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REPORT ON REDISTRICTING: DRAWING THE LINE

JONATHAN C. MATTINGLY

I have been asked by the plaintiffs in Common Cause v Rucho to share with the court the
mathematical analysis that I and my students have developed to examine the extent to which the
outcome of North Carolina’s congressional elections depends on choices the North Carolina General
Assembly made in drawing the boundaries of those districts. These methods were first developed
in 2013 to better understand the extent to which the 2011 congressional redistricting plan reflected
the will of the voters as expressed by their votes. Overtime we have expanded our analysis to
include the 2016 congressional plan, the results of the 2016 elections, as well as the redistricting
proposed by the simulated bipartisan redistricting commission of retired North Carolina Judges as
part of the “Beyond Gerrymandering” project at Duke University.

The method we use is simple and based on standard and accepted mathematical methods. We
take the actual votes cast by North Carolinians at the 2012 and 2016 congressional elections and
then change the boundaries of the congressional districts to see how the partisan results of the
elections change. The results of the report are based on a manuscript by the author and his
students which is in preparation (See [2] from references).

In the United States, district representation schemes are used to divide the population into
distinct groups, each of which carry a certain amount of representation. This districting, whether
by state or within a state, acknowledges that the people’s voice is geographically diverse and that
we value the expression of that diversity in our government. We take election results to represent
the “will of the people”, giving the elected officials a mandate to act in the people’s name. Hence,
it is reasonable to ask if and how this will is affected by the choice of district boundaries. Just how
sensitive are election results to our choices for geographic divisions?

The 2011redistricting of North Carolina is a useful example and testing ground for this general
line of inquiry. Most would agree that politics had a hand in the North Carolina redistricting
process. The motivations were diverse. The twelfth district was drawn to create a majority African-
American district. Others seemingly were drawn to split and pack different voting blocks to diminish
their political power. The question remains of how large was the effect of the redistricting on the
outcome ?

In the 2012 congressional elections, which were based on the 2011 districts, four out of the
thirteen congressional seats were filled by Democrats. Yet in seeming contradiction, the majority
of votes were cast for Democratic candidates on the statewide level. The election results hinged
on the geographic positioning of congressional districts. While this outcome is clearly the result of
politically drawn districts, perhaps it is not the result of excessive tampering. Our country has a
long history of balancing the rights of urban areas with high population with those of more rural,
less populated areas. Our federalist and electoral structures enshrined the idea that majority rule
must be balanced with regionalism. It might be that in North Carolina, the subversion of the results
of the global vote count would happen in any redistricting which balances the representation of
the urban with the rural or the beach with the mountains, and each with the Piedmont. Maybe
the vast majority of reasonable districts which one might draw would have these issues due to the
geography of the population’s distribution. We are left asking the basic question: how much does
the outcome depend on the choice of districts? This can be further refined by asking “what are the
outcomes for a typical choice of districts ?” or “when should a redistricting be considered outside
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the norm?” These last two refinements require some way of quantifying what the typical outcomes
are for a given set of votes. This turns the usual election procedure on its head. Usually one fixes
the districts and varies the votes from election to election. We are interested in fixing the votes and
then changing the redistricting to observe how the results change. Since we explore these questions
in the context of the American political system, we assume that people vote for parties, not people,
which is of course not true. However, in these polarized times it is not the worst approximation.
We still find the results extremely illuminating.

Once we understand the extent to which election results can vary over a collection of possible
redistrictings, we can assign the representativeness of particular redistricting by observing its place
in this collection of results. Similarly, with statistics of typical redistricting in hand, we can devise
measures of gerrymandering where the effects of packing and cracking blocks of votes can be better
identified. We develop indices to measure the representativeness and level of gerrymandering of a
given district.

We apply our metrics to analyze and critique the North Carolina U.S. Congressional redistrictings
used in the 2012 and 2016 elections as well as the redistrictings developed by a bipartisan group
of retired Judges as part of the “Beyond Gerrymandering” project spearheaded by Thomas Ross.
We henceforth refer to these redistrictings of interest as NC2012, NC2016, and Judges respectively.
See Figures 14–16 in the Appendix for visualizations of these redistrictings. Our analysis uses the
actual votes in elections to illuminate the structure and features of a redistricting. In this report,
we use the actual votes cast in the 2012 and 2016 N.C. congressional elections.

Using a related methodology, we also assess the degree to which the three redistrictings (NC2012,
NC2016, and Judges) are engineered. This is done by seeing how close their properties are to the
collection of redistrictings which can be obtained by only small changes. It seems reasonable that
the character of an election should not be overly sensitive to small changes in the redistricting if
the concept of the “will of the people” is to have any meaning.

No matter what lens is used, the results repeatedly show that the NC2012 and NC2016 redis-
tricting are heavily engineered and produce results which are extremely atypical and at odds with
the “will of the people,” as illuminated by our analysis. Finer analysis clearly shows that the
Democratic voters are clearly packed into a few districts, decreasing their power, while Republican
voters are spread more evenly which increases their power. In contrast, election results from the
Judges redistricting are quite typical, producing results consistent with what is typically seen. We
emphasize that all of these conclusions come from asking what is the typical character and result
of an election if we use a “reasonable” redistricting drawn at random without any partisan input,
save the possible effect of ensuring a few districts contain a sufficient minority population to comply
with the Voting Rights Act (VRA).

1. Main Results: Where do you draw the line?

We emphasize from the start that in contrast to some works (See for example [5] from references),
we are not proposing an automated method of creating redistrictings which might be used in prac-
tice. Rather, we are proposing a class of ideas for evaluating if a redistricting is truly representative
or if it is gerrymandered. We hope this helps draw the line between fair and biased redistricting.

Our analysis begins by generating over 24,000 “reasonable” redistrictings of North Carolina into
thirteen U.S. House congressional districts. For each redistricting, we tabulate the votes from a
previous election, either 2012 or 2016, to calculate the number of representatives elected from both
the Democratic and Republican Parties. We emphasize that we use the actual votes from either
the 2012 or 2016 U.S. House of Representative elections. In using these votes, we assume that a
vote cast for a Republican or Democrat remains so even when district boundaries are shifted.

By “reasonable,” we mean districts which are drawn in a nonpartisan fashion, guided only by
the desire to:
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• Divide the state population evenly between the thirteen districts.
• Keep the districts geographically connected and compact.
• Refrain from splitting counties as much as possible.
• Ensure that African-American voters are sufficiently concentrated in two districts to give

them a reasonable chance to affect the winner.

The precise meaning of “reasonable” is given in Section 2 along with the method we used to generate
the over 24,000 “reasonable” redistrictings. We construct our districts by taking Voting Tabulation
Districts (VTD) from NC2012 as the fundamental atomic element used as our building blocks.
North Carolina is composed of over 2,600 VTDs.

The first criterion above enforces the “one-person-one-vote” doctrine, which dictates that each
representative should represent a roughly equal number of people. The second criterion reflects
the desire to have districts represent regional interests. The third criterion embodies the idea
that districts should not fracture historical political constituencies if possible; counties provide a
convenient surrogate for these constituencies. The last criterion, which is dictated by the Voting
Rights Act (VRA), asks that two districts have enough African-American voters that they might
be reasonably expected to choose the winner in that district. In particular, we emphasize that no
voting or registration information is used, nor is any demographic information, except for what is
dictated by the VRA as specified in the preceding criterion.

The exact choice of these criteria for our study comes from House Bill 92, which passed the
North Carolina House during the 2015 General Assembly legislative session. This bill proposed
establishing a bipartisan commission to perform redistricting guided solely by these principles.
Since the companion legislation did not pass the North Carolina Senate, the provision never became
law. In fact, it is just the latest in a chain of bills which have been introduced over the years with
similar criteria and aims.

