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ABSTRACT.––Anthropogenic climate change is projected to have an especially negative impact on the

survival of plants that are dependent on limited microclimatic refugia or that already reside at their

climatic extreme. Gymnocarpium appalachianum is a narrowly endemic fern restricted to cold

mountaintops and algific vents in the central and southern Appalachian region of eastern North

America. It is the much rarer of the two documented diploid parents of the circumboreal allotetraploid

G. dryopteris––one of the most widespread fern species on the planet. Gymnocarpium

appalachianum is a good case study for forecasting how evolutionarily significant, but rare,

species might survive on a warming planet. We utilize an ecological niche modeling approach

(MaxEnt) to explore the projected distribution of G. appalachianum under past (Last Glacial

Maximum) and future climate models. All known verified herbarium records of G. appalachianum

were georeferenced, for a total of 70 occurrence points. Nineteen standard bioclimatic variables

extracted from WorldClim were used to model near-current climate projections; representative

concentration pathways (RCPs 2.6 and 8.5) were used for future climate projections (2070). The

temperature annual range, mean temperature of warmest quarter, precipitation of driest month,

precipitation of coldest quarter, and mean diurnal range were identified as the key variables for

shaping the distribution of G. appalachianum. An unanticipated result from our analyses is that G.

appalachianum has past and current projected habitat suitability in Alaska. Because this overlaps

with the current range of G. disjunctum, the other diploid parent of G. dryopteris, it suggests a possible

region of origin for this circumboreal tetraploid descendent of G. appalachianum––a research avenue

to be pursued in the future. Our study envisions a dire fate for G. appalachianum; its survival will

likely require an urgent contingency plan that includes human-mediated population relocation to

cooler, northern locations. Understanding the long-term sustainability of narrowly endemic plants

such as G. appalachianum is critical in decisions about their management and conservation.

KEY WORDS.—climate change, ecological niche modeling, endemic species, MaxEnt, oak fern,

refugia
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Climate dynamics are a primary determinant of the distribution of living
species on Earth (Hewitt, 2004). Although climatic trends vary over time and
space, the planet has experienced an overall warming trend since the Last
Glacial Maximum (c. 22,000 BP), and the rate of change has significantly
accelerated in recent decades due to human activities (Oreskes, 2004). Earth’s
land and ocean average temperature in 2021 was 0.848C higher than the
preindustrial (1850-1900) average (NOAA, 2022). Globally, the preceding
decade was the warmest in human history, with 2016 being the hottest year
ever recorded and 2020 the second hottest. According to the Fifth Assessment
Report (AR5) of the Intergovernmental Panel on Climate Change (Pachauri et
al., 2014), the average temperature on Earth will rise at least another 18C by
2100. Experts are pessimistic that the current global response to climate
change is sufficient to limit warming to only 1.58C (the goal set forth in the
2015 Paris COP21 agreement) without major upheavals in current political,
technological, and sociological norms (Matthews and Wynes, 2022).

Future changes in global temperature are predicted by using representative
carbon pathways (RCP) that are modeled on different global reduction
scenarios for carbon emissions (van Vuuren et al., 2011). These range from a
very stringent RCP of 2.6, which is projected to limit global temperature rise to
below 28C by 2100, to a dire RCP of 8.5 that is estimated to deliver a
temperature increase of about 4.38C relative to pre-industrial temperatures
during the same period. Under the ‘‘best case’’ scenario (RCP 2.6), changes in
habitable ranges are predicted to drastically modify contemporary biogeo-
graphic patterns. Under the ‘‘business as usual’’ scenario (RCP 8.5), precipitous
changes in regional climates will dramatically alter the distributions of many
species (Abdelaal et al., 2019; Khanum, Mumtaz, and Kumar, 2013; Zhao et al.,
2021).

It is now widely acknowledged that Earth is experiencing a sixth mass
extinction caused primarily by anthropogenic climate change (Bellard et al.,
2012). Current global extinction rates are estimated to be 1000 times higher
than the background extinction rate prior to recent human activities (Pimm et
al., 2014), and an estimated 16% of global diversity is under direct threat of
extinction if we continue along the current trajectory (Urban, 2015). As global
temperatures rise, drastic contractions and changes in species ranges are
expected. In the southern Appalachian Mountains of eastern North America, a
rare plant (Geum radiatum) that relies on limited high-elevation cold and wet
refugia, is estimated to lose up to 83% of its viable habitat by 2050 (Ulrey et al.,
2016).

