

Spectral Micro-CT and Preclinical Applications

C. T. Badea, PhD

Quantitative Imaging and Analysis Lab

Dept. of Radiology

Duke University

https://sites.duke.edu/qial/

Dual Energy micro-CT

CT signal and contrast:

 $I = I_o \exp\{-\mu(E)t\}$

- t = thickness
- μ = linear attenuation
- μ depends on energy, E

CT signal can be ambiguous!

Dual Energy (DE) CT: Decomposition

- Post Reconstruction Method
- 2 materials (Au and I mixed with water)

DE micro-CT

DE acquisitions

40 kVp

lodine, Gold + calcium

80 kVp

Contrast Agents

1) Low Molecular Weight

AJR Am J Roentgenol **186**, 300-307 (2006).

Tumor Imaging using NPs

Dr. K. Ghaghada

Enhanced Permeability and Retention (EPR)

James W. Burns, *Nature Materials* **8**, 441 – 443 (2009)

Tumor Vasculature

2 hours after injection: Iodine in the blood pool

48 hours after injection: extravasated Iodine

THERANOSTICS: AuNP augmentation of RT

DE micro-CT

Ashton et al, Theranostics 2018

Energy Integrating vs Photon Counting Detectors

Energy integrating detector (EID):

- Sum up pixel charge
- "Blind" to energy of incoming photons

PC CT: Material Decomposition

• Post-reconstruction decomposition method*:

$$\mathbf{X}(\mathbf{E}) = \frac{C_{PE}e_{PE}(\mathbf{E}) + C_{CS}e_{CS}(\mathbf{E})}{C_{I}e_{I}(\mathbf{E})} + C_{I}e_{I}(\mathbf{E}) + C_{Au}e_{Au}(\mathbf{E})$$

- **X**(**E**) are the CT measurements
- $e_i(E)$ are material sensitivity measurements
- Solve for material maps C_i

Mars Preclinical PC CT

Scanner	Diameter FOV (mm)	Length (mm)	Spatial Res.	kV So	canning Time	Gating	Other Characteristics
<u>Mars</u> <u>Preclinical</u> <u>Spectral CT</u> <u>System</u>	100 mm	280 mm	30 -100 µm (user selects)	30-120 keV	8 mins for 30 x 15 mm volume	-Not available	 -Uses photon counting detector with 8 energy bins -Detector constructed from CZT-Medipix3RX detector modules with 110-µm² pixels -Charge summing mode improves spectral measurement accuracy -Radiation dose: 20-80 mGy

https://www.marsbioimaging.com/mars/wp-content/uploads/2018/07/MARS_Electronic.pdf

Ex Vivo PC Micro-CT System with Anti-Coincidence Corrections

Detector:

- XC-Thor from Direct Conversion
- 2 energy thresholds
- 100 μ m pitch
- Anti-coincidence correction
- 2 x 4 cm detector area

Source:

- Hamamatsu L9181-02 microfocus
- Tungsten anode
- Focal spot: $16 50 \ \mu m$

High Resolution Ex Vivo PC micro-CT

Vascular Casting using a Barium-based contrast agent BriteVu (ScarletImaging)

Holbrook et.al SPIE Medical Imaging 2020: Physics of Medical Imaging 11312, 356-365

Duke Hybrid Spectral micro-CT

Dual source EID + PCD system

• PCD:

- Santis 0804 CdTe by Dectris
- 4 energy thresholds
- 150 μ m pitch
- EID:
 - Dexela 1512 CMOS with Csl
 - 75 μ m pitch

