

Sampling, Clustering, Constraining

Quantifying Gerrymandering
MARCH 3RD, 2020

Gregory Herschlag, Jonathan Mattingly,
Daniel Carter, Zach Hunter, Eric Autry
+THE TEAM AT DUKE (AND BEYOND)

If n districts:
$\xi:($ precincts $) \longrightarrow\{1,2, \cdots, n\} \Longleftrightarrow \xi=\left(\xi_{1}, \ldots, \xi_{n}\right)$ partition into sub-graphs

(Probability of plan) $\propto e^{-\beta(\text { Plan Score })}$

$$
\mu(\xi)=\frac{1}{Z} e^{-\beta J(\xi)}
$$

Single Node Flip Markov Chains

One Step of ReCom Markov Chain

DeFord, Duchin, Solomon

ReCom Algorithm

1. Pick adjacent pair of districts to merge
2. Draw Spanning tree on merged graph (Willson's Alg)
3. Find permissible cuts (e.g. within Pop constraint)
4. cut in two, return new subgraphs

Or expanded state space in Merge Split

Carter, GH, Hunter, Mattingly

Merge-Split Algorithm

1. Pick adjacent pair of districts to merge
2. Draw Spanning tree on merged graph (Willson's Alg)
3. Find permissible cuts (e.g. within Pop constraint)
4. Cut in two, return new subgraphs

Aside on Recom and improvements

$$
P_{\text {tree }}\left(T_{A}, T_{B}, e\right) P_{\text {cut }}(e)=\frac{1}{\tau(A \cup B)} \frac{1}{\left|E_{\text {cut }}\right|}
$$

Needed for Recom
(computationally intractable)
Merge-Split

Reversible Recom

$$
\begin{aligned}
& \sum_{T_{A} \in S T(A)} \sum_{T_{B} \in S T(B)} \sum_{e \in A \cup B} P_{t r e e}\left(T_{A}, T_{B}, e\right) P_{c u t}(e)=\sum_{T_{A} \in S T(A)} \sum_{T_{B} \in S T(B)} \sum_{e \in A \cup B} \frac{1}{\tau(A \cup B)} \frac{1}{\left|E_{c u t}\right|\left(T_{A}, T_{B}, e\right)} \\
& \sum_{e \in A \cup B} P_{t r e e}\left(T_{A}, T_{B}, e\right) P_{c u t}(e)=\sum_{e \in A \cup B} \frac{1}{\tau(A \cup B)} \frac{1}{\left|E_{c u t}\right|\left(T_{A}, T_{B}, e\right)} \\
& \sum_{T_{A} \in S T(A)} \sum_{T_{B} \in S T(B)} \sum_{e \in A \cup B} P_{t r e e}\left(T_{A}, T_{B}, e\right) P_{c u t}(e)=\sum_{T_{A} \in S T(A)} \sum_{T_{B} \in S T(B)} \frac{1}{\tau(A \cup A \cup B} \sum_{e \in A)}^{m}
\end{aligned}
$$

County preservation in North Carolina

- Congressional
- 2016 Criteria: "Division of counties shall only be made for reasons of equalizing population, consideration of incumbency and political impact. Reasonable efforts shall be made not to divide a county into more than two districts."
- Legislative
- County clusters
- Minimization of traversals
- When counties are split, keep them together as much as possible

Difficulty of county preservation

What are the minimal number of county splits?

Theorem: d districts must introduce at least d-1 county splits (when we can't evenly partition counties)

County splits: the county splits of a county are the number of districts a county intersects minus 1

Conjecture: In nearly all redistricting problems, the bound from the theorem will be tight

Carter, GH, Hunter, Mattingly https://arxiv.org/abs/1908.11801; under review

What are the minimal number of county splits?

Theorem: d districts must introduce at least d-1 county splits (when we can't evenly partition counties)

County splits: the county splits of a county are the number of districts a county intersects minus 1

Conjecture: In nearly all redistricting problems, the bound from the theorem will be tight

Carter, GH, Hunter, Mattingly https://arxiv.org/abs/1908.11801; under review

What are the minimal number of county splits?