1.1. Beyond One-Person-One-vote. Our results clearly show that there is a large amount of
variation in the outcome of an election depending on the districts used. The simple criteria from
House Bill 92 are not enough to produce a single preferred outcome of the elections. Rather, there
is a distribution of possible outcomes. Our findings in this direction, summarized in Figure 1,
clearly show that the results generated by the redistrictings NC2012 and NC2016 are extremely
biased towards the Republicans while the Judges redistricting produces acceptably representative
results. The NC2012 and NC2016 redistrictings produce results which are highly atypical of the
non-partisan redistrictings we randomly drawn according to HB92.

Over 24,000 random, but reasonable, redistrictings were used to generate the probability dis-
tributions show in Figure 1. We emphasize that the two plots use the actual votes cast by the
electorate in the 2012 and 2016 Congressional elections respectively to determine the outcomes for
each redistricting. For the 2012 vote counts, the NC2012 and NC2016 redistrictings both result
in four Democratic seats, a result which occurs in less than 0.3% of our collection of over 24,000
redistrictings. The Judges redistricting results in the election of six Democrats, which occurs in
over 39% of redistrictings. For the 2016 vote counts, the NC2012 and NC2016 redistrictings results
in three Democratic seats, a result which occurs in less than 0.7% of redistrictings. The Judges
redistricting results in the election of four Democrats, which occurs in 28% of redistrictings.

1.2. Measuring Representativeness and Gerrymandering. While Figure 1 is already quite
compelling, it is useful to develop quantitative measures of how representative the results of a
given election are. However, gerrymandering goes beyond just affecting the results, but also makes
districts so safe that representatives are less responsive to the “will of the people.” To measure these
effects, we use two indices. The first, which we call the Gerrymandering Index, is based on the plots
used to visualize gerrymandering introduced in Section 1.3. It quantifies how packed or depleted the
collection of districts is relative to what is expected from the ensemble of “reasonable” redistrictings
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Figure 1. Probability of a given number of Democratic wins among the 13 congressional
seats using 2012 election (left) and 2016 election (right) votes.

we have created. The second is the measure of how typical are the election results produced by
the redistricting in the context of what is seen in the ensemble of “reasonable” redistrictings. In
summary, we consider

• Gerrymandering Index: Measures the degree to which the percentage of Democratic
votes in each district deviates from what is typically seen in our collection of “reasonable”
redistrictings. To make the comparison, the districts are ordered from the most Republican
to the most Democratic. The squareroot of the sum of the square deviations is the index.
Relatively large scores are less balanced than the bulk of the “reasonable” redistrictings in
our ensemble. These large indexed redistrictings typically have some districts with many
more voters from one party than is normal seen or generally have a higher percentage of one
party in many districts than is normal, or have both. How the term “normal” is understood
is partially explained in Section 1.3 and completely explained in Section 4.1.
• Representativeness Index: Measures how typical the results obtained by a given redis-

tricting are in the context of the collection of “reasonable” redistrictings we have generated.
Redistrictings with relatively large values produced an election outcome which is farther
from the typical election outcome in the collection of “reasonable” redistrictings. The full
details are given in Section 4.2.

As these indices are most useful when values for two different redistricting are compared, we place
each redistricting of interest on the plot of the complementary cumulative distribution function for
each of the three above measures. This allows us to judge the relative size of each index in the
context of our collection of “reasonable” redistrictings.

In a complementary cumulative distribution function, the vertical axis shows the fraction of
random redistrictings which have a larger index value than a redistricting with a given index on the
horizontal axis. We plot results for the Gerrymandering Index and the Representativeness Index in
Figures 2 and 3, respectively. We calculate the probability of each index obtaining a value greater
than a given value based on our random redistrictings. We then situate each of our redistrictings of
interest (NC2012, NC2016, and Judges) on the plot indicating the fraction of random redistrictings
which have a larger index.

We find the probability of constructing a reasonable redistricting plan with index scores equal
to or worse than the NC2012 redistricting plan is negligible for both indices; not a single random
redistricting has a Gerrymandering Index or a Representative Index that surpasses those of the
NC2012 plan. Similarly, we also find that the probability of randomly constructing a redistricting
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Figure 2. Gerrymandering Index for the three districts of interest based on the congres-
sional voting data from 2012 (left) and 2016 (right). No generated redistrictings had a
Gerrymandering Index higher than either the NC2012 or the NC2016 redistrictings. The
Judges redistricting plan was less gerrymandered than over 75% of the random districts in
both sets of voting data, meaning that it is an exceptionally non-gerrymandered redistricting

plan.

with indices worse than the NC2016 redistricting plan is vanishingly small. On the contrary, the
Judges redistricting plan has a Gerrymandering Index that is better than over 75% of all districts
and a Representativeness Index that is better than roughly 75% of all districts. Thus the Judges
plan is a very typical plan, and even above average in terms of not being gerrymandered and in
being representative of the “will of the people.”
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Figure 3. Representativeness Index for the three districts of interest using congressional
voting data from 2012 (left) and 2016 (right). No redistrictings was less representative than
the NC2012 nor NC2016 redistricting plans. Roughly 30% of redistricting plans were less
representative than the Judges redistricting plan in both sets of voting data, meaning that
the Judges plan was reasonably representative.

1.3. Visualizing Gerrymandering. While the reductive power of a single number can be quite
compelling, we have also developed a simple graphical representation to summarize the properties
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of a given redistricting relative to the collection of reference redistrictings. The goal was to create
a graphical representation which would make visible when a particular redistricting packed or
fractured voters from a particular party to reduce its political power.
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Figure 4. After ordering districts from most Republican to most Democrat, these box-
plots summarize the distribution of the percentage of Democratic votes for the district in
each ranking position for the votes from 2012 (top) and 2016 (bottom). We compare our
statistical results with the three redistricting plans of interest. The Judges plan seems
to be typical while NC2012 and NC2016 have more Democrats than typical in the most
Democratic districts and fewer in districts which are often switching between Democrat and
Republican, depending on the votes.

One first needs to begin by discovering the natural structure of the geographical distribution of
votes in the state when viewed through the lens of varying over “reasonable” redistrictings. We
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begin by ordering the thirteen congressional districts which make up a redistricting from lowest to
highest based on the percentage of Democratic votes in each district. Since there are essentially
only two parties, nothing would change if we instead considered the percentage of Republican votes.

We are interested in the random distribution of this thirteen dimensional vector. Since it is diffi-
cult to visualize such a high dimensional distribution, we summarize the distribution by considering
the marginal distribution of each position in this vector and summarize it in a classical box-plot
for each component of the thirteen dimensional vector in Figure 4. That is to say, we examine
the distribution of votes that make up the percentage of Democratic votes in the most Republican
district. Then we repeat the process for the second most Republican district. Continuing for each
of the rankings, we obtain thirteen box-plots which we arrange horizontally on the same plot.

The box-plots are standard plots, meaning that within each box-plot the central line gives the
median percentage, the ends of the box give the location of the upper quartile and the lower quartile
(25% of the results exist below and above these lines). The outer bracketing line defines an interval
containing either the maximum and minimum values, or three halves the distance of the quantiles
from the mean, which ever is smaller. In the interest of visual clarity, we have not plotted any
outliers. On top of these box-plots, we have overlaid the percentages for the NC2012, NC2016, and
the Judges redistricting. In Figure 5, we also include plots that displays histograms rather than
box-plots. These plots are richer in detail. Yet, the detail makes it harder to estimate confidence
intervals.
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Figure 5. We present the same data as in Figure 4, but, with histograms replacing the
box-plots. Note that the distribution of the sixth most Republican district (district with
label 6 on the plots) is quite peaked in both the 2012 and 2016 votes, the Judges results are
centered directly on this peak while the NC2012 and NC2016 lie well outside the extent of

the distribution.