Holbrook M, et al. Physics in Medicine & Biology 65 (20), 205012, 2020

Multi-Channel Iterative Reconstruction

Solve: $X = \frac{\operatorname{argmin}}{X} \frac{1}{2} \sum_{c} RX_{c} - \mathbf{y} _{Q_{c}}^{2} + \lambda X _{\operatorname{Reg}},$ where $X = X_{L} + X_{S}$	Dr. Robust PCA cost function.		
Inputs: Q , y , α , h	Parameters.		
Initialization:	Initialization:		
1: $X = \frac{\operatorname{argmin}_{1}}{X} \frac{1}{2} \sum_{c} RX_{c} - \mathbf{y} _{\mathbf{Q}_{c}}^{2}$	Algebraic reconstruction.		
2: $\boldsymbol{\mu}_c = \boldsymbol{\alpha}_c \frac{\ \mathbf{R}^{\mathrm{T}}\mathbf{Q}_c \mathbf{y}\ _2}{\ \mathbf{X}_c\ _2}$	Data-adaptive scaling.		
While not converged	Iterative reconstruction:		
3: D = RSKR(X + V)	Denoising with RSKR.		
4: V = X + V - D	Residual tracking.		
$5: \mathbf{X} = \frac{\operatorname{argmin}}{\mathbf{X}} \sum_{c} \left[\frac{1}{2} \ \mathbf{R} \mathbf{X}_{c} - \mathbf{y} \ _{\mathbf{Q}_{c}}^{2} + \frac{\boldsymbol{\mu}_{c}}{2} \ \mathbf{X}_{c} + \mathbf{V}_{c} - \mathbf{D}_{c} \ _{2}^{2} \right]$ End While	Data fidelity update.		

Goldstein, T., & Osher, S. (2009). The split Bregman method for L1-regularized problems. *SIAM journal on imaging sciences, 2*(2), 323-343. Clark et al. 2018. Data-efficient methods for multi-channel x-ray CT reconstruction. *SPIE Medical Imaging*.

Rank-Sparse Kernel Regression (RSKR)*

Input Data: X

 $[\mathbf{U}, \mathbf{E}, \mathbf{V}] =$

SVD(XW)

*Clark et al. 2017. PLOS ONE 12.7: e0180324.

Phantom decompositions

H20

Gd 15

5

Cancer Studies: In Vivo Experiments

Subject:

- *p53^{fl/fl}* mouse model [1]
- Hind limb sarcoma generated by delivery of Adeno-Cre followed by carcinogen 3methylcholanthrene

Contrast agents:

- Day 0: targeted RGD-Gold nanoparticles
- Day 1: Liposomal Gadolinium
- Day 2: Liposomal Iodine

Imaging (PCD-only and hybrid) was performed on **day 2**.

Holbrook M, et al. Physics in Medicine & Biology 65 (20), 205012, 2020

PC micro-CT: Reconstructions

*Similar dose for PCD only and Hybrid imaging ~88 mGy

Material Decompositions

Material Decompositions

-700

Material Decomposition from PC CT using Deep Learning and Energy-Integrating CT Training Labels

R. Nadkarni

- 3D U-net
- high-dose multi-EID data for training
- 27.50% lower RMSEn in the I map and 59.87% lower RMSE in the PE map

Nadkarni R et al. Phys. Med. Biol., under revision, 2022

PC micro-CT Perfusion

- Using a single injection of Isovue
- 5D (3D + Time + Energy) reconstruction
- Material decomposition (PE, CS, I map)

Dynamic Cardiac PC micro-CT

Materials: Iodine, Photoelectric Effect, Compton Scattering

1 cm

Dose: ~190 mGy

Photon Counting CT and Radiomic Analysis for Detection of Lymphocytic Infiltrate

A. Allphin et al. Tomography 8(2): 740-753 (2022).

A. Allphin and Dr. Y. Mowery

Radiomics

Feature Source	Accuracy	Precision/Recall Intersection	AUC
EID	0.656	0.648	0.693
PCD	0.840	0.833	0.897
Material Maps	0.782	0.788	0.842

Clinical PC CT: Siemens NAEOTOM Alpha

NAEOTOM Alpha with Quantum Technology CT redefined.

Road map to practice-based translational research.

Mahajan A et al. Clinical Radiology, Volume 71, Issue 3, 2016, Pages 304-305

High-resolution monoenergy images (~150 µm in plane) Lower resolution spectrally resolved images (~300 µm in plane)

Summary and Conclusions

- Spectral PC micro-CT promises improved contrast resolution and lower dose
- Nanoparticle contrast agents can serve well preclinical studies with PC micro-CT.
- PC CT may provide more functional and molecular imaging information
- Co-Clinical PC CT studies may bridge the translational gap

Our Team and Collaborators

• Dr. C.T. Badea

• Dr. A. Badea

• Dr. R. Patel

• Dr. Y. Mowery

Dr. D. Kirsch

• Dr. D. Clark

• A. Allphin

ullet

R. Nadkarni

- Dr. Y. Qi

Dr. K. Ghaghada Texas Children's Hospital

Dr. J. West University of Virginia

•