Theorem: d districts must introduce at least d-1 county splits (when we can't evenly partition counties)

County splits: the county splits of a county are the number of districts a county intersects minus 1

Conjecture: In nearly all redistricting problems, the bound from the theorem will be tight

Carter, GH, Hunter, Mattingly https://arxiv.org/abs/1908.11801; under review

Fraction of a district population

What are the minimal number of county splits?

Theorem: d districts must introduce at least d-1 county splits (when we can't evenly partition counties)

County splits: the county splits of a county are the number of districts a county intersects minus 1

Conjecture: In nearly all redistricting problems, the bound from the theorem will be tight

Carter, GH, Hunter, Mattingly https://arxiv.org/abs/1908.11801; under review

Two districts must split the central county and one of the satellites

What are the minimal number of county splits?

Theorem: d districts must introduce at least d-1 county splits (when we can't evenly partition counties)

County splits: the county splits of a county are the number of districts a county intersects minus 1

Conjecture: In nearly all redistricting problems, the bound from the theorem will be tight

Enacted Plan (2019)

Draw a merged tree on counties now

Splitting on Nodes rather than Edges

Nodes as Nested Trees

The State Space

- The state space is a forest at the finest level
- Each district is a tree on the finest scale such that
- There is a simple tree graph at the county level when intersected with the district
- Every nested node within the county/district graph has a tree with specified edges the top level tree

The State Space

Reverse Probability in Merge-Split requires reconnecting every edge that could have drawn the merged tree

Adding Persistent Connections

Keep one of these edges in the state; only need to compute one cut set

Adding Persistent Connections

Merge-Split

Reversible Recom

Persistent Edge Merge-Split

$$
\begin{aligned}
\sum_{e \in A \cup B} P_{\text {tree }}\left(T_{A}, T_{B}, e\right) P_{\text {cut }}(e) & =\sum_{e \in A \cup B} \frac{1}{\tau(A \cup B)} \frac{1}{\left|E_{\text {cut }}\right|\left(T_{A}, T_{B}, e\right)} \\
\sum_{T_{A} \in S T(A)} \sum_{T_{B} \in S T(B)} \sum_{e \in A \cup B} P_{\text {tree }}\left(T_{A}, T_{B}, e\right) P_{\text {cut }}(e) & =\sum_{T_{A} \in S T(A)} \sum_{T_{B} \in S T(B)} \sum_{e \in A \cup B} \frac{1}{\tau(A \cup B)} \frac{1}{m} \\
P_{\text {tree }}\left(T_{A}, T_{B}, e\right) P_{\text {cut }}(e) & =\frac{1}{\tau(A \cup B)} \frac{1}{\left|E_{\text {cut }}\right|\left(T_{A}, T_{B}, e\right)}
\end{aligned}
$$

The State Space

- The state space is a forest; each tree is a district
- Each district is a tree on the finest scale
- We keep edges between certain districts; call them persistent edges

The State Space

- The state space is a forest; each tree is a district
- Each district is a tree on the finest scale
- There are edges between certain districts

The number of states associated with a plan

- For each district:
- A product of the number of trees that can be drawn on each level of the hierarchy
- For each persistent edge:
- The number of other persistent edges that could have been drawn

The number of states associated with a plan

We could sample with a uniform measure over the extended state space:

$$
\pi\left(\vec{T}, E_{p}\right) \propto 1
$$

Or adapt by modding out by the number of similar plans with different persistent edges and trees
$\pi\left(\vec{T}, E_{p}\right) \propto\left[\left[\prod_{d \in D} \frac{1}{\tau\left(g_{c}(d)\right)} \prod_{c \in C} \frac{1}{\tau\left(g_{p}(c, d)\right)} \ldots\right] \prod_{e \in E_{p}} \frac{1}{|\mathscr{P}(e, \vec{T})|}\right]^{\gamma}$
\vec{T} : the forest $\quad D$: district set $g_{C}(d)$: county graph restricted to district E_{p} : persistent edges C : county set $g_{p}(c, d)$: the precinct graph of a county and district τ : number of spanning trees
\mathscr{P} : set of possible persistent edges
$\gamma \in[0,1]$
$\gamma=0$: Uniform over product space of trees and persistent edges
$\gamma=1$: Uniform over partitions