The structure of these plots highlights the typical structure of the redistrictings in our ensemble
and by extension, the spatial-political structure of the voters in North Carolina. It can then be
used to reveal the structure of our three redistrictings of interested. Observe that for both the 2012
and 2016 votes, the centers of the box-plots form a relatively straight, gradually increasing line
from the most Republican district (labeled 1) to the most Democratic (labeled 13). The Judges
districts mirror this structure. Furthermore, most of the percentages from the Judges districts fall
inside the box on the box-plot which marks the central 50% of the distribution. The NC2012 and
NC2016 have a different structure. There is a large jump between the tenth and eleventh most
Republican district (those with labels 10 and 11, respectively). In the NC2012 redistricting, the
fifth through tenth most Republican districts have more Republicans than one would typically see
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in our ensemble of “reasonable” redistrictings. In the NC2016 redistricting, the shifting starts with
the sixth most Republican district and runs through the tenth most Republican district (labeled
6-10). In both cases, the votes removed from the central districts have largely been added to
the three most Democratic districts (labeled 11-13). In the 2012 votes, this moved three to four
districts that typically would have been above the 50% line to below the 50% line, meaning that
these districts elected the Republican rather than the Democrat. With the 2016 votes, the changes
in structure only moved the tenth most Republican district across the 50% line.

Forgetting about the election outcomes, the structure has implications for the competitiveness
of districts and likely political polarization. Rather than a gradual increase at a constant rate from
left to right as the Judges redistricting and the ensemble of box-plots, the NC2012 and NC2016
redistrictings have significantly more Democrats in the three most Democratic districts and fairly
safe Republican majorities in the first eight most Republican districts. It is not hard to argue that
this leads to a more polarized legislative delegation with fewer centrist representatives being elected
on both ends of the political spectrum.

Figure 4 can be used to motivate and explain the Gerrymandering Index for our redistrictings of
interest. For example, to calculate the Gerrymandering Index for NC2012, one sums the square of
the distance from the red dots to the mean in each distribution from 1 to 13. The Gerrymandering
Index is the square root of this sum. To aid with visualization, recall that the line though the
center of each box is the median which, in these cases, is close to the mean. Clearly, this index
captures some of the features of Figure 4 discussed in the previous paragraph.

It is remarkable how stable the structures in Figure 4 are across the 2012 and 2016 votes. The
2016 plot is largely a downward shift of the 2012 plot. This stability largely explains why the two
plots in Figure 2 of the Gerrymandering Index look so similar. It also speaks to the stability of the
Representativeness Index in Figure 3.

1.4. Stability of Election Results. We also explored the degree to which the NC2012, NC2016
and Judges redistrictings are representative of the nearby redistrictings, where we interpret nearby
to mean that roughly 10% of the VTDs are swapped between districts. (See the next paragraph for
more precise description.) By switching nearby VTDs among districts we are able to assess whether
small changes impact the characteristics of the districts or not. We found that the districts within
the NC2012 and NC2016 redistricting plans had a Gerrymandering Index which was significantly
larger than the nearby redistrictings while the the Judges plan had a Gerrymandering Index which
was in the middle of the range produced by nearby redistrictings. In other words, switching
nearby districts made the NC2012 and NC 2016 redistrictings less partisan but did not change the
characteristics of the Judges redistricting. This suggests that the NC 2012 and NC2016 redistricting,
in contrast to the Judges redistricting, were precisely engineered and tuned to achieve a partisan
goal and that the components of the NC2012 and NC 2016 redistrictings redistricting were not
randomly chosen.

More precisely, we randomly sample “resonable” redistrictings which are near the NC2012,
NC2016, and Judges redistrictings in the sense that no single district differs by more VTDs than
a set threshold from the redistricting understudy. To set the threshold, we observe that among
the over 24,000 redistrictings we generated the average district size is around 210 VTDs. In a
particular typical redistricting from our ensemble, the sizes varied from 152 to 278 VTDs. With
these numbers in mind, we set our threshold to be 40 VTDs. Since every VTD switched is counted
twice, once for the district it is leaving and once for the district it is entering, this amounts to a
total of around 10% of the VTDs switching districts.

Figure 6 shows the results of these analyses applied to the NC2012, NC2016, and Judges re-
districtings. The redistrictings sampled around NC2012 have markedly better Gerrymandering
Indices than NC2012 itself. The results are less dramatic for NC2016, but telling nonetheless. This
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Figure 6. Gerrymandering Index based on random samples drawn from nearby the three
redistrictings of interest: NC2012 (left), NC2016 (center), and Judges (right). Only for the
Judges are the other points in the neighborhood similar to the redistricting of interest. All
plots use the 2012 votes.

shows that a randomly chosen redistricting near NC2012 (or respectively NC2016) has very different
properties than NC2012 (or respectively NC2016). This is convincing evidence that the NC2012
and NC2016 redistrictings were deliberately constructed to have unusual properties. It would have
been unlikely to choose such a singularly unusual redistricting by chance. In contrast, the Judges
redistricting has a Gerrymandering Index which is quite typical of its nearby redistrictings. It is
worse than around 50% of those nearby it and hence better than 50% of those nearby it. Thus, it
is very representative of its nearby redistrictings.

1.5. Summary of Main Results. By sampling over 24,000 reasonable redistrictings, we explore
the distribution of different election outcomes by estimating the probabilities of the numbers of
Democrats elected from North Carolina to the U.S. House of Representatives. Our sampling of
reasonable redistrictings also allows us to estimate the distribution of winning margins in each
district as well as the value of two indices representing gerrymandering and representativeness.
In every one of our tests, we have found that the NC2012 and NC2016 redistricting plans are
extraordinarily anomalous, suggesting that (i) these districts are heavily gerrymandered, (ii) they
do not represent the “will of the people” and (iii) they dilute the votes of one party. We have
also uncovered evidence that these two redistricting plans employ packing and cracking. On the
contrary, the redistricting plan produced by a bipartisan redistricting commission of retired judges
from the Beyond Gerrymandering project produced results which were highly typical among our
24,000 reasonable redistrictings. The Judges plan was exceptionally non-gerrymandered, was a
typical representation of the “will of the people,” and does not seem to pack or crack either party.

We also explored the degree to which the NC2012, NC2016 and Judges redistrictings were repre-
sentative of the nearby redistrictings, where we interpret nearby to mean that roughly 10% of the
VTDs are switched out of any given district. We found that the NC2012 and NC2016 redistrict-
ings were significantly more gerrymandered then those around them while the Judges redistricting
was similar to those nearby. This seems to imply that the NC2012 and NC2016 redistrictings
were carefully engineered and tuned, and not randomly chosen among those with a certain basic
structure.

