is then given by ​​S​k−1​​ (a)​.10 If ​i​ 
contemplates reducing her action at ​a​ by a small amount, she would suffer status 
losses with respect to her neighbors in ​​S​k​​ (a)​.

The next result provides a necessary and sufficient condition for an action profile ​
a​ to form an equilibrium in terms of the action levels ​​a​​ k​​ and the cohesion of the 
sets ​​S​k​​ (a)​ and ​​S​k−1​​ (a)  ∪ { i}​ with ​i ∈ ​C​k​​ (a)​. Consider a player ​i​ in status class ​k​.  

10 It is notationally convenient to set ​​S​0​​​(a) = ∅.
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In equilibrium, ​i​ cannot gain by increasing his action and reducing his status loss 
vis-à-vis higher class neighbors, who form the set ​​S​k−1​​ (a)​. Nor can ​i​ gain by decreas-
ing his action and reducing costs, albeit suffering further status losses with respect 
to higher class neighbors as well as his class ​k​ peers, who jointly form the group 
​​S​k​​ (a)​. Since cohesion captures the intensity of incentives as discussed above, the 
upper and lower bounds on the equilibrium actions ​​a​​ k​​ are derived from the cohesion 
of the relevant sets of players.

Theorem 1: An action profile ​a​ is an equilibrium of the status game if and only if

(III.2)  ​c(​S​k−1​​ (a)  ∪ { i} ) ≤ ​a​​ k​ ≤ c(​S​k​​ (a)),   ∀ i ∈ ​C​k​​ (a),   ∀ k = 1, … , ​
_
 k ​(a).​

The following example illustrates the equilibrium characterization provided by 
Theorem 1 in the context of the network from Figure 1.

Example 3 (Cohesion and Equilibrium Conditions): Consider again the network 
from Figure 1 with the underlying ​α​ and ​β​ specified as in Example 1. Suppose that ​
a​ constitutes an equilibrium of the status game ​(α, β )​ formed by two social classes:​​
C​1​​ (a) = { 1, 2, 3, 4}​ and ​​C​2​​ (a) = { 5, 6, 7}​ , which take actions ​​a​​ 1​​ and ​​a​​ 2​​ , respec-
tively (​​a​​ 1​ > ​a​​ 2​​  ). As discussed in Example 1, the maximum equilibrium has this 
class structure. The equilibrium conditions from Theorem 1 reduce to

	​ c( { i} )  ≤ ​ a​​ 1​  ≤  c( { 1, 2, 3, 4} )​

for each ​i  ∈ ​ C​1​​ (a)​ and

	​ c( { 1, 2, 3, 4} ∪ { i} )  ≤ ​ a​​ 2​  ≤  c( { 1, 2, 3, 4, 5, 6, 7} )​

for each ​i  ∈ ​ C​2​​ (a)​. The conditions ​​a​​ 1​  ≤  c( { 1, 2, 3, 4} )  =  3​ and 
​​a​​ 2​  ≤  c( { 1, 2, 3, 4, 5, 6, 7} )  =  1​ essentially require that no player in each of the 
two classes has incentives to fall behind her class.

To identify the highest necessary lower bound on ​​a​​ 2​​ , recall that Example 2 
showed that ​c( { 1, 2, 3, 4, 5} ) = 1​. Since players 6 and 7 are not linked to any players 
in the first class, we have ​c( { 1, 2, 3, 4, 6} ) = c( { 1, 2, 3, 4, 7} ) = 0​. Hence, the lower 
bounds on ​​a​​ 2​​ boil down to the constraint ​c( { 1, 2, 3, 4, 5} ) = 1 ≤ ​a​​ 2​​ , which guaran-
tees that player ​5​ does not have incentives to increase her action and decrease her 
status loss vis-à-vis her only first class neighbor, player 2. Combining the conditions 
above, we find that in any equilibrium with the posited two-class structure, the low 
class must take action ​​a​​ 2​ = 1​ and the high class an action ​​a​​ 1​  ∈  (1, 3 ]​. Section V 
explores the existence of multiple class equilibria in general networks.

IV.  Maximum Equilibrium and Cohesion

This section investigates the structure of the maximum equilibrium ​​
_
 a ​​ , which exhib-

its the most extreme escalation of actions due to status concerns. We find that the class 
stratification in the maximum equilibrium is driven by maximally cohesive sets. We 
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first provide a top-down characterization of the equilibrium showing that the largest 
maximally cohesive subset of players forms the highest status class. High class play-
ers take actions equal to the cohesion of their class. Players in each successive class, 
who suffer status losses relative to higher classes, are similarly identified. We then 
develop a bottom-up characterization of the maximum equilibrium based on an algo-
rithm that first determines the lowest class, then the second lowest class, and so on. 
This alternative characterization delivers a method to compute the maximum equilib-
rium in polynomial time. At the end of the section, we use the characterizations of the 
maximum equilibrium to illuminate comparative statics with respect to the network 
of social connections and the corresponding specification of status concerns.

A. Top-Down Characterization of the Maximum Equilibrium

Here we construct a top-down algorithm that identifies the maximum equilib-
rium. By Theorem 1, no action in any equilibrium exceeds ​​max​M⊆N, M≠∅​​ c(M )​. We 
prove that this upper bound is achieved in the maximum equilibrium for some play-
ers. Once the highest status class in the maximum equilibrium is identified, we can 
use a similar idea to find the next highest status class, and so on. The algorithm relies 
on the following recursive definition. Set ​​M​0​​  =  ∅​. For ​k  ≥  1​ , define ​​M​k​​​ by11

	​​ M​k​​​ = ​​  ∪ 
M ∈ ​arg max​ 

M′⊃​M​k−1​​
​ ​ c(M′ )

​​​​ M.

The construction continues as long as ​​M​k​​ ≠ N​. Let ​​ k ̅ ​​ denote the last step (​​M​​ k ̅ ​​​ = N​ ).
Using (III.1), one can easily show that ​c(​M​k​​ )  = ​ max​M⊃​M​k−1​​​​ c(M )​. Thus, ​​M​k​​​ 

represents the largest (with respect to inclusion) maximally cohesive strict superset 
of ​​M​k−1​​​. It must be that ​c(​M​k−1​​) > c( ​M​k​​ )​ for ​k = 1, … , ​

_
 k ​​.12

The result below directly relates the social classes and actions in the maximum 
equilibrium to the sets ​​M​k​​​ and their levels of cohesion. The members of the largest 
maximally cohesive set ​​M​1​​​ drive one another to take the highest action at the maxi-
mum equilibrium, which is equal to the cohesion of this set. Since all players look up 
to the high status class ​​M​1​​​ , the second highest status class is formed by the remaining 
players who belong to the largest maximally cohesive superset of ​​M​1​​​ , and so forth.

Theorem 2: The maximum equilibrium of the status game is characterized by

	​​​
_
 a ​​i​​  =  c(​M​k​​ ),   ∀ i  ∈ ​ M​k​​ \  ​M​k−1​​ , k  =  1, … , ​

_
 k ​.​

In other words, the maximum equilibrium exhibits exactly ​​ k ̅ ​​ status classes, 
with class ​k​ given by ​​C​k​​ (​

_ a ​)  = ​ M​k​​ \ ​M​k−1​​​ and its common action specified by 
​​​
_

 a ​​​ k​  =  c(​M​k​​ )​. The next result establishes that the action of each player in the maxi-
mum equilibrium is equal to the greatest cohesion of any set that includes the player.

11 We use ​⊂​ and ​⊃​ to represent strict inclusions. 
12 For, c(​​M​k​​​) ≥ c(​​M​k−1​​​) implies that k ≥ 2 and ​​M​k​​​ ∈ arg ​​max​M⊃​M​k−2​​​​​ c(M ), which means that ​​M​k​​​ ⊆ ​​M​k−1​​​, a 

contradiction.
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Theorem 3: The maximum equilibrium ​​
_

 a ​​ of the status game is given by

	​​​
_

 a ​​i​​  = ​ max​ 
M∋i

​ ​ c(M  ),   ∀ i  ∈  N.​ 

B. The Bottom-Up Characterization of the Maximum Equilibrium

We now develop a procedure that first determines the lowest status class in the 
maximum equilibrium (​N  \ ​M​​_ k ​−1​​​), then the second lowest class (​​M​​_ k ​−1​​ \ ​M​​_ k ​−2​​​), and 
so on. Let ​​ be the operator over subsets of ​N​ defined by

	​ (M )   = ​   ∪ 
​M ′ ​⊂M, c(​M ′ ​)>c(M)

​​​ ​M ′ ​.​

By (III.1), ​c((M ))  >  c(M )​. It follows that for every set ​M​ , ​(M )​ is the largest 
subset of ​M​ (with respect to inclusion) that is strictly more cohesive than ​M​. The 
definition implies that if ​M​ has no subsets that are more cohesive than itself, then ​
(M )  =  ∅​.