Anthropogenic climate change is projected to have especially negative
impacts on the survival of organisms with limited vagility that are dependent
on sporadically distributed microclimatic refugia (Thomas et al., 2004). One
such species of immediate conservation concern is the Appalachian oak fern
(Gymnocarpium appalachianum Pryer & Haufler) in the central and southern
Appalachian Mountains of the eastern United States (Fig. 1a). It is restricted to
cold mountaintops and algific vents, rare and fragile ecosystems that emit cold
air from subterranean ice pockets and often host relict populations not found
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elsewhere locally (Cristy and Meyer, 1991). Gymnocarpium appalachianum is
morphologically cryptic and, prior to the 1990s, was not separated from the
widespread circumboreal species G. dryopteris (L.) Newman (Fig. 1b; data
points obtained from GBIF.org, 2022). The first hint that G. appalachianum

FIG. 1. Geographic distributions for the Gymnocarpium taxa discussed herein. (a) North American

ranges for the diploids G. appalachianum in eastern North America (blue circles) and G.
disjunctum in western North America (orange triangles) based on Pryer and Haufler (1993). Inset

on the right of map is an image taken from the holotype specimen of G. appalachianum (US

3215838) from Shenandoah National Park in Virginia. (b) Arctic view of global circumboreal

distribution of the allotetraploid G. dryopteris based on records downloaded from GBIF.org (2022).
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was a distinct species came from cytogenetic studies by Pryer and Haufler
(1993), who reported that Gymnocarpium populations in Virginia and West
Virginia were diploid with n¼40 chromosomes. By contrast, G. dryopteris
sensu stricto has only been reported as tetraploid with n¼80 (Britton, 1953;
Gureeva, Mitrenina, and Ulko, 2017; Löve and Löve, 1961, 1976; Löve, Löve,
and Bernard, 1980; Manton, 1950; Pellinen, Sarvela, and Uotila,1999; Sorsa,
1958; Wagner, 1963).

Concurrent isozyme analyses by Pryer and Haufler (1993) revealed that G.
appalachianum played a pivotal role in the evolution of its circumboreal
tetraploid congener. Gymnocarpium dryopteris was shown to be an allotetra-
ploid hybrid between G. appalachianum and G. disjunctum (Rupr.) Ching.
Prior to 1993, G. disjunctum was the only documented diploid (n¼40; Löve and
Löve, 1976; Sorsa, 1966; Taylor and Mulligan, 1968; Wagner, 1966)
Gymnocarpium in North America. The discovery of a second diploid (G.
appalachianum) resolved questions regarding the parentage of tetraploid G.
dryopteris, but posed an unanticipated biogeographic conundrum. Known
populations of the two parental diploids are currently separated by more than
2400 km (Fig. 1a), which leads to the question: how did two such widely
disjunct species manage to hybridize to form G. dryopteris (one of the most
widespread fern species on the planet)?

Gymnocarpium appalachianum is a rare but evolutionary significant species
that is clearly threatened by climate change. Its conservation status is listed as
vulnerable (G3) globally, and the species is listed as presumed extirpated (SX)
in Ohio, critically imperiled (S1) in Pennsylvania and North Carolina,
imperiled (S2) in West Virginia, vulnerable (S3) in Virginia, and its presence
and status are under review (SU) in Maryland (NatureServe, 2021). Here, we
investigate the likely effects of past and future climate change on the
distribution of G. appalachianum.

Ecological niche modeling is an important part of analyzing species future
ranges and their ability to persist in current sites. MaxEnt is a common
modeling algorithm used by conservation practitioners for predicting the
distribution of a species from a set of records and environmental predictors
(Fourcade et al., 2014). In this study, we use MaxEnt, optimized to reduce
overfitting of the model parameters (Radosavljevic and Anderson, 2014), to
address the prospects of survival for G. appalachianum under near-current
predicted climate change models. Our objective is to provide an initial
estimate as to the urgency of management and conservation decisions that will
need to be focused on this rare and endemic Appalachian fern.