The remainder of the paper is organized as follows. In the remainder of this section we describe
the Beyond Gerrymandering project. In Section 2, we describe how we construct our distribution
of “reasonable” redistrictings and sample it using Markov chain Monte Carlo. In Section 2.4, we
describe how we further sub-select our samples based on a series of thresholds to better reflect the
proposed bipartisan redistricting legislation HB92. In Section 2.5, we discuss how the parameters
of our distribution are chosen to produce “reasonable” redistrictings. In Section 3, we explore the
effect of the Voting Rights Act provision in HB92 on the outcome of the elections. In Section 4, we
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give the missing details in the construction of the Representativeness and Gerrymandering Indices.
In Section 5, we show that our results are relatively insensitive to our choice of parameters. We also
provide evidence that our Markov chain Monte Carlo is running sufficiently long to produce results
from the desired distribution. In Section 6, we provide some details about the data used and some
of the more technical choices made in the preceding analysis. Finally in Section 7, we make some
concluding remarks and discuss future directions. The Appendix of the paper gives some sample
maps drawn by our algorithm as well as for the NC2012, NC2016, and Judges redistrictings.

1.6. The Beyond Gerrymandering Project. The Beyond Gerrymandering1 project was a col-
laboration between UNC system President Emeritus and Davidson College President Emeritus
Thomas W. Ross, Common Cause, and the POLIS center at the Sanford School at Duke Univer-
sity. The project’s goal is to educate the public on how an independent, impartial redistricting
process would work. The project formed an independent redistricting commission made up of ten
retired jurists, with each political party represented by an equal number. The commission used
strong, clear criteria to create a new North Carolina congressional map based on NC House Bill 92
from the 2015 legislative season. All federal rules related to the Voting Rights Act were followed but
no political data, election results or incumbents addresses were considered when creating new dis-
tricts. The commission met twice over the summer of 2016 to deliberate and draw maps. The maps
resulting from this simulated redistricting commission were released in August 2016. The Judges
agreed on a redistricting at the level of Voting Tabulation Districts (VTD). This coarser redistrict-
ing was refined at the level of census blocks to achieve districts with less than 0.1% population
deviation. The original VTD based maps are used in our study.

2. Random Sampling of Reasonable Redistrictings

Central to our analysis is the ability to generate a large number of different “reasonable” re-
districtings. This is accomplished by sampling a probability distribution on possible redistrictings
of North Carolina. The distribution is constructed so that it is concentrated on “reasonable” re-
districtings. We then filter the randomly drawn redistrictings, using only those which satisfy our
criteria for being “reasonable.”

As already mentioned, we take our definition of “reasonable” redistrictings from the unratified
House Bill 92 (HB92) from the 2015 Session of the North Carolina General Assembly 2 which stated
that a bipartisan commission should draw up redistrictings while observing the following principles:

• §120-4.52(f): Districts must be contiguous; areas that meet only at points are not considered
to be contiguous.
• §120-4.52(c): Districts should have close to equal populations, with deviations from the

ideal population division within 0.1%.
• §120-4.52(g): Districts should be reasonably compact, with (1) the maximum length and

width of any given district being as close to equal as possible and (2) the total perimeter
of all districts being as small as possible.
• §120-4.52(e): Counties will be split as infrequently as possible and into as few districts as

possible. The division of Voting Tabulation Districts (VTDs) will also be minimized.
• §120-4.52(d): Redistrictings should comply with pre-existing federal and North Carolina

state law, such as the Voting Rights Act (VRA) of 1965.
• §120-4.52(h): Districts shall not be drawn with the use of (1) political affiliations of reg-

istered voters, (2) previous election results, or (3) demographic information other than

1For more information see https://sites.duke.edu/polis/projects/beyond-gerrymandering/
2Nonpartisan Redistricting Commission. House Bill 92. General Assembly of North Carolina Session 2015. House

DRH10039-ST-12 (02/05)
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population. An exception may be made only when adhering to federal law (such as the
VRA).

We restrict our probability distribution to redistrictings which have connected districts. The re-
maining principles are encoded in a score function which is minimized by redistrictings that are
most successful at satisfying the remaining design principles. We introduce some mathematical
formalisms in order to describe the score function.

We represent the state of North Carolina as a graph G with edges E and vertices V . Each vertex
represents a Voting Tabulation District (VTD) and an edge between two vertices exists if the two
VTDs are adjacent on the map. This graph representing the North Carolina voting landscape has
over 2500 vertices and over 8000 edges.

Since North Carolina has thirteen seats in the U.S. House of Representatives, we define a redis-
tricting plan to be a function from the set of vertices to the integers between one and thirteen. More
formally, recalling that V was the set of vertices, we represent a redistricting plan by a function
ξ : V → {1, 2, . . . , 13}. If a VTD is represented be a vertex v ∈ V, then ξ(v) = i means that
the VTD in question belongs to district i. Similarly for i ∈ {1, 2, . . . , 13} and a plan ξ, the i-th
district, which we denote by Di(ξ), is given by the set {v ∈ V : ξ(v) = i}. We wish to only consider
redistricting plans ξ such that each district Di(ξ) is a single connected component. We will denote
the collection of all redistricting plans with connected districts by R.

2.1. The Score Function. We now wish to define a function J that assigns a nonnegative number
J(ξ) to every redistricting ξ ∈ R. To do this, we employ functions Jp, JI , Jc, and Jm that measure
how well a given redistricting satisfies the individual principles outlined in HB92. The population
score Jp(ξ) measures how well the redistricting ξ partitions the population of North Carolina into 13
equal parts. The isoperimetric score JI(ξ) measures how compact the districts are by returning the
sum of the isoperimetric constants for each district, a quantity which is minimized by a circle. The
county score Jc(ξ) measures the number of counties split between multiple districts; the minimum
is achieved when there are no split counties. Lastly, the minority score Jm(ξ) measures the extent
to which the districts with the largest percentage of African-Americans achieve stipulated target
percentages. With these, we then define our score function J to be a weighted sum of Jp, JI , Jc,
and Jm; we use a weighted combination so as to not give one of the above scores undue influence
since all of the score functions do not necessarily change on the same scale. Specifically, we define:

J(ξ) = wpJp(ξ) + wIJI(ξ) + wcJc(ξ) + wmJm(ξ),(1)

where wp, wI , wc, and wm are a collection of positive weights.
To describe the individual score functions, we attach to our graph G = (V,E) some data which

gives relevant features of each VTD. We define the positive functions pop(v), area(v), and AA(v)
for a vertex v ∈ V as respectively the total population, geographic area, and African-American
population of the VTD associated with the vertex v. We extend these functions to a collection of
vertices B ⊂ V by

pop(B) =
∑
v∈B

pop(v), area(B) =
∑
v∈B

area(v), AA(B) =
∑
v∈B

AA(v) .(2)

We think of the boundary of a district Di(ξ) as the subset of the edges E which connect vertices
inside of Di(ξ) to vertices outside of Di(ξ). We write ∂Di(ξ) for the boundary of the district Di(ξ).
Since we want to include the exterior boundary of each district (the section bordering an adjacent
state or the ocean), we add to V the vertex o which represents the “outside” and connect it with an
edge to each vertex representing a VTD which is on the boundary of the state. We always assume
that any redistricting ξ always satisfies ξ(v) = 0 if and only if v = o. Since ξ always satisfies
ξ(o) = 0 and hence o 6∈ Di(ξ) for i ≥ 1, it does not matter that we have not defined area(o) or
pop(o), as o is never included in the districts.
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Given an edge e ∈ E which connects the two vertices v, ṽ ∈ V , we define boundary(e) to be the
length of common border of the VTDs associated with the vertex v and ṽ. As before, we extend
the definition to the boundary of a set of edges B ⊂ E by

boundary(B) =
∑
e∈B

boundary(e) .(3)

With these preliminaries out of the way, we turn to defining the first three score functions used
to assess the goodness of a redistricting.