Note that ​(N )​ is the union of all sets whose cohesion exceeds ​c(N )​ , which we 
can think of as sets of players who can push one another to take actions higher than ​
c(N )​. This intuition, along with the finding that ​c(N )​ is the lowest action in the 
maximum equilibrium (Theorem 2), suggests that players outside ​(N )​ must take 
action ​c(N )​ and form the lowest class in ​​

_
 a ​​. Once we pin down the lowest status 

class ​​C​​_ k ​​​ (​
_ a ​)​ , the remaining players suffer no status loss from social comparisons to 

​​C​​_ k ​​​ (​
_ a ​)​ , which allows us to treat the strategic interaction among the players in 

​N  \ ​C​​_ k ​​​ (​
_ a ​)​ as an independent status game. Therefore, the lowest class in this reduced 

game constitutes the second to the lowest class in the original game, so we can 
successively identify the status classes in the maximum equilibrium proceeding 
from the bottom of the social hierarchy. Using this idea, the next result shows that 
the sequence ​​(​M​k​​ )​k=0, … , ​

_
 k ​​​​ characterizing the maximum equilibrium can be alterna-

tively derived by iterating the operator ​​ as follows. Find the smallest ​​
_
 k ​​ such that ​​

​​ ​
_
 k ​​ (N )  =  ∅​ (​​

_
 k ​  ≤  | N |​ since ​(M )  ⊂  M​ for all ​M​  ), and then set ​​M​k​​  = ​ ​​ ​

_
 k ​−k​ (N )​ 

for all ​k = 0, … , ​
_
 k ​​.

Theorem 4: The number of status classes ​​
_

 k ​​ in the maximum equilibrium is the 
smallest ​k  ≥  0​ such that ​​​​ k​ (N )   =  ∅​. Moreover, the sets characterizing the maxi-
mum equilibrium are given by ​​M​k​​  = ​ ​​ ​

_
 k ​−k​ (N )​ for all ​k = 0, … , ​

_
 k ​​.

Theorem 4 offers a bottom-up perspective on the status stratification in the 
maximum equilibrium: the set ​N  \ (N )​ constitutes the lowest status class, the set 
​(N )  \  ​​​ 2​ (N )​ forms the second lowest class, and so forth.

C. Polynomial Time Computation of the Maximum Equilibrium

Both the top-down and the bottom-up computations of the maximum equilib-
rium entail the inspection of a number of subsets of nodes that grows exponentially 
in the number of players. We next develop a procedure that determines ​(M )​ in 
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polynomial time with respect to the cardinality of ​M​ for every ​M  ⊆  N​. In light of 
Theorems 2 and 4, this procedure renders an algorithm that has the methodological 
advantage of computing the maximum equilibrium using a number of basic opera-
tions that is a polynomial function of ​| N |​.

Fix ​M ⊆ N​. Let ​​L​0​​ (M ) = M​ and define a sequence ​( ​L​s​​ (M ))​ recursively as fol-
lows. For ​s ≥ 1​ , ​​L​s​​ (M )​ denotes the subset of ​​L​s−1​​ (M )​ obtained by simultaneously 
removing all nodes, if any, that “hold down” the cohesion of ​​L​s−1​​ (M )​ to ​c(M )​ or 
below. Formally,

	​ ​L​s​​ (M )   =  { i  ∈ ​ L​s−1​​ (M ) | ​α​i​​ + ​  ∑ 
j∈​L​s−1​​(M)

​​​ ​β​ij​​  >  c(M ) }.​

The construction ends at the first step ​s​ at which no new players are dropped from ​​
L​s−1​​ (M )​ , i.e., ​​L​s​​ (M )   = ​ L​s−1​​ (M )​ (it is possible that the final set is empty). Denote 
this step by ​​

_
 s ​(M )​. Clearly, ​​

_
 s ​(M )   ≤  | M  |  + 1​. We prove that the final outcome of 

the procedure is ​(M )​ , i.e., ​(M )   = ​ L​​_ s ​(M)​​ (M )​.

Proposition 5: For every set ​M  ⊆  N​ , we have ​(M )   = ​ L​​ s ̅ ​(M)​​ (M )​. In particu-
lar, ​(M )​ can be computed in polynomial time with respect to ​| M |​.

Proposition 5 implies that players who “hold down” the cohesion of ​N​ to ​c(N )​ 
belong to the lowest status class, as do players who keep the cohesion of the remain-
ing subset at or below ​c(N )​. The identification of low-class players continues as 
long as the cohesion of the remaining players does not exceed ​c(N )​. The next exam-
ple illustrates the bottom-up algorithm, again using the seven-player unweighted 
network with aggregate status concerns from Figure 1.

Example 4 (Bottom-Up Algorithm for Maximum Equilibrium): Consider the 
network from Figure 1 with ​α​ and ​β​ derived as in Example 1. We first need to com-
pute ​(N )​. Since ​c(N )  =  1​ , we have ​​L​1​​ (N )  =  { 1, 2, 3, 4, 5},​ ​​L​2​​ (N )  =  { 1, 2, 3, 4} 
= ​L  ​3​​ (N )​. Proposition 5 implies that ​(N ) = { 1, 2, 3, 4}​. In order to evaluate ​​
​​ 2​ (N ) = ( { 1, 2, 3, 4} )​ , we determine that ​c( { 1, 2, 3, 4} ) = 3​ and then find ​​
L​1​​ ( { 1, 2, 3, 4} ) = ∅ = ​L​2​​ ( { 1, 2, 3, 4} )​. Proposition 5 yields ​( { 1, 2, 3, 4} )  = ∅​.  
Theorem 4 implies that ​​

_
 k ​  =  2, ​M​1​​  =  { 1, 2, 3, 4}​ , and ​​M​2​​  =  N​. Then Theorem 2 

delivers the maximum equilibrium: ​​​
_

 a ​​i​​  =  3​ for ​i  ∈  { 1, 2, 3, 4}​ and ​​​
_
 a ​​i​​  =  1​ for ​

i  ∈  { 5, 6, 7}​.

D. Network Comparative Statics and Cohesion

In this section, we continue our discussion of the impact of expanding social ties 
and reference groups on equilibrium outcomes. The tools developed above allow us 
to trace how additional links and their effects on status concerns and cohesion affect 
the maximum equilibrium and thus the highest possible welfare losses from seek-
ing social status. In Section IIB, we used Proposition 4 to argue that if social con-
cerns are derived from unweighted networks using the aggregate specification, then 
the addition of new links increases actions and decreases welfare in the maximum 
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equilibrium. Here we show that this conclusion does not extend to normalized status 
concerns. As the next example illustrates, under normalized status concerns, the 
addition of a link may dilute the cohesion of certain sets of players and lower actions 
in the maximum equilibrium.

Example 5 (New Links and the Maximum Equilibrium): We explore the effects 
of adding a directed link from player 2 to player 6 in the network from Figure 1, 
which leads to the network depicted in Figure 2. In both networks, we assume that 
actions have no intrinsic benefits (​​α​i​​  =  0​ for all ​i  ∈  N​ ) and that status concerns 
are normalized. Recall that normalized status concerns are derived from network ​g​ 
according to the formula ​​β​ij​​  = ​ g​ij​​ / (| ​N​i​​ | + 1)​ for all ​i, j  ∈  N​. We use Theorems 2 
and 4, along with Proposition 5, to find the maximum equilibrium for each network.