The proposal

1. Choose a persistent edge $\propto \frac{1}{\left|E_{p}\right|}$
2. Merge the district county graphs and draw a uniform tree on the resulting multigraph $\propto \frac{1}{\tau\left(g_{c}(d 1 \cup d 2)\right)}$
3. Find edges and nodes that can be cut
4. On each cuttable node, draw a new uniform tree on the next level down (specify coarse edges where needed) and repeat steps 3 and $4 \propto \frac{1}{\tau\left(g_{p}(c, d 1 \cup d 2)\right)}$
5. Aggregate all edges that can be cut across all levels.

Pick one uniformly; this is the new persistent edge. $\propto \frac{1}{\left|E_{\text {cut }}\right|}$

1. Choose a Persistent Edge

1. Choose a persistent edge $\propto \frac{1}{\left|E_{p}\right|}$

2. Merge districts; draw tree at the County level

2. Merge the district county graphs and draw a uniform tree
on the resulting multigraph $\propto \frac{1}{\tau\left(g_{c}(d 1 \cup d 2)\right)}$

The proposal

1. Choose a persistent edge $\propto \frac{1}{\left|E_{p}\right|}$
2. Merge the district county graphs and draw a uniform tree on the resulting multigraph $\propto \frac{1}{\tau\left(g_{c}(d 1 \cup d 2)\right)}$
3. Find edges and nodes that can be cut
4. On each cuttable node, draw a new uniform tree on the next level down (specify coarse edges where needed)
 and repeat steps 3 and $4 \propto \frac{1}{\tau\left(g_{p}(c, d 1 \cup d 2)\right)}$
5. Aggregate all edges that can be cut across all levels.

Pick one uniformly; this is the new persistent edge. $\propto \frac{1}{\left|E_{\text {cut }}\right|}$

The proposal

1. Choose a persistent edge $\propto \frac{1}{\left|E_{p}\right|}$
2. Merge the district county graphs and draw a uniform tree on the resulting multigraph $\propto \frac{1}{\tau\left(g_{c}(d 1 \cup d 2)\right)}$
3. Find edges and nodes that can be cut
4. On each cuttable node, draw a new uniform tree on the next level down (specify coarse edges where needed) and repeat steps 3 and $4 \propto \frac{1}{\tau\left(g_{p}(c, d 1 \cup d 2)\right)}$

5. Aggregate all edges that can be cut across all levels.

Pick one uniformly; this is the new persistent edge. $\propto \frac{1}{\left|E_{\text {cut }}\right|}$

The proposal (computational acceleration)

- Even though we have only explicitly drawn trees on the cuttable, nodes, we have implicitly drawn them everywhere.

$$
\begin{aligned}
& \frac{Q\left(T_{1}, T_{2}, e\right)}{Q\left(T_{1}^{\prime}, T_{2}^{\prime}, e^{\prime}\right)}=\frac{\left|E_{c u t}^{\prime}\right|\left(T_{1}^{\prime}, T_{2}^{\prime}, e^{\prime}\right)}{\left|E_{\text {cut }}\right|\left(T_{1}, T_{2}, e\right)} \\
& \frac{\left.T_{2}, e\right)}{\left.T_{2}^{\prime}, e^{\prime}\right)}=\frac{\sum_{e \in \mathscr{P}\left(T_{1}, T_{2}\right)} \frac{1}{\left|E_{\text {cut }}\right|\left(T_{1}, T_{2}, e\right)}}{\sum_{e \in \mathscr{P}\left(T_{1}^{\prime}, T_{2}^{\prime}\right)} \frac{1}{\left|E_{c u t}\right|\left(T_{1}, T_{2}^{\prime}, e\right)}}
\end{aligned}
$$

With persistent edges

- The persistent edge gives a tree on the merged graph. We no longer need to iterate over all other trees!