2.1.1. The population score function. We define the population score by

Jp(ξ) =
13∑
i=1

(pop(Di(ξ))

popIdeal

− 1
)2
, popIdeal =

Npop

13

where Npop is the total population of North Carolina, pop(Di(ξ)) is the population of the district
Di(ξ) as defined in (2), and popIdeal is the population that each district should have according to
the ‘one person one vote’ standard; namely, popIdeal is equal to one-thirteenth of the total state
population.

2.1.2. The Isoperimetric score function. The Isoperimetric score JI , which measure the compact-
ness of a district, is the ratio of the perimeter to the total area of each district. The Isoperimetric
score is minimized for a circle, which is the most compact shape. Hence we define

JI(ξ) =

13∑
i=1

[
boundary(∂Di(ξ))

]2
area(Di(ξ))

.

where ∂Di(ξ) is the set of edges which define the boundary, boundary(∂Di(ξ)) is the length of the
boundary of district Di and area(Di(ξ)) is its area.

This compactness measure is one of two measures often used in the legal literature where it is
referred to as the parameter score (See [11, 12] from references). This second measure, usually
referred to as the dispersion score, is more sensitive to overly elongated districts, though the pa-
rameter score also penalizes them. The dispersion score does not penalize undulating boundaries
while the parameter score (our JI) does.

2.1.3. The county score function. The county score function Jc(ξ) penalizes redistrictings which
contain single counties contained in two or more districts. We refer to these counties as split
counties. The score consists of the number of counties split over two different districts times a
factor W2(ξ) plus a large constant MC times the number of counties split over three of more
different districts times a second factor W3(ξ). Specifically, we define:

Jc(ξ) ={# counties split between 2 districts} ·W2(ξ)

+MC · {# counties split between ≥ 3 districts} ·W3(ξ)

where MC is a large constant and the weights W2(ξ) and W3(ξ) are defined by

W2(ξ) =
∑

counties
split between

2 districts

(
Fraction of county VTDs in 2nd largest
intersection of a district with the county

) 1
2

W3(ξ) =
∑

counties
split between
≥ 3 districts

(
Fraction of county VTDs not in 1st or 2nd
largest intersection of a district with the county

) 1
2
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The factors W2(ξ) and W3(ξ) make the score function vary in a more continuous fashion, which
encourages reduction of the smaller fraction of a split county.

2.1.4. The Voting Rights Act or minority score function. It is less clear what it means for a redis-
tricting to comply with the VRA. African-American voters make up approximately 20% of the eli-
gible voters in North Carolina. Since 0.2 is between 2

13 and 3
13 , the current judicial interpretation of

the VRA stipulates that at least two districts should have enough African-American representation
so that this demographic may elect a candidate of their choice. However, the NC2012 redistricting
plan was ruled unconstitutional because two districts, each containing over 50% African-Americans,
were ruled to have been packed too heavily with African-Americans, diluting their influence in
other districts. The NC2016 redistricting was accepted based on racial considerations of the VRA
and contained districts that held 44.48% African-Americans, and 36.20% African-Americans. The
amount of deviation constitutionally allowed from these numbers is unclear.

Based on these considerations, we chose a VRA score function which awards lower scores to
redistrictings which had one district with at least 44.48% African-Americans and a second district
with at least 36.20% African-Americans. We write

Jm(ξ) =
√
H(44.48%−m1) +

√
H(36.20%−m2),(4)

where m1 and m2 represent the percentage of African-Americans in the districts with the highest
and second highest percent of African-Americans, respectively. H is the function defined by H(x) =
0 for x ≤ 0 and H(x) = x for x ≥ 0. We chose this function to make the transition smoother,
and we utilize the square root function to encourage districts that are just above the threshold to
be less probable than when no square root is included. Notice that whenever m1 ≥ 4.484% and
m2 ≥ 36.20% we have that Jm = 0.

2.2. The Probability Distributions on Redistrictings. We now use the score function J(ξ)
to assign a probability to each redistricting ξ ∈ R that makes redistrictings with lower scores more
likely. Fixing a β > 0, we define the probability of ξ, denoted by Pβ(ξ), by

Pβ(ξ) =
e−βJ(ξ)

Zβ
(5)

where Zβ is the normalization constant defined so that Pβ(R) = 1. Specifically,

Zβ =
∑
ξ∈R

e−βJ(ξ) .

The positive constant β is often called the “inverse temperature” in analogy with statistical me-
chanics and gas dynamics. When β is very small (the high temperature regime), different elements
of R have close to equal probability. As β increases (“the temperature decreases”), the measure
concentrates the probability around the redistrictings ξ ∈ R which minimize J(ξ).

2.3. Generating Random Redistrictings. If we neglect the fact that the individual districts
in a redistricting need to be connected, then there are more than 132500 ≈ 7.2 × 102784 different
redistrictings, larger than both the current estimate for the number of atoms in the universe (be-
tween 1078 and 1082) and the estimated number of seconds since the Big Bang (4.3× 1017). While
there are significantly fewer redistrictings in R (the set of simply connected redistrictings), it is
not practical to enumerate all redistrictings to find those with the lowest values of J (i.e. the most
probable ones).

The standard, very effective way to escape this curse of dimensionality is to use a Markov chain
Monte Carlo (MCMC) algorithm to sample from the probability distribution Pβ. The basic idea is
to define a random walk on R which has Pβ as its unique, attracting stationary measure. We do
this using the standard Metropolis-Hastings algorithm.
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The Metropolis-Hastings algorithm is designed to use one Markov transition kernel Q (the pro-
posal chain) to sample from another Markov transition kernel that has a unique stationary distri-
bution µ (the target distribution). Q(ξ, ξ′) gives the probability of moving from the redistricting ξ
to the redistricting ξ′ in the proposal Markov chain and is readily computable. We use Q to draw
a sample distributed according to µ. The algorithm proceeds as follows:

(1) Choose some initial state ξ ∈ R.
(2) Propose a new state ξ′ with transition probabilities given by Q(ξ, ξ′).

(3) Accept the proposed state with probability p = min
(
1, µ(ξ′)q(ξ′,ξ)

µ(ξ)Q(ξ,ξ′)

)
.

(4) Repeat steps 2 and 3.

The stationary distribution of this Markov chain matches the stationary measure µ. Thus, the
states can be treated as samples from the desired distribution. The stationary measure we would
like to sample is Pβ. We sample from three possible initial states: NC2012, NC2016, and Judges
redistrictings. Since this algorithm is designed to converge to a unique stationary measure Pβ, any
results should be independent of the initial starting point. However, this assumes the parameters
have been chosen so that the time to equilibrate is short enough to happen during our runs. We
show that the results are relatively independent of the initial condition in Section 5.2, which lends
credence to the assertion that the algorithm is equilibrating.

We define the proposal chain Q used for proposing new redistrictings in the following way:

(1) Uniformly pick a conflicted edge at random. An edge, e = (u, v) is a conflicted edge if
ξ(u) 6= ξ(v), ξ(u) 6= 0, ξ(v) 6= 0.

(2) For the chosen edge e = (u, v), with probability 1
2 , either:

ξ′(w) =

{
ξ(w) w 6= u

ξ(v) u
or ξ′(w) =

{
ξ(w) w 6= v

ξ(u) v

Let conflicted(ξ) be the number of conflicted edges for redistricting ξ. Then we have Q(ξ, ξ′) =
1
2

1
conflicted(ξ) . The acceptance probability is given by:

p = min
(

1,
conflicted(ξ)

conflicted(ξ′)
e−β(J(ξ′)−J(ξ))

)
If a redistricting ξ′ is not connected, then we refuse the step, which is equivalent to setting J(ξ′) =
∞.