MATERIALS AND METHODS

SPECIES OCCURRENCE RECORDS.––Previous systematics studies of Gymnocarpium
(e.g., Pryer, 1992; Pryer and Britton, 1983; Pryer, Britton, and McNeill, 1983;
Pryer and Haufler, 1993) generated an extensive catalog of expert verified
herbarium records for North America. This printed catalog was scanned using
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a KIC Bookeye 4 flatbed color scanner and converted into computer readable
text with Adobe Acrobat Pro DC (v.15). The PDF file was proofread for fidelity
and all data fields (state, county, locality, elevation, latitude, longitude,
habitat, collector, collector number, date of collection, and voucher location)
for G. appalachianum were manually transcribed into an Excel spreadsheet.

GEOREFERENCING SPECIES OCCURRENCE RECORDS.––For each herbarium record with
adequate data, Google Earth Pro (Google Earth v.7.3.2.5495, 2018) was used to
estimate the latitude and longitude of the collection site. Specimens lacking
sufficient information to permit accurate georeferencing were excluded.
Geographic coordinates provided on collection labels were checked for
accuracy and, if necessary, converted to decimal degrees for analysis. After
processing, 182 georeferenced records for G. appalachianum representing 70
unique localities were used to model its geographic distribution (Supplemen-
tary Appendix A).

SELECTION AND SCREENING OF CLIMATIC VARIABLES.––Climatic data were obtained
from WorldClim 1.4 (https://www.worldclim.org/data/v1.4/worldclim14.
html) including all 19 bioclimatic variables (Fick and Hijmans, 2017)
calculated from averages of global monthly climatic models and data from
1960–1990. Past climate data were also obtained from WorldClim 1.4
originally made available by the Coupled Model Intercomparison Project
Phase 5 (CMIP5) (Taylor, Stouffer, and Meehl, 2012). The data were
downscaled and calibrated using the Global Climate Models (GCMs) and
WorldClim 1.4 as the near-current baseline for each variable. These data
project global climate during the Last Glacial Maximum (LGM) around 22,000
years ago. Future climate data predictions were obtained from WorldClim 1.4.
The projected climate layers utilize CMIP5 data and the Community Climate
System Model 4 (CCSM4; http://www.cesm.ucar.edu) that integrates informa-
tion from past atmospheric conditions, ocean and land surface temperatures,
and sea ice (Gent et al., 2011). Projected climate data for 2070 at RCP 2.6 (best
case) and RCP 8.5 (worst case) were employed in model creation. All
bioclimatic variables were downloaded at a spatial resolution of 30 arcsecs
(~ 1km, the highest resolution available) and then cropped to the land area of
North America and converted into an ASCII format using QGIS 3.2.0
(QGIS.org, 2020). Only those variables corresponding to the ones included in
the model were used for projections. Variable selection was performed in R
version 4.1.2 (R Core Team, 2021) using package usmd 1.1 (Naimi et al., 2014)
to stepwise reduce the number of correlated variables in the dataset while
balancing each variable’s contribution. Variables were not used in the MaxEnt
model if they had a Pearson’s correlation coefficient (r) of . 0.9 or , -0.9, and a
variance inflation factor (VIF) of over 10 when compared against another
variable. Variables that were too closely correlated were removed in a stepwise
fashion, until only uncorrelated variables remained in the model. After
variable selection, 8 variables remained and only these were utilized for model
creation (Table 1).
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MODEL OPTIMIZATION.––To optimize the MaxEnt model’s complexity, but to
prevent overfitting, we utilized the ENMeval 2.0 package (Kass et al., 2021) in
R version 4.1.2 (R Core Team, 2021). ENMeval was used to partition the data
using the block method by dividing all locations, both G. appalachianum and
background locations, into four equal geographically contiguous groups. This
was done to reduce artificial spatial bias by limiting the spatial autocorrelation
between locations that were used in training versus testing, a possible side
effect of the limited range of G. appalachianum (Peterson, Cobos, and Jiménez-
Garcı́a, 2018; Radosavljevic and Anderson, 2014). Of these groups, three were
used for training and the fourth for testing. In utilizing ENMeval to find the
optimal model parameters, the regularization multiplier (RM) was tested
between 0.5–6, increasing by an interval of 0.5 for a total of 12 RM parameters.
The feature combination (FC) parameters were tested with six different
combinations of the five different parameters included in MaxEnt: linear (L),
quadratic (Q), hinge (H), product (P), and threshold (T). The six feature
combinations used were L, LQ, H, LHQ, LQHP, and LQHPT. The ENMeval
package was used to test the above 72 parameter combinations. The model
permutation with the lowest average omission rate and the highest average
validation area under the curve (AUC) was chosen as optimal for the final
MaxEnt model to balance complexity with accuracy (Kass et al., 2020; Velasco
and González-Salaza, 2019).