Without persistent edges

Probability Ratio

$$
\begin{aligned}
& \pi\left(\vec{T}, E_{p}\right) \propto\left[\left[\prod_{d \in D} \frac{1}{\tau\left(g_{c}(d)\right)} \prod_{c \in C} \frac{1}{\tau\left(g_{p}(c, d)\right)} \cdots\right] \prod_{e \in E_{p}} \frac{1}{|\mathscr{P}(e, \vec{T})|}\right]^{\gamma} \\
& \frac{Q\left(T_{1}, T_{2}, e\right)}{Q\left(T_{1}^{\prime}, T_{2}^{\prime}, e^{\prime}\right)}=\frac{\left|E_{c u t}^{\prime}\right|\left(T_{1}^{\prime}, T_{2}^{\prime}, e^{\prime}\right)}{\left|E_{c u t}\right|\left(T_{1}, T_{2}, e\right)} \\
& \frac{\pi\left(\vec{T}, E_{p}\right)}{\pi\left(\overrightarrow{T_{p}^{\prime}}, E_{p}^{\prime}\right)}=\frac{\tau\left(g_{c}\left(T_{1}^{\prime}\right)\right) \tau\left(g_{c}\left(T_{2}^{\prime}\right)\right)}{\tau\left(g_{c}\left(T_{1}\right)\right) \tau\left(g_{c}\left(T_{2}\right)\right)} \frac{\tau\left(g_{p}\left(c_{n_{n}}, d_{1}^{\prime}\right)\right) \tau\left(g_{p}\left(c_{n^{\prime}}, \alpha_{2}^{\prime}\right)\right)}{\left.\tau\left(g_{p}\left(c_{n}\right)\right)\right)} \frac{\tau\left(g_{p}\left(c_{n}\right)\right)}{\tau\left(g_{p}\left(c_{n}, d_{1}\right)\right) \tau\left(g_{p}\left(c_{n}, d_{2}\right)\right)} \frac{\left|\mathscr{P}\left(e^{\prime}\right)\right|}{|\mathscr{P}(e)|} \prod_{e_{i} \in E_{p}^{\prime} \backslash e} \frac{\left|\mathscr{P}\left(e_{i}, \vec{T}, \vec{P}\right)\right|}{\left|\mathscr{P}\left(e_{i}, \vec{T}\right)\right|}
\end{aligned}
$$

$c_{n}^{\prime}, c_{n} \quad$ Cut counties on new and old districts, resp.
$e^{\prime}, e \quad$ Persistent edge for new and old districts, resp.

Remarks

- Must ensure there are not two persistent edges linking the same two districts.
- The number of cut counties is bounded, from above, by the number of persistent edges.
- In our implementation, we do not allow nodes to be cut into three districts.

Results

10K Proposals

Results

Results

County Clusters

NC Legislature

Duplin (green) \& Onslow
(red) form a county cluster
which must be divided into 3
individual NC House
Legislative districts.

Pender (purple), Robeson (blue),
\& Columbus (yellow) form a
county cluster which must be divided into 3 individual

NC House Legislative districts.
Court order: Draw most single-county clusters, then the most two-county clusters, and so on. Maximize the number of clusters.