Given a fixed set of weights (wp, wi, wc, wm), one still needs to determine an appropriate β so that
typical samples from the distribution are “reasonable” redistrictings. If β is chosen to be too large,
the algorithm will seek out a local minimum and leave this minimum with very low probability,
meaning that it may require a large amount of steps to switch between high quality redistrictings.
If β is chosen to be too low, then the algorithm will never find the locally good districts as it will
choose redistrictings indiscriminately.

There are several well established ideas in the literature to overcome these challenges, including
simulated annealing (e.g. [13]), parallel tempering (e.g. [6]) and simulated tempering (e.g. [5]).
In the present work, we examine simulated annealing, in which β is set to be small at first until a
certain number of steps are accepted (in the sense of step (3) from the algorithm in Section 2.3).
This allows the system to explore the space of redistrictings more freely. Next, β is increased
linearly to a maximum value over the course of a defined number of steps. This slowly “cools” the
systems, relaxing it into a redistricting ξ which has a relatively low score J(ξ). Finally, β is kept
at this fixed maximum value for a defined number of steps so that the algorithm locally samples
the measure Pβ sufficiently long enough to produce a good redistricting.

The principal results quoted in Section 1 use the low β to be zero over 40, 000 steps, linearly
increase β to one over 60, 000 steps, and fix β to be one for 20, 000 steps before taking a sample.
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This process is repeated for each sample redistricting. One potential critique with using simulated
annealing is that the results may depend on the number of steps chosen above. We make a standard
test to confirm that we have taken an appropriate number of steps by doubling each number of
steps and repeating our analysis. The results of this test, which are found in Section 5.2, show that
doubling the lengths has little effect on the results.

2.4. Thresholding the sampled redistrictings. Although drawing a redistricting with a bad
score is unlikely when using the MCMC algorithm from Section 2.3 combined with the probability
distribution given in (5), it is still possible. Additionally, the use of simulated annealing also
increases the chance that we become stuck in a local minimum with a less than desirable score
function, as such local minimum may take longer than the time we spend at high β to escape.
These local trapping events can often lead to samples with less than perfect score functions. Lastly,
our score functions do not perfectly encapsulate our redistricting design aesthetic. For example,
since the isoperimetric score function is the sum of the individual isoperimetric scores of each
district, it is still possible to have one bad district if the rest have exceptionally small isoperimetric
scores.

Since we want to maximize the degree of compliance with HB92, we only use samples which
pass an additional set of thresholds, one for each of the selection criteria. This additional layer
of rejection sampling was also used in reference [5], though the authors of reference [5] chose to
reweigh the samples to produce the uniform distribution over the set redistrictings that satisfy the
thresholds. We prefer to continue to bias our sampling according to the score function so better
redistrictings are given higher weights. We now detail our thresholding requirements.

It is our experience from the Beyond Gerrymandering project that redistrictings which use VTDs
as their building blocks and have less that 1% population deviation can readily be driven to 0.1%
population deviation by breaking the VTDs into census tracts and performing minimal alterations
to the overall redistricting plan. We thus only accept redistrictings that have no districts above
1% population deviation. Many of our samples have deviations considerably below this value. It
is important to emphasize that we require this of every district in the redistricting. In Section 5.1,
we show that the results are quantitatively extremely similar, and qualitatively identical, when the
population threshold is decreased from 1% to 0.75 % and then to 0.5%.

We have found that districts with isoperimetric scores under 60 are almost always reasonably
compact. Thus, we choose to accept a redistricting only if each district in the plan has an isoperi-
metric ratio less than 60. The Judges redistricting plan would be accepted under this threshold as
its least compact district has an isoperimetric score of 53.5. Neither NC2012 nor NC2016 would be
accepted with this thresholding as the least compact districts of each plan have isoperimetric scores
of 434.65 and 80.1, respectively. We also note that only two of the thirteen districts for the NC2012
plan meet our isoperimetric score threshold, whereas eight of the thirteen districts of NC2016 fall
below the threshold.

Though redistrictings which split a single county in three are infrequent, they do occur among
our samples. Since these are undesirable, we only accept redistrictings for which no counties
are split across three or more districts. Note that, in order to satisfy population requirements,
we must allow counties to be split into two districts because of the large populations of Wake
and Mecklenburg Counties which each contain a population larger than a single Congressional
district’s ideal population. We do not explicitly threshold based on number of split counties,
though redistrictings with more split counties have a higher scores, and hence are less favored.

To build a threshold based on minority requirements of the VRA, we note that the NC2016
redistricting was deemed to satisfy the VRA by the courts. The districts in this plan with the
two highest proportion of African-Americans to total population are composed of 44.5% and 36.2%

15



African-Americans. With this in mind, we only accept redistrictings if the districts with the two
highest percentages of African-American population have at least 40% and 33%, respectively.

The effect of all of these thresholds was to select around 16% of the samples initially produced
by our MCMC runs. Though this leads to unused samples, it ensures that all of the redistrictings
used meet certain minimal standards. This in turn allowed us to better adhere to the spirit of
HB92. The reported 24,000 samples used in our study refer to those left after thresholding. The
full data set of samples was in excess of 150,000. That being said, we show in Section 5.1 that
results without thresholding were quantitatively very close and qualitatively identical. As already
mentioned, we also show that decreasing the population threshold from 1% to 0.75% and then to
0.5% also has little effect on the quantitative results and no effect on the qualitative conclusions.

2.5. Determining the weight parameters. As we have mentioned above, we have four indepen-
dent weights (wp, wI , wc, wm) used in balancing the effect of the different scores in the total score
J(ξ). In addition to these parameters, we also have the low and high temperatures corresponding
respectively to the max and min β used in the simulated annealing. Since β multiplies the weights,
one of these degrees of freedom is redundant and can be set arbitrarily. We chose to fix the low
temperature (high value of β) to be one.

To select appropriate parameters, we employ the following tuning method:

(1) Set all weights to zero.
(2) Find the smallest wp such that a fraction of the results are within a desired threshold

(for the current work we ensured that at least 25% of the redistrictings were below 0.5%
population deviation, however we typically did much better than this).

(3) Using the wp from the previous step, find the smallest wI such that a fraction of the
redistrictings have all districts below a given isoperimetric ratio (we ensured that at least
10% of the results were below this threshold; we chose a threshold of 60 (see section 2.4)).

(4) If above criteria for population is no longer met, repeat steps 2 through 4 until both con-
ditions are satisfied

(5) Using the wp and wI from the previous steps, find the smallest wm such that at least 50%
of all redistrictings have at least one district with more than 40% African-Americans and a
second district has at least 33% African-Americans.

(6) If the thresholds for population were overwhelmed by increasing wm, repeat steps 2 through
6. If the thresholds for compactness were overwhelmed, repeat steps 3 through 6.

(7) Using the wp, wI , and wm from the previous steps, find the smallest wc such that we nearly
always only have two county splits, and the number of two county splits are, on average,
below 25 two county splits.

(8) If the thresholds for population are no longer satisfied, repeat steps 2 through 8. If the
criteria for the compactness is no longer met, repeat steps 3 through 8. If the criteria for
the minority populations is not satisfied, repeat steps 5 through 8. Otherwise, finish with
a good set of parameters.

With this process, we settle on parameters wp = 3000, wI = 2.5, wc = 0.4, and wm = 800 and
have used these parameters for all of the results presented in the main results above (section 1).
In Section 5.3, we show reasonable variations of these choices have little qualitative effect on the
results.