MODEL SIMULATION.––To model the predicted near-current geographic distribu-
tion of G. appalachianum we utilized MaxEnt 3.4.4 (Phillips, Anderson, and
Schapire, 2006). The 70 georeferenced unique localities in eastern North
America (Supplementary Appendix A) were used as ‘present’ locations, while
10,000 random points confined to within 7 arc degrees of known G.
appalachianum records were used as background locations for model
construction. During model construction, five occurrence localities were
excluded that occupied the same grid cell as another sample. Jackknife tests
were performed to measure the contribution of each of the bioclimatic

TABLE 1. The percent contribution and permutation importance of the eight bioclimatic variables

used for the G. appalachianum species distribution model. Permutation importance measures the

variable importance and its effect on predictive model accuracy. Bio07 (Temperature Annual

Range) had the most significant contribution and the most information not contained in other

variables (largest drop in AUC if excluded).

Variable Code
Percent

Contribution
Permutation
Importance

Temperature Annual Range Bio07 33.8 43.3

Mean Temperature of Warmest Quarter Bio10 28.1 21.8

Precipitation of Driest Month Bio14 26.0 19.1

Precipitation of Coldest Quarter Bio19 5.6 11.9

Mean Diurnal Range Bio02 5.3 3.4

Precipitation Seasonality Bio15 1.0 0.0

Mean Temperature of Wettest Quarter Bio08 0.3 0.5

Precipitation of Warmest Quarter Bio18 0.1 0.0
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variables for the model. MaxEnt was run with a maximum of 5,000,000

iterations or until the convergence threshold of 0.00001 was achieved. All

other parameters were left as default. The model was run as 10 replicates, and

all results are reported as an average of those. Habitat suitability probabilities

in the model ranged from 0.0 (no suitability) to 1.0 (optimal suitability). A

habitat was considered as suitable for G. appalachianum if the likely

occurrence values were over 0.5 and optimal over 0.9.

MODEL AND CLIMATIC VARIABLE EVALUATION.––The model was evaluated for

accuracy from the receiver operator characteristic curves (ROC). The

importance of each of the climatic variables to the MaxEnt model was assessed

by the variable percent contribution, permutation importance, and the variable

importance interpreted from a Jackknife test.

MAP AND FIGURE GENERATION.––Vector shapefiles of North American states and

provinces were obtained from Natural Earth Data (https://www.

naturalearthdata.com/). All distribution maps were visualized using QGIS

3.2.0 (QGIS.org, 2020). The area in km2 of predicted suitability was calculated

in QGIS 3.2.0 using the GRASS 7.2 (GRASS Development Team, 2017)

function r.report.

RESULTS

MODEL OPTIMIZATION AND ACCURACY EVALUATION.––Recent studies have demon-

strated that tuning and optimizing ecological niche models is necessary to

maximize both model fit and generalizability (Elith and Graham, 2009; Kass et

al., 2021; Merow et al., 2014; Warren and Siefert, 2011; Zhao et al., 2021).