In the network from Figure 1, we find that ​c(N ) = 1 / 2​ , and then com-
pute ​​L​1​​ (N ) = { 1, 2, 3, 4, 5}​ , ​​L  ​2​​ (N ) = { 1, 2, 3, 4} = ​L  ​3​​ (N )​. By Proposition 5, ​
(N ) = { 1, 2, 3, 4}​. To evaluate ​​​​ 2​ (N ) = ( { 1, 2, 3, 4} )​ , we determine that ​
c( { 1, 2, 3, 4} ) = 3 / 5​ and then compute ​​L​1​​ ( { 1, 2, 3, 4} ) = { 1, 3, 4}​ , ​​L  ​2​​ ( { 1, 2, 3, 4} ) 
= ∅ = ​L  ​3​​ ( { 1, 2, 3, 4} )​. Proposition 5 yields ​( { 1, 2, 3, 4} ) = ∅​. Theorem 4 implies 
that ​​

_
 k ​ = 2, ​M​1​​ = { 1, 2, 3, 4}​ , and ​​M​2​​ = N​. Then Theorem 2 delivers the maximum 

equilibrium: ​​​
_

 a ​​i​​  =  3 / 5​ for ​i  =  1, 2, 3, 4​ and ​​​
_

 a ​​i​​  =  1 / 2​ for ​i  =  5, 6, 7​.
For the network depicted in Figure 2, we find that ​c(N )   =  1 / 2​ , and the algo-

rithm supporting Proposition 5 produces the following sequence:

​​L​1​​ (N ) = { 1, 2, 3, 4, 5},  ​L​2​​ (N ) = { 1, 2, 3, 4},  ​L​3​​ (N ) = { 1, 3, 4},   ​L​4​​ (N ) = ∅ = ​L​5​​ (N ) .​ 

Hence, ​(N )   =  ∅​ , which, along with Theorems 2 and 4, implies that ​​M​1​​  =  N​ 
and ​​​ 

_
 a ​​i​​  =  1 / 2​ for all ​i  ∈  N​.13

Compared to the maximum equilibrium in the original network, the actions of 
players ​1, 2, 3,​ and ​4​ decline from 3/5 to 1/2, while the actions of other players 
remain unchanged. Clearly, the addition of the link ​(2, 6)​ increases every player’s 
welfare under normalized status concerns, as the intrinsic payoffs of players ​1, 2, 3,​ 
and ​4​ increase from the reduction in actions, while those of the other players do not 
change, and no player suffers status losses because a single status class emerges in 
the new maximum equilibrium.

This analysis demonstrates that the intuition of the corollary of Proposition 4, 
whereby the addition of new links that do not affect the status weights for existing 
links increases equilibrium activity and decreases welfare, does not carry over to the 
case of normalized status concerns. Indeed, with normalized status losses, the addi-
tion of the link ​(2, 6 )​ from the high-status player ​2​ to the low-status player ​6​ (status 
is evaluated at the maximum equilibrium for the original network) alleviates the 
status concerns of player ​2​ (by decreasing ​​β​2j​​​ for each initial neighbor ​j = 1, 3, 4​)  
and induces him to reduce his action. This, in turn, prompts players ​1, 3,​ and ​4​ to 
lower their actions at the maximum equilibrium in the new network.

13 In this specific example, the maximum equilibrium does not change if the link (6, 2) is added to maintain an 
undirected network.
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Even though the addition of links may decrease actions at the maximum equilib-
rium, it is worth noting that the empty network (with ​​g​ij​​ = 0​ for all ​i, j ∈ N​ ) gen-
erates the lowest equilibrium activity. Indeed, by Lemma 1, the unique equilibrium 
in the empty network—given by ​​(​α​i​​ )​i∈N​​​ —is dominated in the order ⪰ by every 
equilibrium for any other network with normalized status concerns. Moreover, if 
players have a common benefit parameter ​z​ and normalized status concerns, the 
complete network (defined by ​​g​ij​​  =  1​ for all ​i  ≠  j  ∈  N​ ) supports the highest 
equilibrium activity among all networks.14 In this case, each player takes action ​
z + ( | N |  − 1) /  | N |​ in the maximum equilibrium for the complete network. Since 
the cohesion of every nonempty set in any network with normalized status con-
cerns cannot exceed ​z + ( | N  |  − 1)/  | N |​ , equilibrium actions in every network are 
bounded above by ​z + ( | N  |  − 1) /  | N |​.

V.  Multiple-Class Equilibria

Finally, we investigate what networks of status concerns support equilibria in 
which players are divided into multiple social classes. We say that a pure strategy 
profile is a class equilibrium if it is an equilibrium of the status game that does not 
prescribe the same action for all players, so that multiple status classes emerge. Note 
that the maximum equilibrium exhibits multiple social classes if and only if there 
exists a nonempty subset of nodes that is more cohesive than ​N​. The next example 
demonstrates that this condition is not necessary for the existence of class equilibria: 
in some networks, it is possible that ​​_ a ​​ is not a class equilibrium, yet class equilibria 
exist.

Example 6: Consider the undirected network depicted in Figure 3. Suppose that 
players do not gain direct benefits from their actions (​​α​i​​  =  0​ for all ​i  ∈  N​ ) and 

14 The following three-player example demonstrates that the assumption of a common benefit parameter is 
needed for this conclusion. Suppose that N = {1, 2, 3}, ​​α​1​​​ = 0, ​​α​2​​​ = ​​α​3​​​ = 1. Then, under normalized status con-
cerns, the maximum equilibrium in the complete network is given by ​​a​1​​​ = 2/3; ​​a​2​​​ = ​​a​3​​​ = 1 + 1/3. The maximum 
equilibrium actions of players 2 and 3 increase to 1 + 1/2 when they no longer have links to player 1 (the action of 
player 1 remains the same if he is still linked to 2 and 3).

Figure 2. The Addition of Link ​(2, 6 )​ Decreases Actions and Increases Payoffs in the Maximum 
Equilibrium
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have aggregate status concerns. In this case the maximum equilibrium ​​_ a ​​ gives rise to 
a single status class. Indeed, the characterizations of the maximum equilibrium from 
the previous section imply that ​​​_ a ​​i​​  =  2​ for all players. However, by Theorem 1, a 
strategy profile ​a​ specified by ​​a​i​​  =  x​ for ​i  ∈  { 1, 2, 3}​ and ​​a​i​​  =  y​ for ​i  ∈  { 4, 5, 6}​ 
constitutes a class equilibrium whenever ​x  ≠  y  ∈  [ 1, 2 ]​.

The following result establishes that a class equilibrium exists if and only if we 
can find a nonempty set of nodes ​M  ≠  N​ whose cohesion decreases when any single 
node is added to it. The intuition is that if ​M​ satisfies this property then the players 
in ​M​ may act as exclusive members of the highest status class in some equilibrium. 
The condition ​c(M ) > c(M ∪ { i} )​ for ​i ∈ N  \  M​ guarantees that player ​i​ does not 
have incentives to emulate the members of ​M​ if ​M​ forms the highest status class and 
its members take action ​c(M )​. For instance, in Example 6, the set ​M  =  { 4, 5, 6}​ 
satisfies the condition as ​2  =  c(M )   >  c(M ∪ { i} )   ∈  { 0, 1}​ for all ​i  ∈  N  \ M​.

Theorem 5: A class equilibrium exists if and only if there exists a nonempty set ​
M  ⊂  N​ such that ​c(M )   >  c(M ∪ { i} )​ for all ​i  ∈  N  \ M​.

VI.  Conclusion

This paper studies social comparisons and status seeking activity. Our model cap-
tures two stylized facts: (i) reference groups for status comparisons are local, as 
described by a social network; and (ii) people have aspirational status concerns and 
focus on upward social comparisons. These assumptions are grounded in the large 
economics and sociology literature on status and conspicuous consumption as well 
as many empirical studies on happiness and subjective well-being. As in previous 
theoretical work, in our model, higher equilibrium levels of status seeking activity 
yield lower overall utility in a decentralized sort of rat race.

The analysis shows how the global network structure shapes the formation of 
social strata. The main finding is that the cohesion of sets of players determines the 
amount of status seeking activity. We prove that every equilibrium is characterized 
by a partition of the players into social classes, with actions in each class being con-
strained by the cohesion of certain sets of players.

Since equilibria that involve higher actions are Pareto dominated, our main anal-
ysis naturally focuses on the maximum equilibrium, which showcases the extreme 
inefficiencies created by status concerns. We provide a top-down characterization of 
the maximum equilibrium, which iterates the finding that players in the most cohe-
sive set(s) achieve the highest status. An alternative, bottom-up characterization of 
this equilibrium builds on the observation that players who do not belong to any 
set that is more cohesive than the entire set of nodes form the lowest status class. 
The two characterizations reveal the rich combinatorial structure of the underlying 
network decomposition into status classes. Furthermore, the bottom-up characteri-
zation paves the way to a polynomial time algorithm for computing the maximum 
equilibrium.

