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More than 390,000,000 pressed plant specimens are stored in the 
world’s 3100 herbaria (Thiers, 2020). Collected over the past four 
centuries, herbarium specimens provide the most comprehensive 
view of Earth’s vegetation and how it has changed over time. In 
most cases, herbarium specimens are used to document plant di-
versity (Heberling et al., 2019); however, they are now being applied 
to scientific efforts well beyond taxonomy and systematics, and in 

particular to global change biology. Millions of herbarium speci-
mens were collected prior to the intensification of human influence 
on the planet, including the acceleration of climate change. The 
unique, long-term data preserved within herbarium collections can 
now help us understand the past and predict the future of global 
change (Heberling and Isaac, 2017; Meineke et al., 2018a, b, c; Lang 
et al., 2019).
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PREMISE: Despite the economic significance of insect damage to plants (i.e., herbivory), long-
term data documenting changes in herbivory are limited. Millions of pressed plant specimens 
are now available online and can be used to collect big data on plant–insect interactions 
during the Anthropocene.

METHODS: We initiated development of machine learning methods to automate extraction 
of herbivory data from herbarium specimens by training an insect damage detector and a 
damage type classifier on two distantly related plant species (Quercus bicolor and Onoclea 
sensibilis). We experimented with (1) classifying six types of herbivory and two control 
categories of undamaged leaf, and (2) detecting two of the damage categories for which 
several hundred annotations were available.

RESULTS: Damage detection results were mixed, with a mean average precision of 45% in 
the simultaneous detection and classification of two types of damage. However, damage 
classification on hand-drawn boxes identified the correct type of herbivory 81.5% of the time 
in eight categories. The damage classifier was accurate for categories with 100 or more test 
samples.

DISCUSSION: These tools are a promising first step for the automation of herbivory data 
collection. We describe ongoing efforts to increase the accuracy of these models, allowing 
researchers to extract similar data and apply them to biological hypotheses.
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interactions.
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Until recently, the world’s herbarium specimens were under lock 
and key, accessible only to relatively few scientific specialists. Today, 
the digitization of herbaria is a global enterprise, and millions of 
high-resolution specimen images and their associated metadata are 
newly available in online public databases (Page et al., 2015; Soltis 
and Soltis, 2016). In their most widespread application outside of 
taxonomy and systematics, herbarium specimens have accelerated 
the study of plant phenological change. Reproductive structures 
such as flowers, buds, and fruits, along with the collection dates and 
locations associated with the specimens, can provide information 
on how phenological timing has shifted with climate through time 
(Willis et al., 2017). Notably, scientists have established that warmer 
temperatures are associated with widespread, earlier flowering 
times in temperate North America (Primack et al., 2004; Panchen 
et al., 2012). Although phenology has been a key focus of global 
change research using herbarium collections, it encompasses only 
a small amount of the long-term data that could be mined from 
digitized specimens.

In particular, herbaria are unmatched repositories for data docu-
menting interactions between plants and associated species. Species 
interactions, such as those between plants and insects, are notori-
ously difficult to monitor over time, and data on species interac-
tions spanning the Anthropocene are severely limited (Meineke and 
Davies, 2018). Plants have been engaged in a reciprocal war with 
the rasping, sucking, and chewing insects that feed on them for 
more than 400 million years. This long-term coevolutionary arms 
race between insects and plants is the basis for Ehrlich and Raven’s 
(1964) hypothesis that plant adaptations and defenses to insect at-
tack have stimulated the diversification of insects. In turn, through 
their fitness effects on plants, herbivores have elevated plant spe-
ciation rates (Futuyma and Agrawal, 2009). As such, relationships 
between plants and insect herbivores are central to ecology and 
evolutionary biology.

Herbarium specimens preserve signatures of insect damage 
(i.e., herbivory) through time on their leaves (Beaulieu et al., 2018; 
Meineke and Davies, 2018; Meineke et al., 2018a, b). Herbivory en-
compasses diverse types of damage triggered by a wide range of in-
sect taxa (for examples, see Fig. 1). Interestingly, similar signatures of 

insect damage have been documented on fossilized leaves. The paleo-
botanical community has already initiated critical studies that use and 
interpret these data preserved on fossilized leaves to understand spe-
cies interactions over deep time between plants and insects (Wilf and 
Labandeira, 1999; Wilf et al., 2001). This series of studies has revealed 
that warming over epochs increased the diversity and abundance of 
insect damage recorded in fossilized leaves (e.g., Currano et al., 2010). 
Herbarium specimens offer an opportunity to conduct analogous 
studies that analyze how plant–insect associations may have shifted 
during the Anthropocene in response to warming, and also to other 
key drivers of biodiversity change: pollution, harvesting by humans, 
habitat loss, and invasive species (Meineke et al., 2018a).