Ecological niche models can be particularly sensitive to different combinations

of model parameters (Hallgren et al., 2019) that can lead to weak projectability

into past and future conditions (Guevara et al., 2017). Model optimization and

tuning with the ENMeval package were used here to evaluate which of the 72

different parameter combinations best fit G. appalachianum. The parameter set

with the lowest average omission rate (Supplementary Fig. 1a) was selected for

use in the final model. Because the lowest average omission rate was shared

across several regularization multiplier (RM) values (2.5-5.5) for the hinge (H)

feature, the combination of the lowest average omission rate with highest

average validation area under the curve (AUC) was used to pick which RM

value to use in the final model. The set of parameters used in the final model

had a RM of 2.5 and a hinge feature. Our selected model parameters had the

lowest average omission rate of 0.0625 (Supplementary Fig. 1a) and the highest

average AUC of 0.9549 (Supplementary Fig. 1b). We chose not to select our

parameters solely based on the lowest difference in Akaike information

criterion (delta AICc) because this method has been shown in simulation to

give overly simplistic results with no correlation between AIC and predictive

accuracy (Velasco and González-Salazar, 2019). The parameters for the lowest
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delta AICc, and therefore the lowest complexity, for our data are linear and
quadratic features with a RM of 0.5 (Supplementary Fig. 1c).

Our G. appalachianum species distribution model receiver operator
characteristic (ROC) curves showed high predictive strength with AUC values
of 0.961 for the training data and 0.988 6 0.002 for the test data. The ROC is
the false positive rate of a model prediction plotted against the true positive
rate of the model. This is measured by the area under the curve (AUC), the area
that is enclosed by the ROC. The AUC is the probability that any random
location will have a higher suitability than any random background point;
therefore the higher the value of the AUC the more accurate the model
prediction result (Phillips and Dudı́k, 2008).

The importance of each of the climatic variables to the MaxEnt model was
assessed by the variable percent contribution, permutation importance, and
the variable importance interpreted from a Jackknife test. The permutation
importance measures the decrease in AUC from randomly permuting the
values of the climatic variable (Phillips, Anderson, and Schapire, 2006). The
Jackknife test measures the amount of useful information in each variable. It
does this by calculating the gain and AUC of each variable by itself and by
excluding the variable from the model (Elith, Kearney, and Phillips, 2010).

The percent contribution and permutation importance of each bioclimatic
variable to model the geographic distribution are shown in Table 1.
Temperature annual range (Bio07) shows the most significant contribution at
33.8%, followed by mean temperature of warmest quarter (Bio10), precipita-
tion of driest month (Bio14), precipitation of coldest quarter (Bio19), and mean
diurnal range (Bio02), at 28.1%, 26%, 5.6%, and 5.3%, respectively. The three
other variables (precipitation seasonality [Bio15], mean temperature of wettest
quarter [Bio08], and precipitation of the warmest quarter [Bio18]) each had
�1% contribution to the model. The permutation importance of the
temperature annual range (Bio07), the mean temperature of the warmest
quarter (Bio10), precipitation of the driest month (Bio14), and the precipitation
of the coldest quarter (Bio19) were 43.3%, 21.8%, 19.1%, and 11.9%,
respectively. These four variables contain a cumulative permutation impor-
tance of 96.1% while only having a cumulative percent contribution of 93.5%.

EVALUATION OF IMPORTANT CLIMATIC VARIABLES.––The response curves indicating
the presence probability of suitable habitat for G. appalachianum for the five
most important bioclimatic variables used in the model are shown in Figure 3.
Figure 3a shows that habitat suitability (.0.5) rapidly decreases as temper-
ature annual range (Bio07) increases beyond 358C and was optimal (.0.9)
between 23.1–34.048C. Habitat suitability also decreases as mean temperature
of the warmest quarter (Bio10) increases beyond 22.778C, where the optimal
mean temperature was between 12–21.298C (Fig. 2b). The presence probability
of G. appalachianum is positively correlated with the amount of precipitation
in the driest month (Bio14), with suitable habitat above 62.11 mm and optimal
precipitation for habitat suitability above 72.26 mm (Fig. 2c). Suitability is
negatively correlated with the amount of precipitation in the coldest quarter
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(Bio19), which is suitable between 47.2 and 314.2 mm and optimal between

47.2 and 265.85 mm (Fig. 2d). Finally, the model predicts a rapid increase in

presence probability for G. appalachianum as mean diurnal range increases

(Bio02), with suitability highest above 7.688C and optimal above 8.478C (Fig.

2e).