We also show how changes in payoff parameters and network structure affect 
equilibria. When players are more concerned about status, they take higher actions 
and experience lower utility. This phenomenon is another version of the rat race 
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outcome. The addition of new links to the network can have ambiguous effects on 
equilibrium actions and welfare. A new link increases the number of social com-
parisons. However, the direction in which actions at the maximum equilibrium shift 
depends on how status comparison weights relate to the network of social ties. With 
normalized status concerns, new links can decrease the cohesion of some sets and 
reduce status seeking activity. Finally, we identify a necessary and sufficient con-
dition, which also relies on relative cohesion of various subsets of nodes, for the 
existence of multiple-class equilibria.

Future research in this area could take two related tracks. First, while the net-
work of status concerns is fixed in our model, people can, at least partially, choose 
their social connections and reference groups.15 In our simple model, there are only 
losses from being linked to others. But of course people also benefit—emotion-
ally and economically—from friendships and social interactions. A richer model 
of social status would involve network formation with benefits from friendships as 
well as status concerns. Second, a social planner could be interested in designing a 
network in order to influence status seeking activity. Actions in our model can repre-
sent, for example, charitable contributions. People gain utility from contributing per 
se and reduce status loss by being among the top contributors.16 A fundraiser would 
then want to organize her events and campaign to highlight these comparisons and 
maximize overall contribution levels.

15 Frank (1985a) is a well-known study of this phenomenon. 
16 Andreoni (1990) is a classic paper introducing the “warm glow” people experience from making charitable 

contributions. As for social comparisons, experiments show that people make greater contributions when they know 
others contribute larger amounts (Frey and Meier 2004 and Shang and Croson 2009). Kumru and Vesterlund (2010) 
find that contributions by higher status subjects (where status is induced in the laboratory independently of contri-
bution levels) influence the giving of other subjects. 

Figure 3. A Collection of Class Equilibria for x ≠ y ∈ [1, 2]
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Appendix

Proof of Lemma 1:
Fix ​i  ∈  N​ and a pure action profile ​​a​−i​​​ for ​i​’s opponents. The function ​​u​i​​ ( · , ​a​−i​​ )​ 

is continuous, strictly concave, and semi-differentiable on the domain ​[ 0,   ∞)​. The 
left- and right-derivatives can be immediately computed:

(A.1) ​  ​ ∂ ​u​i​​ (​a​i​​ −, ​a​−i​​ )  __________ ∂ ​a​i​​
 ​    =  ​ α​i​​ − ​a​i​​ + ​  ∑ 

{   j∈N | ​a​j​​  ≥​a​i​​}
​​​ ​β​ij​​​ ;

(A.2) ​  ​ ∂ ​u​i​​ (​a​i​​ +, ​a​−i​​ )  __________ ∂ ​a​i​​
 ​    =  ​ α​i​​ − ​a​i​​ + ​  ∑ 

{   j∈N | ​a​j​​  >​a​i​​}
​​​ ​β​ij​​​ = ​​α​i​​​ − ​​a​i​​​ + ​​r​i​​​(​​a​i​​​, ​​a​−i​​​).

Since ​​lim​​a​i​​→∞​​​ ​​u​i​​​(​​a​i​​​, ​​a​−i​​​) = −∞ , the function ​​u​i​​ ( · , ​a​−i​​ )​ admits a unique maxi-
mizer ​​a​ i​ ∗​​ in the interval ​[ 0, ∞)​.

Since ​​a​ i​ ∗​​ is the maximizer of ​​u​i​​ ( · , ​a​−i​​ )​ on ​[ 0, ∞)​ , it must be that 
​∂ ​u​i​​ (​a​ i​ ∗​+, ​a​−i​​ ) /  ∂ ​a​i​​  ≤  0​. Along with  (A.2), the last inequality implies that

(A.3)	​ ​a​ i​ ∗​  ≥ ​ α​i​​ + ​r​i​​ (​a​ i​ ∗​ , ​a​−i​​ ).​

If ​​a​ i​ ∗​  =  0​ , then clearly ​​a​ i​ ∗​  =  min​{​a​i​​ | ​a​i​​  ≥ ​ α​i​​ + ​r​i​​ (​a​i​​ , ​a​−i​​ )}​​. Suppose instead 
that ​​a​ i​ ∗​  >  0​. Then ​∂ ​u​i​​ (​a​ i​ ∗​− , ​a​−i​​ ) /  ∂ ​a​i​​  ≥  0​ because ​​a​ i​ ∗​​ maximizes ​​u​i​​ ( · , ​a​−i​​ )​ on ​
[ 0,   ∞)​. Formula (A.1) leads to

	​ ​a​ i​ ∗​  ≤ ​ α​i​​ + ​  ∑ 
{ j∈N | ​a​j​​ ≥​a​ i​ ∗​}

​​​ ​β​ij​​ .​ 

It follows that for ​​a​i​​  < ​ a​ i​ ∗​​ , we have

(A.4)  ​​a​i​​  < ​ a​ i​ ∗​  ≤ ​ α​i​​ + ​  ∑ 
{  j∈N | ​a​j ​​≥​a​ i​ ∗​}

​​​ ​β​ij​​  ≤ ​ α​i​​ + ​  ∑ 
{   j∈N | ​a​j​​ >​a​i​​}

​​​ ​β​ij​​  = ​ α​i​​ + ​r​i​​ (​a​i​​ , ​a​−i​​ ).​

The last inequality is a consequence of ​{  j ∈ N | ​a​j​​ ≥ ​a​ i​ ∗​ } ⊆ {  j ∈ N |  ​a​j​​ > ​a​i​​ }​ for ​​
a​i​​ < ​a​ i​ ∗​​. From (A.3) and  (A.4), we infer that ​​a​ i​ ∗​ = min​{​a​i​​ | ​a​i​​ ≥ ​α​i​​ + ​r​i​​ (​a​i​​ , ​a​−i​​ )}​​ 
(in particular, the minimum exists). Therefore, ​​a​ i​ ∗​  = ​ B​i​​ (​a​−i​​ )​ is the unique best 
response of player ​i​ to ​​a​−i​​​. ∎

Proof of Lemma 2: 
Fix an action profile ​a​ and let ​​(​a​​ t​ )​t≥0​​​ denote the best response dynamics initiated 

at ​a​. We prove by induction on ​t​ that

	​ ∀ i ∈ N,  ​a​ i​ t​ ∈ A := ​ {​a​j​​ | j ∈ N}​  ​∪​ ​​ ​{​α​j​​ + ​∑ 
l∈S

​ ​​  ​β​jl​​ | j  ∈  N, S  ⊆  N}​​ 

for all ​t  ≥  0​. The base case ​t  =  0​ is trivially verified (​​a​​ 0​  =  a​).
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Assuming that the induction hypothesis holds for all lower values, we set out 
to prove it for ​t  ≥  1​. Suppose, by contradiction, there exists ​i  ∈  N​ such that 
​​a​ i​ t​ ∉ A​. By definition, ​​a​ i​ t​  = ​ B​i​​ (​a​ −i​ t−1​)​. Lemma 1 leads to ​​a​ i​ t​ ≥ ​α​i​​ + ​r​i​​ (​a​ i​ t​ , ​a​ −i​ t−1​)​.  
Since ​​a​ i​ t​ ∉ A​ and ​​α​i​​ + ​r​i​​ (​a​ i​ t​ , ​a​ −i​ t−1​)  ∈  A​ , it must be that ​​a​ i​ t​  > ​ α​i​​ + ​r​i​​ (​a​ i​ t​ , ​a​ −i​ t−1​)​. 
Hence, there exists ​ε  >  0​ such that

(A.5)	​ ​a​ i​ t​ − ε  > ​ α​i​​ + ​r​i​​ (​a​ i​ t​ , ​a​ −i​ t−1​).​

The induction hypothesis guarantees that ​​a​ j​ t−1​  ∈  A​ for all ​j  ∈  N​. Since ​​a​ i​ t​ ∉ A​ , 
it follows that ​​a​ i​ t​ ∉ { ​a​ j​ t−1​ | j  ∈  N }​. Then there exists ​​ε ′ ​  ∈  (0, ε)​ such that

 	​​ [​a​ i​ 
t​ − ε′, ​a​ i​ 

t​]​​  ∩ ​​ {​a​ j​ 
t−1​ | j ∈ N}​​  =  ∅.