Optimal Clusters

Optimal Clusters

Implicit Rules

Counties boundaries are only crossed by a single district

Counties are kept intact to the extent possible even when split

When possible districts only span two counties

Across many elections

The Team is Constantly Growing
 Christy Vaughn Graves (UG; 2013-2016)
 Sachet Bangia (UG; 2016-2017)
 Collaborators

Sophie Guo (UG; 2016)
Bridget Duo (UG; 2016)
Hansung Kang (UG; 2016-2017)
Justin Luo (UG; 2016-2017)
Michael Kepler (MS; 2018)
Sam Eure (UG; 2018-2019)
Mike Bell (GS; 2017-2019)
Rahul Ramesh (UG; 2018-Present)
Lisa Lebovich (MS; 2018-Present)
Robert Ravier (GS; 2016-Present)
Andrew Chin (2018-Present)
Zach Hunter (2019)
Daniel Carter (2019)
Matthias Sachs (2019-Present)
Eric Autrey (2019-Present)
Jonathan Mattingly (2013-Present)
Gregory Herschlag (2016-Present)

Bass Connections Class (year long UG class)

Claire Weibe Ella Van Engen Jay Patel Gillian Samios Mitra Kiciman Isaac Nicchitta Nima Mohammadi Yashas Manjunatha Rayan Tofique Samuel Eure Tiffany Mei Luke Farrell

Samuel Eure Tiffany Mei Luke Farrell Jake Shulman Vinay Kshirsagar Rahul Ramesh Haley Sink Jacob Rubin Chris Welland Lynn Fan Jake Shulman Vinay Kshirsagar

Guy-Uriel Charles Janice McCarthy
Lydia Kwee
Andrew Chin
Colin Rundel
Jason Parsely
Adam Graham-Squire
Stephen Schecter
Wes Pegden

Duke MATH Data \oplus iD Duke \mid POLIS

Blog: https://sites.duke.edu/quantifyinggerrymandering/

Stagnating election results

Across many elections

Partition v. Spanning Forest

Initial Partition: $\xi=\left(\xi_{1}, \ldots, \xi_{i}, \ldots, \xi_{j}, \ldots, \xi_{n}\right)$
ReCom:

$$
A\left(\xi, \xi^{\prime}\right)=e^{-\beta\left[J\left(\xi^{\prime}\right)-J(\xi)\right]} \frac{Q\left(\xi^{\prime}, \xi\right)}{Q\left(\xi, \xi^{\prime}\right)} \frac{\tau(\xi)^{\gamma-1}}{\tau\left(\xi^{\prime}\right)^{\gamma-1}}
$$

$Q\left(\xi, \xi^{\prime}\right) \& Q\left(\xi^{\prime}, \xi\right)$ expensive

Target Partition: $\xi^{\prime}=\left(\xi_{1}, \ldots, \xi_{i}^{\prime}, \ldots, \xi_{j}^{\prime}, \ldots, \xi_{n}\right)$
Merge-Split:

$$
\begin{aligned}
& A\left(T, T^{\prime}\right)=e^{-\beta\left[J\left(\xi^{\prime}\right)-J(\xi)\right]} \frac{Q\left(T^{\prime}, T\right)}{Q\left(T, T^{\prime}\right)} \frac{\tau(\xi)^{\gamma}}{\tau\left(\xi^{\prime}\right)^{\gamma}} \\
& Q\left(\xi, \xi^{\prime}\right) \& Q\left(\xi^{\prime}, \xi\right) \text { cheaper }
\end{aligned}
$$

$Q\left(\xi, \xi^{\prime}\right):\left\{\xi_{i}, \xi_{j}\right\} \underset{\text { deterministic }}{\text { many-to-one }} \xi_{i j} \xrightarrow[\text { random }]{\text { one-to-many }} T_{i j}^{\prime} \xrightarrow[\text { random }]{\text { one-to-a-few }}\left\{T_{i}^{\prime}, T_{j}^{\prime}\right\} \xrightarrow[\text { random }]{\text { many-to-one }}\left\{\xi_{i}^{\prime} ; \xi_{j}^{\prime}\right\}$

$$
Q\left(T . T^{\prime}\right):\left\{T_{i}, T_{j}\right\} \xrightarrow[\text { deterministic }]{\text { many-to-one }} \xi_{i j} \xrightarrow[\text { random }]{\text { one-to-many }} T_{i j}^{\prime} \xrightarrow[\text { random }]{\text { one-to-a-few }}\left\{T_{i}^{\prime}, T_{j}^{\prime}\right\}
$$