To date, the only study to use herbarium specimens to quantify 
how herbivory has shifted over the past ≥100 years was published by 
Meineke et al. (2018b). In this study, over a period of two years, a sin-
gle researcher painstakingly overlaid a physical grid of 5 × 5-cm cells 
on almost 600 herbarium specimens, developing novel methods for 
manually identifying and quantifying herbivory. They demonstrated 
that insect damage to four distantly related, woody angiosperm spe-
cies in New England increased over the past 112 years by 23%, a 
pattern attributed to increased winter warming that promoted over-
wintering survival and/or range expansion of herbivorous insects. 
Meineke et al. (2018b) is one of the first studies to use data captured 
from herbarium specimens to investigate hypotheses about the eco-
logical and evolutionary mechanisms driving herbivory. However, 
the amount of herbivory data that can become available for future 
study is constrained by how much data individual researchers can 
manually collect from physical herbarium specimens.

Here, we move beyond the manual procedures advanced by 
Meineke et al. (2018b) by developing novel automated methods 
to replace them, with the goal of allowing future studies on plant– 
insect species interactions to harness data from millions of herbar-
ium specimen images available online. Should these large-scale data 
become available for research, they would allow ecologists to tackle 
long-standing hypotheses that have not been adequately addressed 
because data collection has proved prohibitive (Table 1). Similar to 
other studies that focus on plant reproductive parts and phenology 
(Lorieul et al., 2019), we develop machine learning algorithms that 

FIGURE 1. Herbarium specimens exhibiting a range of herbivory types made by different insect taxa for which recognition was automated in this 
study, including examples of leaf interior feeding and leaf margin feeding (A), stippling and serpentine mines (B), blotch mines (C), and skeletonization 
(D).
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can recognize and quantify insect damage on digitized herbarium 
specimens. We then discuss ongoing improvements on these meth-
ods to facilitate the broadscale extraction of species interactions data.

METHODS

Focal species

Meineke et al. (2018b) manually collected herbivory data from 
ca. 600 herbarium specimens of four woody angiosperm spe-
cies distributed in eastern North America: Quercus bicolor Willd. 
(Fagaceae), Vaccinium angustifolium Aiton (Ericaceae), Carya 
ovata (Mill.) K. Koch (Juglandaceae), and Desmodium canadense 
(L.) DC. (Fabaceae). We chose Q. bicolor for this study because it ex-
hibited the most diverse herbivory (i.e., the most types of herbivory 
per specimen). The other focal species we chose was Onoclea sensi-
bilis L. from the fern lineage that is sister to seed plants because we 
wanted to test similar machine learning classifiers on plant species 
with diverse leaf morphologies. Both species are native to parts of 
eastern and central North America.

A primer on machine learning

Machine learning involves the study and construction of computer 
algorithms that can learn and make predictions based on data. 
Predictors most relevant to our study are in the form of classifiers, 

i.e., algorithms that predict the category to which some input data 
belong. For example, the input may be a rectangle within an image, 
and the output category may be one of several, pre-specified types 
of insect damage. To train a classifier, another algorithm called a 
trainer is given a training set consisting of many training samples 
(examples of inputs, together with the correctly annotated corre-
sponding outputs). The trainer then adjusts the parameters of the 
classifier such that it will generate the correct output for as many of 
the training sample inputs as possible.

A classifier will typically perform more poorly on previously un-
seen data than it does on the training set. When this occurs, the 
classifier is said to have overfit the training set. In contrast, a clas-
sifier whose performance on new data is similar to its performance 
on the training set is said to generalize well. Good generalization is 
easier to achieve when the number of parameters of the classifier 
is small compared to the number of examples in the training set. 
In other words, good generalization calls for simple classifiers and 
large amounts of data.

Detection versus classification

Only the relatively small parts of a specimen image that contain 
insect damage are relevant to damage type classification, and a ma-
chine learning system must also learn how to detect these parts. 
Thus, an automatic analyzer must address two problems that are 
conceptually distinct: (1) find the damage and (2) determine its type. 
Finding the damage is called a detection problem, and determining 

TABLE 1. Sampling of a priori hypotheses that are of broad interest in ecology. From left to right, we list predictions made from these hypotheses using limited 
available data, the data gap that could be filled by large-scale herbivory data sets derived using machine learning algorithms applied to herbarium specimens, and 
relevant publications pointing to the need for big data to more fully assess predictions.