It follows that ​​r​i​​ (​a​ i​ t​ − ε′, ​a​ −i​ t−1​)  = ​ r​i​​ (​a​ i​ t​ , ​a​ −i​ t−1​)​. Then the inequality (A.5) implies 
that

	​ ​a​ i​ t​ − ε′ > ​a​ i​ t​ − ε  > ​ α​i​​ + ​r​i​​ (​a​ i​ t​ , ​a​ −i​ t−1​)  = ​ α​i​​ + ​r​i​​ (​a​ i​ t​ − ε′, ​a​ −i​ t−1​).​ 

Along with Lemma 1, the condition ​​a​ i​ t​ − ​ε ′ ​  > ​ α​i​​ + ​r​i​​ ( ​a​ i​ t​ − ε′, ​a​ −i​ t−1​)​ leads to 
​​B​i​​ (​a​ −i​ t−1​)  ≤ ​ a​ i​ t​ − ​ε ′ ​​ , which contradicts the assumption that ​​a​ i​ t​  = ​ B​i​​ (​a​ −i​ t−1​)​. The 
contradiction completes the proof of the inductive step. Therefore, all the terms of 
the best response dynamics initiated at ​a​ belong to the finite set ​​A​​ N​​. ∎

Proof of Proposition 1:
By Lemma 1, ​​B​i​​ (​a​−i​​)  ≤ ​ α​i​​ + ​∑ j∈N​ ​​ ​β​ij​​ ,  ∀ i, ​a​−i​​​. The game with each player ​

i​’s actions restricted to the compact set ​[ 0, ​α​i​​ + ​∑ j∈N​ ​​ ​β​ij​​ ]​ is supermodular 
(Milgrom and Roberts 1990). To establish this fact, it is sufficient to show that  
​− max (​a​j​​ − ​a​i​​ , 0)​ has increasing differences in ​(​a​i​​ , ​a​j​​)​. Fix ​​a​j​​ > ​a​ j​ ′ ​ ≥ 0​. We have to  
prove that the expression ​− max (​a​j​​ − ​a​i​​ , 0)  + max (​a​ j​ ′ ​ − ​a​i​​ , 0)​ is increasing in ​​a​i​​​.  
This follows immediately from noting that

   ​   − max (​a​j​​ − ​a​i​​ , 0)  + max (​a​ j​ ′ ​ − ​a​i​​ , 0)  = ​
⎧

 
⎪

 ⎨ 
⎪

 
⎩
​
​a​ j​ ′ ​ − ​a​j​​ 

​ 
if  ​a​i​​ ≤ ​a​ j​ ′ ​

​  ​a​i​​ − ​a​j​​ ​  if ​a​i​​ ∈ (​a​ j​ ′ ​ , ​a​j​​ )​   
0

​ 
if ​a​i​​ ≥ ​a​j​​

 ​​ ​ 

is an increasing function in the variable ​​a​i​​​. Moreover, the payoff function ​​u​i​​​ has 
increasing differences in ​(​a​i​​ , ​α​j​​)​ and ​(​a​i​​ , ​β​jk​​)​ for all ​j, k  ∈  N​. This follows from 
the general observation that if ​f​ is an increasing function of ​x​ (that does not depend  
on ​y​) and ​g​ is an increasing function of ​y​ (that does not depend on ​x​), then the 
product ​f (x ) g(y)​ has increasing differences in ​(x, y)​. In light of these remarks, the 
proposition becomes a corollary of the results of Milgrom and Roberts (1990). ∎

Proof of Proposition 2: 
Let ​​a​​ 0​​ be the action profile specified by ​​a​ i​ 0​  = ​ α​i​​​ for ​i  ∈  N​ and ​​(​a​​ t​ )​t≥0​​​ denote 

the best response dynamics initiated at ​​a​​ 0​​. Since ​​ a _ ​​ is an equilibrium of the status 
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game, we have ​​ a _ ​​ = ​​B​​ t​​(​​ a _ ​​) for all ​t  ≥  0​. By Lemma 1, ​​​ a _ ​​i​​​ = ​​B​i​​​(​​​ a _ ​​−i​​​) ≥ ​​α​i​​​ = ​​a​ i​ 
0​​ for 

all ​i  ∈  N​ , so ​​ a _ ​​ ⪰ ​​a​​ 0​​. As ​B​ is an isotone function, the relation ​​ a _ ​​ ⪰ ​​a​​ 0​​ leads to

(A.6)	​​  a _ ​​ = ​​B​​ t​​(​​ a _ ​​) ⪰ ​​B​​ t​​(​​a​​ 0​​) = ​​a​​ t​​, ∀ t ≥ 0.

By Lemma 1, ​​B​i​​ (​a​ −i​ 0 ​ )  ≥ ​ α​i​​  = ​ a​ i​ 0​​ for all ​i  ∈  N​ , so ​B(​a​​ 0​) ⪰ ​a​​ 0​​. Corollary 1 
then implies that the best response dynamics initiated at ​​a​​ 0​​ converges in finite time ​​ t ̅ ​​ 
to an equilibrium ​​a​​ ​

_
 t ​​​. By Proposition 1,

(A.7)	​​ a​​ ​
_
 t ​​​  ⪰ ​​  a _ ​​.

Then (A.6) and (A.7) imply that  ​​a​​ ​
_
 t ​​​ = ​​ a _ ​​, which establishes the first part of the result. 

The second part is proven analogously. ∎

Proof of Proposition 3:
Fix a pair of equilibria a ⪰ a′ and a player ​i  ∈  N​. The assumption that ​​a ′ ​​ is 

an equilibrium implies that ​​u​i​​ (​a ′ ​)  ≥ ​ u​i​​ (​a​i​​ , ​a​ −i​ ′ ​  )​. Since ​​u​i​​​ is decreasing in player ​
j​’s action and ​​a​j​​  ≥ ​ a​ j​ ′ ​​ for all ​j  ≠  i​ , we have ​​u​i​​ (​a​i​​ , ​a​ −i​ ′ ​  )  ≥ ​ u​i​​ (​a​i​​ , ​a​−i​​ )  = ​ u​i​​ (a)​. 
Stringing together the inequalities above, we obtain ​​u​i​​ (​a ′ ​)  ≥ ​ u​i​​ (a)​. It follows that ​
u(​a ′ ​)  ⪰  u(a)​. ∎

Proof of Proposition 4: 
Define ​r​ and ​​r ′ ​​ by

	​ ​r​i​​ (​a​i​​ , ​a​−i​​ )  =  ​   ∑ 
{  j | ​a​j​​ >​a​i​​}

​​​  ​β​ij​​​ ;

	​​ r​ i​ ′ ​ (​a​i​​ , ​a​−i​​ )  =  ​   ∑ 
{  j | ​a​j​​ >​a​i​​}

​​​  ​β​ ij​ ′ ​​.

Let ​​B​i​​​ and ​B​ denote the best response functions in the game ​(α, β )​ , as defined in 
Section IIA. Suppose that ​​a ′ ​​ is a Nash equilibrium in the game ​(α, ​β ′ ​)​. Fix ​i  ∈  N​. 
By Lemma 1, the fact that ​​a​ i​ ′ ​​ is a best response for player ​i​ to his opponents’ action 
profile ​​a​ −i​ ′ ​ ​ in the game ​(α, ​β ′ ​)​ implies that

(A.8)	​ ​​a ̃ ​​i​​  < ​ α​i​​ + ​r​ i​ ′ ​ (​​a ̃ ​​i​​ , ​a​ −i​ ′ ​  )  ≤ ​ α​i​​ + ​r​i​​ (​​a ̃ ​​i​​ , ​a​ −i​ ′ ​  ),  ∀ ​​a ̃ ​​i​​  ∈  [ 0, ​a​ i​ ′ ​ ),​

which combined with Lemma 1 leads to ​​B​i​​ (​a​ −i​ ′ ​  )  ≥ ​ a​ i​ ′ ​​. This establishes that 
B(a′ ) ⪰ a′. Corollary 1 then implies that the best response dynamics for the game ​
(α, β )​ initiated at ​​a ′ ​​ converges in finite time to an equilibrium a ⪰ a′. The proof for 
the converse statement is analogous.