POTENTIAL SUITABLE HABITAT FOR G. APPALACHIANUM UNDER NEAR-CURRENT CLIMATE

CONDITIONS.––The species distribution model predicts that habitat suitability is

FIG. 2. Variable response curves of probability for the five most important bioclimatic variables

used in generating the MaxEnt model. All response curves are an average of ten replicates. Values

. 0.5 are considered suitable for presence of G. appalachianum; values . 0.9 are considered

optimal.
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concentrated in the east-central United States, particularly within the central

Appalachian Mountains (Fig. 3a), which mostly covers the known distribution

range of our 70 documented occurrence records. Surprisingly, the model also

suggests that some areas of suitability may exist in the southern coast of Alaska

(Fig. 3b), within the current range of G. dryopteris and G. disjunctum (Fig. 1).

The total area within North America considered suitable for G. appalachianum

by the model (with at least 0.5 presence probability) is 47,457 km2; highly

suitable habitats (with at least 0.9 presence probability) occupy 12,284 km2.

POTENTIAL SUITABLE HABITAT FOR G. APPALACHIANUM UNDER PAST AND FUTURE CLIMATE

CONDITIONS.––Our species distribution model’s prediction for G. appalachianum

FIG. 3. Projections of species distribution models for G. appalachianum based on an average of ten

replicates in MaxEnt. The near-current modeled habitat for G. appalachianum in eastern North

America (a), and the southern coast of Alaska (b). Projections of G. appalachianum at the LGM in

eastern North America (c), and the Pacific Northwest coast (d). Future climate projections utilizing

the CCSM4 model for RCP 2.6 in 2070 (e), and RCP 8.5 in 2070 (d). Near-current, past, and future

projected suitable habitats for G. appalachianum are displayed only when probability of presence

is . 0.5.
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during the Last Glacial Maximum (LGM) greatly exceeds its current document-
ed range (Fig. 3). From the central Appalachians, the region of high suitability
forms a band paralleling the southern edge of the Laurentide Ice Sheet as far
west as southeastern Missouri (Fig. 3c). In addition, the LGM model projects a
large area of suitable habitat for G. appalachianum paralleling the Pacific coast
from the northern Cascades Range of Washington to the south coast of Alaska
(Fig. 3d). Future projections for the distribution of G. appalachianum in 2070
(Fig. 3e-f) show a dramatic increase in the total area of suitable habitat (with at
least 0.5 presence probability) of 112,070 km2 for RCP 2.6 and of 151,596 km2

for RCP 8.5 as compared to 47,457 km2 for the near-current, but significant
displacement to the northeast compared to its near-current distribution (Fig. 3a,
b). The projected distribution of G. appalachianum for RCP 2.6 in 2070 is
concentrated in southern New England but extends as far south as the northern
and central Appalachian Mountains (Fig. 3e). The RCP 8.5 projections for 2070
show an additional shift north in New England, and the loss of all the potential
G. appalachianum habitat (Fig. 3f). In both future predictions, all suitable
habitat for G. appalachianum in Alaska disappears.

DISCUSSION

CLIMATIC VARIABLES MOST PERTINENT TO PREDICTING HABITAT SUITABILITY.––Our species
distribution model identified the most important bioclimatic variables for
predicting G. appalachianum habitat suitability (.0.5) as: 1) annual
temperature range (Bio07) less than 35.878C, 2) mean temperature of the
warmest quarter (Bio10) below 22.778C, and 3) precipitation of the driest
month (Bio14) above 62.11 mm (Table 1, Fig. 2a-c). These predictions are
consistent with the cool, moist montane microclimates where G. appalachia-
num is currently found (Pryer and Haufler, 1993). It is notable that the
strongest area of suitability for G. appalachianum is in northwest North
Carolina and northeast Tennessee, slightly south of its current range. In theory,
this area seems suitable, as it is cool and wet, though G. appalachianum is
mysteriously absent except for one population in the far northwestern corner
of North Carolina. However, unlike the current range of G. appalachianum,
this area was entirely unglaciated during the last glacial period (Clark et al.,
2009). The past projection (Fig. 3b, c) of G. appalachianum and its current
association with algific cold air seepage suggest it may have an affinity for
glaciers. The current range of G. appalachianum in West Virginia and
Pennsylvania is dominated by forested, low-elevation parallel ridges that run
southwest to northeast forming narrow valleys that have been deforested for
agricultural production. This deforestation represents a two-fold threat to the
continued survival of G. appalachianum in the area, contributing to localized
temperature increases while simultaneously creating barriers to range
expansion. The response curves shown in Figure 2 predict that it will be
difficult for G. appalachianum to persist as global temperatures continue to
rise and there are more extreme heat events in North America. Increasing
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annual temperature ranges and mean summer temperatures coupled with
increased frequency of drought (Urban, 2015) is likely to drastically decrease
overall habitat suitability and lessen the buffering effects of microclimate
refugia.