3. The effect of the VRA

The NC2012 districts were labeled unconstitutional as a racial gerrymander. We investigate the
effect of the VRA on election outcomes by considering samples taken from simulations that do not
take the VRA into account, which is to say that we set wm = 0. We examine the distribution
of elected Democrats along with the histogram box-plots in Figure 7. We find that the VRA,
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even with the more modest thresholds of 40% and 33% required African-Americans, favors the
Republican party. Without the VRA, there is roughly a 65% chance that 7 or more Democrats
will be elected, with a 20% chance that 8 Democrats will be elected; in contrast, with the VRA
considered, there is a 50% chance that 7 or more Democrats are elected, with a 10% chance that 8
Democrats are elected. Even with this bias towards the Republican party caused by the VRA, the
results produced by the NC2012 elections are still very atypical.
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Figure 7. We display changes of the distribution of election results when the VRA is not
taken into consideration (left). The histogram formed from the distribution of our main
results overlays this image with the gray shaded histogram. We display changes to the
histogram of the box-plot when comparing the results when VRA is considered or not (right).

4. Details of the Indices

We begin by expounding and clarifying how we compute the Gerrymandering Index and the
Representativeness Index.

4.1. Details of Gerrymandering Index. To compute the Gerrymandering Index, we examine
the mean percentage of Democratic votes in each of the thirteen districts when the districts are
ordered from most to least Republican (see Figure 4). To calculate the Gerrymandering Index for
any given redistricting plan, we take the Democratic votes for each district when the districts are
again ordered from most to least Republican. The differences between the mean and the observed
democratic percentage are taken for each district using a given set of votes. These differences are
then each squared and summed over the 13 districts. The square root of this sum of squares is our
Gerrymandering Index.

The Gerrymandering Index is smallest when all of the ordered Democratic vote percentages are
precisely the mean values. However, this is likely not possible as the percentages in the different
districts are highly correlated. To understand the range of possible values, we plot the complemen-
tary cumulative distribution function of the Gerrymandering Index of our ensemble of randomly
generated reasonable redistrictings (see Figure 2). This gives a context in which to interpret any
one score.

The mean percentages for the collection of redistricting we generated is

(0.37, 0.39, 0.41, 0.44, 0.46, 0.48, 0.50, 0.52, 0.55, 0.57, 0.60, 0.63, 0.67) .

If a given redistricting is associated with the sorted winning Democratic percentages

(0.36, 0.38, 0.39, 0.40, 0.41, 0.42, 0.43, 0.44, 0.49, 0.52, 0.64, 0.66, 0.7) .
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then the Gerrymandering Index for the redistricting is the square root of

(0.37− 0.36)2 + (0.39− 0.38)2 + (0.41− 0.39)2

+ (0.44− 0.40)2 + (0.46− 0.41)2 + (0.48− 0.42)2 + (0.50− 0.43)2

+ (0.52− 0.44)2 + (0.55− 0.49)2 + (0.57− 0.52)2 + (0.60− 0.64)2

+ (0.63− 0.66)2 + (0.67− 0.7)2 = 0.0291

In summary, in this example the Gerrymandering Index is
√

0.0291 = 0.17.

4.2. Details of Representativeness Index. To calculate the Representativeness Index, we first
construct a modified histogram of election results that captures how close an election was to swap-
ping results. To do this for a given redistricting plan, we examine the least Republican district in
which a Republican won, and the least Democratic district in which a Democrat won. We then
linearly interpolate between these districts and find where the interpolated line intersects with the
50% line. For example, in the 2012 election, the 9th most Republican district elected a Republican
with 53.3% of the vote, and the fourth most Democratic district won their district with 50.1% of
the vote. We would then calculate where these two vote counts cross the 50% line, which will be

50− (100− 50.1)

53.3− (100− 50.1)
≈ 0.03,(6)

and add this to the number of Democratic seats won to arrive at the continuous value of 4.03.
This index allows us to construct a continuous variable that contains information on the number
of Democrats elected, and also demonstrates how much safety there is in the victory.

Fractional parts close to zero suggest that the most competitive Democratic race is less likely to
go Democratic than the most competitive Republican race is to go Republican. On the other hand,
fractional parts close to one suggest that the most competitive Republican race is less likely to
go Republican than the most competitive Democratic race is to go Democratic. Instead of simply
creating a histogram of the number of seats won by the Democrats, in Figure 8 we construct a
histogram of our new interpolated value. We define the representativeness as the distance from
the interpolated value to the mean value of this histogram (shown in the dashed line). These are
the values we report in Figure 3. For the 2012 vote data, we find that the mean interpolated
Democratic seats won is 7.01, and the Judges plan yields a value of 6.28, giving a Representative
Index of |7.01 − 6.28| = 0.73. The NC2012 and NC2016 plans both have representative indices
greater than two.

5. Testing the Sensitivity of Results

We wish to ensure that our algorithm has sampled the space of redistrictings in a robust way.
We use this section to carefully study the effect of changing the set of threshold values, changing
the weights in our distribution, and changing simulated annealing parameters on election results.
We also verify that the choice of the initial district does not influence our results and that this
information is lost as the algorithm updates the redistrictings.

5.1. Varying thresholds. Achieving a 0.1% population deviation is the only statute of HB92 that
we violate. Although we have noted above that the Judges original redistrictings in the ‘Beyond
Gerrymandering’ project were all slightly over 1% population deviation, and splitting VTDs to fall
below this threshold had little impact on the election results. We test this for our own redistrictings
by changing the population threshold to 0.75% and 0.5%. The results are shown in Figure 9, for
which we have used the 2012 vote data. We find that tightening the population threshold has
negligible impact on the number of Democrats elected, and that the variation in the histogram
box-plots is barely perceptible. In the 0.5% population deviation threshold plots, we have discarded
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Figure 8. For the 2012 votes (left) and the 2016 votes (right), we plot the interpolated
winning margins, which give the number of seats won by the Democrats in finer detail.
We determine the mean of this new histogram and display it with the dashed line. The
Representativeness Index is defined to be the distance from this mean value. The histogram
presented in Figure 1 is overlaid on this plot for reference.

over half of our results and we still do not see any significant changes. These results support our
claim that splitting VTDs to achieve a less than 0.1% deviation will have a negligible effect on our
conclusions.
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Figure 9. We display changes of the distribution of election results with changes to the
population threshold (left). The histogram formed with 1% population deviation overlays
this image with the gray shaded histogram. We display changes to the histogram of the
box-plot when comparing 1% population deviation threshold with 0.5% (right).

Next, we note that there is no corresponding law to dicate an choice of compactness threshold.
The NC2016 districts have a maximum isoperimetric ratio of around 80, and the NC2012 districts
have a maximum of over 400. The Judges redistricting has a district with maximum isoperimetric
ratio of around 54. To test the effect of setting different compactness thresholds, we repeat our
analysis by choosing 54, 80 and no threshold for the maximum isoperimetric ratio of all districts
within a redistricting. We find that relaxing the compactness threshold minimally changes the
election results as demonstrated in Figure 10. We note that having no threshold does not mean
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that we have arbitrarily large compactness values. This is because of the cooling process in the
simulated annealing algorithm and the fact that we continue to penalize large compactness scores.
We find that we have an average maximum isoperimetric ratio of around 75 and that we rarely see
redistrictings with maximal ratio larger than 120.
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Figure 10. We display changes of the distribution of election results with changes to
the compactness threshold (left). The histogram formed with a maximum of 60 for the
isoperimetric ratio overlays this image with the gray shaded histogram. We display changes
to the histogram of the box-plot when comparing a maximum of 60 in the isoperimetric
ratio without any thresholding on compactness (right).