As to the welfare claim, consider an equilibrium ​a​ of the game ​(α, β )​ and an 
equilibrium ​​a ′ ​​ of the game ​(α, ​β ′ ​)​ such that a ⪰ a′. Then the following string of 
inequalities holds for all ​i​ in ​N​:

(A.9)  ​​u​ i​ ′ ​ (​a ′ ​)  = ​ u​ i​ ′ ​ (​a​ i​ ′ ​ , ​a​ −i​ ′ ​  )  ≥ ​ u​ i​ ′ ​ (​a​i​​ , ​a​ −i​ ′ ​  )  ≥ ​ u​i​​ (​a​i​​ , ​a​ −i​ ′ ​  )  ≥ ​ u​i​​ (​a​i​​ , ​a​−i​​ )  = ​ u​i​​ (a).
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​The first inequality follows from the fact that ​​a ′ ​​ is an equilibrium for the game 
with payoffs ​​u ′ ​​ , the second one is a consequence of the assumption that 
​​β​ij​​ ≥ ​β​ ij​ ′ ​​ for ​j  ≠  i​ and the observation that player ​i​’s payoff is decreasing in each of 
his status parameters, and the last one relies on the hypothesis that ​​a​j​​  ≥ ​ a​ j​ ′ ​​ for all 
​j  ≠  i​ (​a  ⪰ ​a ′ ​​  ) and the fact that ​​u​i​​​ is decreasing with respect to the action of every 
opponent ​j​. Then (A.9) establishes that ​​u ′ ​(​a ′ ​)  ⪰  u(a )​. The last part of the proposition 
follows from the argument above, as ​​ a _ ​​ ⪰ ​​ a _ ​​′ and ​​

_
 a ​​ ⪰ ​​

_
 a ​​′ by Proposition 1. ∎

Proof of Theorem 1:
We first establish the “only if  ” part. Suppose that ​a​ is a Nash equilibrium and fix ​

k  ∈  {1, … , ​ k ̅ ​(a)}​ and ​i  ∈ ​ C​k​​ (a )​. Then ​​B​i​​ ( ​a​−i​​ )  = ​ a​i​​​ leads to

	​ ​a​i​​  ≥ ​ α​i​​ + ​r​i​​ ( ​a​i​​ , ​a​−i​​ )  = ​ α​i​​ + ​  ∑ 
j∈​S​k−1​​(a)

​​​  ​β​ij​​  ≥  c(​S​k−1​​ (a )  ∪ { i} ) ,​ 

proving the lower bound.
For ​j  ∈ ​ S​k​​ (a)​ , ​​B​j​​ (​a​−j​​ )  = ​ a​j​​  ≥ ​ a​i​​​ implies that for any ​​a​ j​ ′ ​  ∈  [ ​a​h​​ , ​a​i​​ )​ with ​h  ∈ ​

C​k+1​​ (a)​ (or ​​a​ j​ ′ ​  ∈  [ 0, ​a​i​​ )​ if ​k  = ​
_

 k ​(a)​),

	  ​​a​ j​ ′ ​  < ​ α​j​​ + ​r​j​​ (​a​ j​ ′ ​ , ​a​−j​​ )  = ​ α​j​​ + ​  ∑ 
l∈​S​k​​(a)

​​​  ​β​jl​​ .​ 

Taking the limit ​​a​ j​ ′ ​  ↑ ​ a​i​​​ , we obtain

	  ​​a​i​​  ≤ ​ α​j​​ + ​  ∑ 
l∈​S​k​​(a)

​​​  ​β​jl​​ .​ 

Since the inequality above holds for all ​j  ∈ ​ S​k​​ (a)​ , it follows that

	​ ​a​i​​  ≤ ​  min​ 
j∈​S​k​​(a)

​​​  ​​(​α​j​​ + ​  ∑ 
l∈​S​k​​(a)

​​​  ​β​jl​​)​  =  ​​c( ​S​k​​ (a)),​ 

which establishes the upper bound.
We next prove the “if ” part. Suppose that ​a​ is an action profile satisfying (III.2) 

and fix ​k  ∈  {1, … , ​ k ̅ ​(a)}​ and ​i  ∈ ​ C​k​​ (a)​. If ​k  ≥  2​ , then for ​j  ∈ ​ C​k−1​​ (a)​ , we have

	​ c( ​S​k−1​​ (a)  ∪ { i} )   ≤ ​ a​i​​  < ​ a​j​​  ≤  c( ​S​k−1​​ (a)) .​ 

In particular, it must be that ​c( ​S​k−1​​ (a )  ∪ { i} )   <  c( ​S​k−1​​ (a))​ , which means that

	​ c( ​S​k−1​​ (a )  ∪ { i} )   = ​ α​i​​ + ​  ∑ 
l∈​S​k−1​​(a)

​​​ ​β​il​​ .​ 

Then we obtain

	​ ​a​i​​  ≥ ​ α​i​​ + ​r​i​​ (​a​i​​ , ​a​−i​​ ).​ 
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Note that the inequality ​​a​i​​  ≥ ​ α​i​​ + ​r​i​​ (​a​i​​ , ​a​−i​​ )​ is also satisfied if ​k  =  1​ since in that 
case ​​r​i​​ ( ​a​i​​ , ​a​−i​​ )  =  0​ , and (III.2) requires that ​​a​i​​  ≥  c( { i} )  = ​ α​i​​​.

Moreover, for ​​a​ i​ ′ ​  < ​ a​i​​​ we have

	​​ a​ i​ ′ ​  < ​ a​i​​  ≤  c( ​S​k​​ (a))  ≤ ​ α​i​​ + ​  ∑ 
l∈​S​k​​(a)

​​​  ​β​il​​  ≤ ​ α​i​​ + ​r​i​​ (​a​ i​ ′ ​ , ​a​−i​​ ).​ 

The inequalities above establish that ​​B​i​​ (​a​−i​​ )  = ​ a​i​​​. Since the last condition holds 
for all players ​i​ , the action profile ​a​ constitutes a Nash equilibrium. ∎

Proof of Theorem 2:
Set ​​​a ̃ ​​i​​  =  c( ​M​k​​ )​ for all ​i  ∈ ​ M​k​​ \ ​M​k−1​​​ and ​k  =  1, … , ​

_
 k ​​. We first establish 

that ​(​​a ̃ ​​i​​ ​)​i∈N​​​ constitutes a Nash equilibrium of the status game and then prove that 
​​​
_

 a ​​i​​  = ​​ a ̃ ​​i​​​ for all ​i  ∈  N​.
By construction, for ​i  ∈ ​ M​k​​ \ ​M​k−1​​​ , we have ​c( ​M​k−1​​ ∪ { i} )   ≤  c( ​M​k​​ )​. Hence,

(A.10) ​ c( ​M​k−1​​ ∪ { i} )   ≤ ​​ a ̃ ​​i​​  =  c( ​M​k​​ ),  ∀ i  ∈ ​ M​k​​ \ ​M​k−1​​ ,  ∀ k  =  1, … , ​
_
 k ​.​

Since ​c( ​M​k−1​​ )  >  c( ​M​k​​ )​ for ​k  =  1, … , ​
_

 k ​​ , we have ​​
_
 k ​(​a ̃ ​)  = ​

_
 k ​​ and ​​S​k​​ (​a ̃ ​)  = ​ M​k​​​ 

for ​k  =  1, … , ​
_
 k ​​. Then (A.10) becomes

	​ c(​S​k−1​​ (​a ̃ ​) ∪ { i} ) ≤ ​​a ̃ ​​i​​  =  c(​S​k​​ (​a ̃ ​)),  ∀ i ∈ ​S​k​​ (​a ̃ ​) \ ​S​k−1​​ (​a ̃ ​),  ∀ k = 1, …, ​
_
 k ​(​a ̃ ​).​ 

By Theorem 1, ​​a ̃ ​​ constitutes an equilibrium. Proposition 1 implies that ​​​a ̃ ​​i​​  ≤ ​​ _ a ​​i​​​ for 
all ​i  ∈  N​.