ANALYSIS OF NEAR-CURRENT SUITABLE HABITAT FOR G. APPALACHIANUM.––Our species
distribution model affirms that the most suitable habitat for G. appalachianum
is a narrow band in the central Appalachian Mountains in eastern North
America (Fig. 3a). As expected, there is extensive overlap between known
populations and areas that the model suggests are of high suitability. This
narrow band comprises a region of mountains that are cooler and taller than
areas further to the north. The geography and climate conditions that
circumscribe the current range of G. appalachianum are likely to limit its
northern migration as local temperatures rise, possibly trapping the species in
less suitable habitat. The notable absence of the species from the southern end
of the projected modern range might be explained by previous periods of
warming since the last ice age, or perhaps by the lack of cold air drainage
microsites because North Carolina and Tennessee were never glaciated.
Further studies are needed to explore these hypotheses.

Our model also identifies potential habitat suitability along the southern
coast of Alaska and the Pacific Coast of British Columbia (Fig. 3b), over 5,000
km from the nearest known population of G. appalachianum. This intriguing
possibility may be crucial for resolving the origin of the circumboreal
allotetraploid species G. dryopteris. The two hypothesized parents of this
hybrid (G. appalachianum and G. disjunctum) are currently separated by
about 2,400 km of unsuitable habitat (Figs. 1a, b). Because of the enormous
distance separating the current ranges of the diploid parents, it has been
impossible to identify a possible region of sympatry where they might have
hybridized to form G. dryopteris. By projecting climate suitability of G.
appalachianum into the past (Fig. 3c, d), we see a substantial increase of
habitat suitability in the Pacific Northwest, closely matching the current range
of G. disjunctum (Fig. 1a). Our preliminary analysis of habitat suitability of G.
disjunctum into the past also coincides with this region (data not shown).
Perhaps this area may have been the point of contact between the two diploids
that formed tetraploid G. dryopteris?

HYPOTHESIZED PAST AND FUTURE DISTRIBUTIONS FOR G. APPALACHIANUM.––During the
LGM (ca. 22,000 BP), eastern North America was dominated by massive ice
sheets that extended as far south as West Virginia and Kentucky (Clark et al.,
2009), covering a significant part of the current range of G. appalachianum
(Fig. 3a). Our model predicts the existence of glacial refugia for G.
appalachianum in the central and southern Appalachian Mountains that
may have extended west paralleling the southern edge of the Laurentide Ice
Sheet as far as southeastern Missouri (Fig. 3c). This region is thought to have
been dominated by cool mixed forests at the lower elevations with taiga and
alpine regions at the higher elevations (Cogbill, White, and Wiser, 1997;
Jackson et al., 2000). This is in line with the current affinity of G.
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appalachianum for cooler temperatures, north-facing slopes, and cold air
seepage zones. Along the Pacific coast from Washington State to Alaska, our
LGM model predicts substantial habitat suitability for G. appalachianum
through the ice-free corridor extending from the U.S./Canadian border to
Beringia (Fig. 3d). It is important to note, however, that our study did not take
into account past sea level models, which could open up some additional
potential habitat along the coast of northwest North America from Washington
State to Beringia. This distribution is largely congruent with the current range
of G. disjunctum, suggesting a possible time frame for the hybridogenesis of G.
dryopteris. However, to explore this possibility would require a separate full
analysis that includes estimating past distributions for both G. disjunctum and
G. dryopteris.