5.2. Independence of initial conditions and simulated annealing parameters. There is
a possible pitfall of using simulated annealing: we may become trapped in local regions, leaving
us unable to explore the entire space of redistrictings. This may be because we have cooled the
system down too quickly, keeping it trapped in a local region, or it may be because the likelihood
of finding a path out of one local region of redistrictings and into another is small. We note that we
have animated our algorithm and have found that districts may travel from one end of the state to
another; such motion suggests that many types of redistrictings are sampled, and it is reasonable
to hypothesize that as districts exchange locations, they lose information on past configurations.
To more fully vet this idea, we examine the effect of (i) choosing a different initial redistricting in
our algorithm, and (ii) doubling the simulated annealing parameters, thus cooling the system down
twice as slowly. To clarify the point (ii), instead of remaining hot (β = 0) for 40K steps, cooling
linearly for 60K steps, and remaining cold (β = 1) for 20K steps, we instead remain hot for 80K
steps, cool linearly for 120K steps, and remain cold for 40K steps. We then check to see if the
election results are altered by changing these conditions and display our results in Figure 11.

We find that the changes with respect to both initial conditions and the slowdown of the annealing
process have little effect on the election results. There are slight effects; for example, the initial
condition for the NC2012 redistricting has a 15% chance of electing five Democrats rather than the
12% chance we have seen before. We note that these are exploratory runs, so we have less than
1000 accepted districtings for the NC2012 and NC2016 initial conditions (each has close to 1000)
and less than 2500 runs for the increased cooling times. These sample sizes are robust enough to
provide a general trend but are subject to statistical variations. Hence the small sample sizes are
a possible and likely culprit of these variations.

5.3. Varying weights. We have proposed a methodology for determining the weights in the score
function that is primarily concerned with obtaining a high percent of redistrictings below our chosen
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Figure 11. We display the probability distribution of elected Democrats with respect to
initial conditions (top left) and the original versed doubled simulated annealing parameters
(bottom left). The histogram formed with the Judges as an initial condition and the pre-
viously reported simulated annealing parameters overlays this image with the gray shaded
histogram. We display traditional box-plots for the three initial conditions as we need to
compare three results rather than two (top right) along with the histogram box-plots to
compare the effect of changing the simulated annealing parameters (bottom right).

threshold values (see section 2.5). We note that other parameters may be chosen, and here we test
whether making a different choice will affect the statistics on the election outcomes. We are in
a four dimensional space, meaning that the parameter space is very large. Exploring this space
thoroughly would come at an extraordinary computational cost. We instead perform a simple
sensitivity test on our current location in the parameter space by exploring the four dimensional
space in four linearly independent directions. We explore over three directions by significantly
increasing and decreasing wp, wI , and wm. For the fourth direction, we note that we could simply
increase or decrease wc; however, we thought it might be interesting to increase and decrease β
instead. Because changing β is equivalent to changing all parameters, this forms a fourth linearly
independent search direction, and provides us with information similar to changing wc. This leads
us to examine eight different parameter sets, which still requires a large number of runs. To cut
down on the computational cost, we take advantage of the result presented in section 5.1 above,
where we conclude that ignoring the compactness threshold has a minimal effect on our results.
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The compactness threshold is by far the most restrictive, so omitting it will allow us to sample
more redistrictings with fewer runs.

We present our results in Figure 12, and find that the results are very robust in all examined
directions of changing parameters. We note, however, that the percentage of redistrictings that falls
below our compactness acceptance threshold does change with varying parameters. Based on our
result that election results are robust with respect to large changes in the compactness threshold,
we conclude that significant changes in the parameters will have little effect on the statistical results
of the election data.
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Figure 12. We display standard box-plots and demonstrate how the election results
change with respect to changing the values of the weights.

6. Technical Discussions

6.1. Data sources and extraction. The VTD geographic data were taken from the NCGA web-
site (see [7] from references) and the United States Census Bureau website (see [3] from references),
which provide for each VTD its area, population count of the 2010 census, the county in which the
VTD lies, its shape and location. Perimeter lengths shared by VTDs were extracted in ArcMap
from this data. Minority voting age population was found on the NCGA website using 2010 census
data (see [8] from references). Data for the vote counts in each VTD for the 2012 House elections
was taken from Harvard’s Election Data Archive Dataverse (see [4] from references). Vote count
data for the 2016 house elections was provided by NCSBE Public Data (See [10] from references).
We note that for the 2016 election, VTD data was not reported for all VTDs, but rather for each
precinct; 2447 of the precincts are VTDs, meaning that we have data for the majority of the 2692
VTDs. However 172 precincts contain multiple VTDs, 66 VTDs were reported with split data, and
7 VTDs were reported with complex relationships. To extrapolate VTD data on those contained
in the 172 precincts containing multiple VTDs, we split the votes for a precinct among the VTDs
it contained proportional to the population of each VTD. For the split VTDs, those containing
multiple precincts, we simply added up the votes among the precincts it contained. There was
no extrapolation for these VTDs. For the VTDs with complex relationships, we divided up the
votes using estimates based on the geography and population of the VTDs. We note that roughly
10% of the population lies in the VTDs with imperfect data, and that we do not expect significant
deviation in our results based on the above approximations.
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6.2. Examining nearby redistrictings within a distance. The random sampling of the nearby
districts is accomplished by running the same MCMC algorithm described in Section 2.3 with the
small modification that if a proposed step ever tries to increase the deviation between any of the
districts from the original redistricting in question (either NC2012, NC2016, or the Judges) above
40 VTDs, then the step is rejected and the chain does not move on that round. Alternatively, one
can think of J(ξ) =∞ for any ξ ∈ R which has a district that differs from the original redistricting
by more that 40 VTDs. As before, we then threshold the results for NC2016 and the Judges on
the Population Score, the County Score, and the Minority Score as described in Section 2.4. We
do not threshold on the Isoperimetric Score as keeping the redistricting near the original is likely
sufficient. We do not threshold the NC2012 at all since most of the redistrictings close to NC2012
would fail the Population threshold.

We examine the difference in the local complementary cumulative distribution function (thresh-
olded and not) to get a sense of how accurate the NC2012 local complementary cumulative distri-
bution function is without thresholding.
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Figure 13. There is not a large difference between the thresholded and unthresholded results.

7. Discussion

The most basic critique of this work is that we have assumed that the candidate does not
matter, that a vote for the Democrat or Republican will not change, even after the districts are
rearranged. Furthermore, as districts become more polarized and many elections results become
a forgone conclusion, voter turn out is likely suppressed. While we could try to correct for these
effects, we find the simplicity and power of using the actual votes very compelling. The results
are so striking that we feel they are still very illuminating. In using 2012 and 2016 data, we have
only used presidential election year data. Unfortunately, the 2014 U.S. congressional election in
North Carolina contained an unopposed race which prevents the support for both parties being
expressed in the VTDs contained in that district. In reference [1], the missing votes were replaced
with votes from the Senate race. However, since we had two full elections, namely 2012 and 2016,
which needed little to no alterations, we chose not to include the 2014 votes in this study.
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Figure 14. Map for NC2012
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Figure 15. Map NC2016
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Figure 16. Map produce by bipartisan redistricting commission of retired Judges
from Beyond Gerrymandering project
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Figure 17. First sample redistricting generated by MCMC
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Figure 18. Second sample redistricting generated by MCMC
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Figure 19. Third sample redistricting generated by MCMC
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Figure 20. Fourth sample redistricting generated by MCMC
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Figure 21. Fifth sample redistricting generated by MCMC
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Figure 22. Sixth sample redistricting generated by MCMC
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Figure 23. Seventh sample redistricting generated by MCMC
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