To prove that ​​​
_

 a ​​i​​  = ​​ a ̃ ​​i​​​ for all ​i ∈ N​ , we proceed by contradiction. Suppose 
that ​​​

_
 a ​​i​​  > ​​ a ̃ ​​i​​​ for some ​i ∈ ​M​k​​ \ ​M​k−1​​​. Define ​​M ̃ ​ = {  j ∈ N | ​​

_
 a ​​j​​ > ​​a ̃ ​​i​​ }​. Since 

​​​
_

 a ​​j​​ ≥ ​​a ̃ ​​j​​ > ​​a ̃ ​​i​​​ for all ​j ∈ ​M​k−1​​​ , it must be that ​​M ̃ ​ ⊇ ​M​k−1​​ ∪ { i}​.
For all ​j ∈ ​M ̃ ​​ , ​​B​j​​ (​​

_
 a ​​−j​​ ) = ​​_ a ​​j​​  > ​​ a ̃ ​​i​​​ implies that

​	​​ a ̃ ​​i​​  < ​ α​j​​ + ​r​j​​ ( ​​a ̃ ​​i​​ , ​​
_

 a ​​−j​​ )  = ​ α​j​​ + ​ ∑ 
l∈​M ̃ ​

​​​ ​β​jl​​ .​

Then ​​​a ̃ ​​i​​  =  c( ​M​k​​ )​ leads to

	​ c(​M​k​​ )  < ​ α​j​​ + ​ ∑ 
l∈​M ̃ ​

​​​  ​β​jl​​ .​

Since the last inequality holds for all ​j  ∈ ​ M ̃ ​​ , we obtain

	​ c(​M​k​​ )  < ​ min​ 
j∈​M ̃ ​

​ ​ ​(​α​j​​ + ​ ∑ 
l∈​M ̃ ​

​​​  ​β​jl​​)​ = c(​M ̃ ​ ) .​

However, ​​M ̃ ​ ⊃ ​M​k−1​​​ and ​c(​M ̃ ​ ) > c(​M​k​​ )​ contradict the fact that ​c(​M​k​​ )  
= ​max​M⊃​M​k−1​​​​ c(M)​. ∎
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Proof of Theorem 3:
Consider a player ​i ∈ ​M​k​​ \ ​M​k−1​​​. By Theorem 2, we have ​​​

_
 a ​​i​​ = c(​M​k​​ )​.  

Suppose, by contradiction, that there exists ​M ∋  i​ such that ​c(M ) > c(​M​k​​ )​.  
Then, (III.1) leads to ​c(M ∪ ​M​k−1​​ ) ≥ min (c(M ), c(​M​k−1​​ ))​, which along with  
​c(M ) > c( ​M​k​​ )​ and ​c( ​M​k−1​​ ) > c( ​M​k​​ )​ , implies that ​c(M ∪ ​M​k−1​​ ) > c( ​M​k​​ )​. Since ​
i ∈ ​M​k​​ \ ​M​k−1​​​ and ​i ∈ M​ , we have ​M ∪ ​M​k−1​​ ⊃ ​M​k−1​​​. Then ​c(M ∪ ​M​k−1​​ ) > c( ​M​k​​ )​ 
contradicts the fact that ​c( ​M​k​​ )​ represents the greatest cohesion achieved by any 
strict superset of ​​M​k−1​​​. ∎

Proof of Theorem 4:
We prove that the nested sequence of nodes characterizing ​​

_
 a ​​ satisfies ​( ​M​k​​ ) 

= ​M​k−1​​​ for ​k = 1, … , ​
_
 k ​​. First, note that ​​M​k−1​​ ⊆ (​M​k​​ ),​ since ​​M​k−1​​ ⊂ ​M​k​​​ and  

​c(​M​k−1​​ ) > c(​M​k​​ )​. Moreover, the definition of ​​ , along with (III.1) , implies that 
​c(( ​M​k​​ )) > c( ​M​k​​ )​. If ​​M​k−1​​ ⊂ ( ​M​k​​ )​ , the condition ​c(( ​M​k​​ )) > c( ​M​k​​ )​ contra-
dicts the fact that ​​M​k​​​ achieves the highest cohesion among all strict supersets of ​​
M​k−1​​​. Hence ​( ​M​k​​ ) = ​M​k−1​​​.

The operator ​​ can be iterated to pin down the entire sequence ​(​M​k​​ )​. Indeed, since ​​
M​​_ k ​​​ = N​ and ​​M​k−1​​ = ( ​M​k​​ )​ for ​k = 1, … , ​

_
 k ​​ , it must be that ​​M​k​​ = ​​​ ​

_
 k ​−k​ (N )​ for ​

k = 0, … , ​
_
 k ​​. Then ​​M​0​​ = ∅​ and ​​M​1​​ ≠ ∅​ imply that ​​​​ ​

_
 k ​​ (N ) = ∅​ and ​​​​ ​

_
 k ​−1​ (N ) ≠ ∅​. 

Therefore, ​​
_
 k ​​ is the smallest ​k ≥ 0​ such that ​​​​ k​ (N ) = ∅​. ∎

Proof of Proposition 5:
Using the facts that ​(M ) ⊂ M​ and ​c((M )) > c(M )​ , we can show by induction 

on ​s​ that ​(M ) ⊆ ​L​s​​ (M )​ for ​s = 0, …, ​_ s ​(M )​. In particular, ​(M ) ⊆ ​L​​_ s ​(M)​​ (M )​. 
Since ​​L​​_ s ​(M)​​ (M ) = ​L​​_ s ​(M)−1​​ (M )​ , it must be that

	​ ​α​i​​ + ​  ∑ 
j∈​L​​_ s ​(M)​​(M)

​​​  ​β​ij​​  >  c(M )​ 

for all ​i ∈ ​L​​_ s ​(M)​​ (M )​ , which implies that ​c( ​L​​_ s ​(M)​​ (M )) > c(M )​. Then ​​L​​_ s ​(M)​​ (M ) 
⊆ (M )​. Therefore, ​(M ) = ​L​​_ s ​(M)​​ (M )​. Clearly, ​​L​​_ s ​(M)​​ (M )​ can be computed in 
polynomial time with respect to ​| M |​. ∎

Proof of Theorem 5:
We first establish the “only if ” part. Suppose that ​a​ is a class equilibrium. Define ​

M = ​S​1​​ (a )​ and ​z = ​max​i∈N​​  ​a​i​​​. We have ​M ⊂ N​ because ​a​ is a class equilibrium. 
Since all players in ​M​ take action ​z​ under ​a​ , Theorem 1 implies that

(A.11)	​ z  ≤  c(M ) .​

Now fix ​i  ∈  N \ M​. Then ​​B​i​​ (​a​−i​​ )  = ​ a​i​​  <  z​ implies that

(A.12)	​ z > ​a​i​​ ≥ ​α​i​​ + ​r​i​​ (​a​i​​ , ​a​−i​​ ) ≥ ​α​i​​ + ​ ∑ 
j∈M

​​​ ​β​ij​​ ≥ c(M ∪ { i} ) .​

Combining (A.11) and  (A.12), we obtain that ​c(M ) > c(M ∪ { i} )​ for all ​i ∈ N \ M​.
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We next prove the “if ” part. Let ​M ⊂ N​ be a nonempty set such that ​
c(M ) > c(M ∪ { i} )​ for all ​i ∈ N  \ M​. The definition of ​c​ implies that

	  ​c(M ∪ { i} )   = ​ α​i​​ + ​ ∑ 
j∈M

​​​  ​β​ij​​ ,   ∀ i  ∈  N  \ M.​

Let ​x  = ​ max​i∈N \M​​  c(M ∪ { i} )​. We have

(A.13)	​ c(M )   >  x  ≥  c(M ∪ { i} ),   ∀ i  ∈  N  \ M.​

Consider the strategy profile ​​a​​ 0​​ defined by

	​  ​a​ i​ 0​   =  c(M ),   ∀ i  ∈  M​;

	​  ​a​ i​ 0​   =  x,   ∀ i  ∈  N \ M​.

Let ​​(​a​​ t​ )​t≥0​​​ denote the best response dynamics initiated at ​​a​​ 0​​. We prove by induction 
on ​t​ that for all ​t  ≥  0​ , ​​a​ i​ t+1​  ≥ ​ a​ i​ t​​ if ​i  ∈  M​ and ​​a​ i​ t+1​  ≤ ​ a​ i​ t​​ if ​i  ∈  N \ M​.