There is no doubt that global temperatures will continue to rise between now
and 2070; the only question is how much (Pachauri et al., 2014). Under the
‘‘best case’’ model for predicted climate change (RCP 2.6), most of the
appropriate habitat of G. appalachianum moves from the central Appalachian
Mountains to the Atlantic coast of New England (Fig. 3e). Much of the current
range becomes unsuitable or suboptimal, and all the potential habitat for it in
western North America disappears. The buffering effects of microclimate
refugia, which G. appalachianum currently relies on at many sites, may not be
sufficient in preventing habitat loss in the face of global climate change.
Although many ferns are thought to have greater vagility than seed plants
because they disperse by means of tiny spores (Wolf, Schneider, and Ranker,
2002), the prevailing winds and the distances involved make successful
colonization tenuous. Under the ‘‘worst case’’ 2070 scenario (RCP 8.5), suitable
habitats for G. appalachianum move even farther north and east (Fig. 3f),
incrementally reducing the probability of successful migration. Without a
meaningful reduction in global carbon emissions, the long-term prognosis for
G. appalachianum is bleak, as it is for other narrowly endemic, climatically
constrained species.

CONCLUSIONS

The current range of G. appalachianum is defined by a narrow band of cool,
moderate temperatures and abundant precipitation in the central Appalachian
Mountains. Annual temperature range, temperature maximums, and minimum
precipitation are modeled to be the most important variables for predicting
habitat suitability. Both the ‘‘best case’’ model for projected climate change
(RCP 2.6) and the ‘‘worst case’’ 2070 scenario (RCP 8.5) predict that human-
caused climate change will dramatically impact these variables. Gymno-
carpium appalachianum is one of many north temperate species that will be
pushed to the limits of its environmental tolerance (Broennimann et al., 2006;
Dullinger et al., 2012), with few options other than migrating to higher
elevations and higher latitudes (Feeley et al., 2013; Kelly and Goulden, 2008).
For G. appalachianum, which is already largely confined to the higher peaks of
the central Appalachians, the opportunity for localized movement to higher
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elevations is negligible. To avoid extinction, the species will need to undergo
long distance migration to New England. However, it seems unlikely that G.
appalachianum will be able to transition in 50 years through one of the most
urbanized and disturbed regions of North America and reach new suitable
habitats. If climate change is left unchecked and G. appalachianum is unable
to move rapidly northward, the long-term outlook for this species is grim.
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TAVERA, J. J. FLORES-MARTÍNEZ, and V. SÁNCHEZ-CORDERO. 2020. Biotic predictors with

phenological information improve range estimates for migrating monarch butterflies in

Mexico. Ecography 43:341–352. http://dx.doi.org/10.1111/ecog.04886

KASS, J. M., R. MUSCARELLA, P. J. GALANTE, C. L. BOHL, G. E. PINILLA-BUITRAGO, R. A. BORIA, M. SOLEY-

GUARDIA, and R. P. ANDERSON. 2021. ENMeval 2.0: redesigned for customizable and

reproducible modeling of species’ niches and distributions. Methods in Ecology and

Evolution 5:1198–1205. http://dx.doi.org/10.1111/2041-210X.13628

KELLY, A. E., and M. L. GOULDEN. 2008. Rapid shifts in plant distribution with recent climate change.

Proceedings of the National Academy of Sciences 105:11823. http://dx.doi.org/10.1073/pnas.

0802891105

KHANUM, R., A. S. MUMTAZ, and S. KUMAR. 2013. Predicting impacts of climate change on medical

asclepiads of Pakistan using Maxent modeling. Acta Oecologica 49:23–31. https://doi.org/10.

1016/j.actao.2013.02.007
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APPENDIX A. SUPPLEMENTARY DATA

Supplementary data to this article can be found online at: https://docs.
google.com/spreadsheets/d/1_ItqYK3UNF8ivGjubjdHxovkLMnlMzyn/edit?
usp¼sharing&ouid¼101727712945149346428&rtpof¼true&sd¼true

SUPPLEMENTARY MATERIAL

SUPP. FIG. 1. Graphs displaying the effect on model performance of different
model features at regularization multiplier (RM) values from 0.5–6 as tested in
the R package ENMeval (Kass et al., 2021). Features included are linear (L),
quadratic (Q), hinge (H), product (P), and threshold (T). The six feature
combinations used were L, LQ, H, LHQ, LQHP, and LQHPT. The graphs
display the average omission rate (a), average validation AUC (b), and delta
AICc (c).
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