For the induction base case ​t = 0​ , we have to show that ​​a​ i​ 1​ = ​B​i​​ (​a​ −i​ 0 ​ )  
≥ c(M ) = ​a​ i​ 0​​ if ​i ∈ M​ and ​​a​ i​ 1​ = ​B​i​​ ( ​a​ −i​ 0 ​ ) ≤ x  = ​ a​ i​ 0​​ if ​i ∈ N  \ M​. To prove that 
​​B​i​​ (​a​ −i​ 0 ​ ) ≥ c(M )​ for ​i ∈ M​ , note that if ​​a​i​​ < c(M ),​ then

	​ ​a​i​​  <  c(M )  ≤ ​ α​i​​ + ​ ∑ 
j∈M

​​​  ​β​ij​​  ≤ ​ α​i​​ + ​  ∑ 
j∈N:​a​ j​ 0​>​a​i​​

​​​  ​β​ij​​  = ​ α​i​​ + ​r​i​​ ( ​a​i​​ , ​a​ −i​ 0 ​ ).

​ Lemma 1 then implies that ​​B​i​​ ( ​a​ −i​ 0 ​ )  ≥  c(M )​.
We next show that ​​B​i​​ ( ​a​ −i​ 0 ​ )  ≤  x​ for ​i  ∈  N  \ M​. For ​i  ∈  N  \ M​ , we have

	​ x ≥ c(M ∪ { i} ) = ​α​i​​ + ​ ∑ 
j∈M

​​​  ​β​ij​​ = ​α​i​​ + ​  ∑ 
j∈N:​a​ j​ 0​>x

​​​  ​β​ij​​ = ​α​i​​ + ​r​i​​ (x, ​a​ −i​ 0 ​ ).​ 

By Lemma 1, it must be that ​​B​i​​ (​a​ −i​ 0 ​ )  ≤  x​.
Assuming that the inductive hypothesis holds for all smaller values, we now prove 

the inductive step for ​t  ≥  1​. We first show that if ​i  ∈  M​ , then ​​a​ i​ t+1​  = ​ B​i​​ (​a​ −i​ t ​  ) 
≥ ​ a​ i​ t​​. Fix ​i  ∈  M​ and ​​a​i​​  < ​ a​ i​ t​​. Let ​​a​ i​ ′ ​  =  max (​a​i​​ , x )​. By the inductive hypothesis, 
we have ​​a​ i​ t​  ≥  c(M )   >  x​ , so ​​a​ i​ ′ ​  < ​ a​ i​ t​  = ​ B​i​​ (​a​ −i​ t−1​ )​. Then Lemma 1 implies that ​​
a​ i​ ′ ​  < ​ α​i​​ + ​r​i​​ (​a​ i​ ′ ​ , ​a​ −i​ t−1​ )​. Since ​​a​ j​ t​  ≤ ​ a​ j​ t−1​  ≤ ​ a​ j​ 0​  =  x​ for ​j  ∈  N  \ M​ by the induc-
tive hypothesis and ​​a​ i​ ′ ​  ≥  x​ , we have

	​ ​r​i​​ (​a​ i​ ′ ​ , ​a​ −i​ t−1​ )  = ​   ∑ 
j∈M:​a​ j​ t−1​>​a​ i​ ′ ​

​​​ ​β​ij​​​ ;

	​ ​r​i​​ (​a​ i​ ′ ​ , ​a​ −i​ t  ​ )  = ​   ∑ 
j∈M:​a​ j​ t​ >​a​ i​ ′ ​

​​​  ​β​ij​​​ .
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Also by the inductive hypothesis, we have ​​a​ j​ t​  ≥ ​ a​ j​ t−1​​ for ​j  ∈  M​ , which implies that ​​
r​i​​ (​a​ i​ ′ ​ , ​a​ −i​ t−1​  ) ≤ ​ r​i​​ (​a​ i​ ′ ​ , ​a​ −i​ t ​  )​. It follows that

	​ ​a​i​​  ≤ ​ a​ i​ ′ ​  < ​ α​i​​ + ​r​i​​ (​a​ i​ ′ ​ , ​a​ −i​ t−1​ )  ≤ ​ α​i​​ + ​r​i​​ (​a​ i​ ′ ​ , ​a​ −i​ t ​  )  ≤ ​ α​i​​ + ​r​i​​ ( ​a​i​​ , ​a​ −i​ t ​  ).​ 

We established that ​​a​i​​  < ​ α​i​​ + ​r​i​​ ( ​a​i​​ , ​a​ −i​ t ​  )​ for every ​​a​i​​  < ​ a​ i​ t​​ , which along with 
Lemma 1 implies that ​​a​ i​ t+1​  = ​ B​i​​ ( ​a​ −i​ t ​  )  ≥ ​ a​ i​ t​​ , as desired.

We next prove that ​​a​ i​ t+1​  = ​ B​i​​ ( ​a​ −i​ t ​  )  ≤ ​ a​ i​ t​​ for ​i  ∈  N  \ M​. Fix ​i  ∈  N  \ M​. By the 
inductive hypothesis, we have ​​a​ j​ t​  ≥ ​ a​ j​ t−1​  ≥  c(M )   >  x  ≥ ​ a​ i​ t​​ for all ​j  ∈  M​. It 
follows that

​​r​i​​ (​a​ i​ t​ , ​a​ −i​ t−1​ )  = ​   ∑ 
j∈M  :  ​a​ j​ t−1​>​a​ i​ t​

​​​ ​β​ij​​ + ​  ∑ 
j∈N \M  :  ​a​ j​ t−1​>​a​ i​ t​

​​​ ​β​ij​​  = ​  ∑ 
j∈M

​​​ ​β​ij​​ + ​  ∑ 
j∈N \M  :  ​a​ j​ t−1​>​a​ i​ t​

​​​ ​β​ij​​​ ;

     ​  ​r​i​​ (​a​ i​ t​ , ​a​ −i​ t  ​ )  = ​   ∑ 
j∈M  :  ​a​ j​ t​>​a​ i​ t​

​​​ ​β​ij​​ + ​  ∑ 
j∈N \M  :  ​a​ j​ t​>​a​ i​ t​

​​​ ​β​ij​​  = ​  ∑ 
j∈M

​​​ ​β​ij​​ + ​  ∑ 
j∈N \M  :  ​a​ j​ t​>​a​ i​ t​

​​​ ​β​ij​​​ .

Since ​​a​ j​ t−1​  ≥ ​ a​ j​ t​​ for all ​j  ∈  N  \ M​ by the inductive hypothesis, we obtain

	​​   ∑ 
j∈N \M  :  ​a​ j​ t−1​>​a​ i​ t​

​​​ ​β​ij​​  ≥ ​   ∑ 
j∈ N  \M  :  ​a​ j​ t​>​a​ i​ t​

​​​ ​β​ij​​ ,​ 

and, hence, ​​r​i​​ (​a​ i​ t​ , ​a​ −i​ t−1​ )  ≥ ​ r​i​​ (​a​ i​ t​ , ​a​ −i​ t ​  )​.
Note that the condition ​​a​ i​ t​  = ​ B​i​​ (​a​ −i​ t−1​ )​ and Lemma 1 lead to ​​a​ i​ t​  ≥ ​ α​i​​ + 

​r​i​​ (​a​ i​ t​ , ​a​ −i​ t−1​ )​. Therefore, ​​a​ i​ t​  ≥ ​ α​i​​ + ​r​i​​ (​a​ i​ t​ , ​a​ −i​ t ​  )​ , which along with Lemma 1 implies 
that ​​a​ i​ t+1​  = ​ B​i​​ (​a​ −i​ t ​  )  ≤ ​ a​ i​ t​​ , as needed.

The boundedness and monotonicity of the sequence ​​(​a​ i​ t​ )​t≥0​​​ for every ​i  ∈  N​ , 
combined with Lemma 2, imply that ​​(​a​​ t​ )​t≥0​​​ converges in a finite number of 
steps ​​

_
 t ​​ to an equilibrium ​​a​​ ​ t ̅ ​​​. Furthermore, we showed that ​​a​ i​ t​ ≥ ​a​ i​ 0​ = c(M ) > x  

= ​ a​ j​ 0​  ≥ ​ a​ j​ t​​ for all ​i  ∈  M, j  ∈  N  \ M​, and ​t  =  0, …, ​
_
 t ​​. Therefore, ​​a​ i​ ​

_
 t ​​  > ​ a​ j​ ​

_
 t ​​​ for all ​

i  ∈  M, j  ∈  N  \ M​ , so ​​a​​ ​
_
 t ​​​ constitutes a class equilibrium. ∎
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