Hypothesis Prediction(s) Data gap to be filled Relevant publication(s)

Herbivory rates depend on latitude Herbivory is elevated at lower latitudes. Limited herbivory data across 
latitudes

Moles et al., 2011

Herbivory results in a major transfer of 
energy and nutrients from primary 
producers to consumers

Herbivores consume about 5% of all leaf 
tissue, representing a small transfer of en-
ergy and nutrients.

vs.
Herbivores consume 10–20% of all leaf 

tissue, representing a large transfer of en-
ergy and nutrients.

Limited herbivory data worldwide 
and across the plant phylogeny

Turcotte et al., 2014b
vs.

Coley et al., 1985
Cyr and Face., 1993
Cebrian and Lartigue, 2004

Herbivory rates vary among plant 
lineages

Ferns incur less herbivory than 
angiosperms.

Limited herbivory data across the 
plant phylogeny

Cooper-Driver, 1978

Herbivory rates depend on plant 
growth form and size

Large plants are more “apparent” to 
herbivores and are thus are eaten at 
higher rates than smaller plants.

Limited standardized herbivory 
data across plant growth forms

Feeny, 1976

Herbivory intensity has changed due to 
climate change

Herbivory has increased where winters are 
warming.

Herbivory has decreased where tem-
peratures newly exceed insect thermal 
maxima.

Spotty monitoring of insects/
herbivory before and after the 
acceleration of climate change 
in the 1970s

Meineke et al., 2018b

Herbivory intensity has changed due to 
urbanization

Effects of urban warming on insect herbiv-
ory/diversity depend on latitude.

In general, urbanization reduces damage 
by chewing herbivores.

Poor long-term monitoring of 
how building cities affects 
insects/herbivory

Diamond et al., 2015
Kozlov et al., 2017
Meineke and Davies, 2018

Invasive plants experience “natural 
enemy release”

Invasive species escape herbivory in 
introduced habitats but accumulate 
herbivores in novel habitats over time.

Limited data on how much 
introduced species are 
damaged by herbivores 
throughout the invasion process

Zangerl and Berenbaum, 2005
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damage type is a classification problem. A detector takes an entire 
specimen image as its input and outputs a collection of boxes that 
are likely to contain insect damage, as described in greater detail be-
low. These boxes are similar to those that a human annotator would 
draw. A classifier then takes each of these boxes in turn and deter-
mines which type of damage it contains.

Mathematically, detection and classification are distinct prob-
lems in that they compute different types of results. Specifically, a 
detector is what is called a regressor in machine learning. This means 
that its output is an element out of a potentially infinite set (or at 
least an extremely large number) of options. Each output option for 
a detector is a list of image rectangles, and each rectangle can be 
specified by the two coordinates of its upper-left corner and those of 
its lower-right corner. Thus, the detector outputs a list of quadruples 
of numbers. In contrast, a classifier outputs one of a small number 
of predefined categories (damage types), so the options it has from 
which to choose an answer are limited. Because regressors must 
choose among a much larger set of possible answers than classifiers, 
they typically require more data to train than classifiers do. In other 
words, regression is more data-hungry than classification.

Several detectors have been developed recently for a variety of 
problems (Erhan et al., 2014; Girshick et al., 2014; Girshick, 2015; 
Ren et al., 2017). An interesting lesson learned from this research 
is that for problems that involve both detection and classification it 
is more effective and efficient to compute the solution to these two 
problems with a single system that simultaneously finds boxes and 
determines the category for each of them (Hariharan et al., 2015; 
Liu et al., 2016; Redmon et al., 2016), rather than first detecting re-
gions of interest and then classifying them.

However, a single system requires very large amounts of data to 
be trained well. Table 2 shows that we only had access to modest 
amounts of annotated data, and this limitation required some com-
promises in our experiments. Before discussing these compromises, 
it will be useful to describe the nature of our data annotations.

Herbivory annotation

We downloaded all of the high-resolution, digitized specimens avail-
able for Q. bicolor and O. sensibilis from the SouthEast Regional 
Network of Expertise and Collections (SERNEC; http://serne cport 
al.org/porta l/; Appendix S1). We then manually annotated 109 images 
of Q. bicolor and 15 images of O. sensibilis specimens for all instances 
of clear insect damage. We used the VGG Image Annotator version 
2.0.4 (Dutta and Zissermann, 2019) to draw bounding boxes and as-
signed a damage category to each box. Table 2 shows the number of 
instances annotated for each of the six damage types we investigated 
in this study (leaf margin feeding, leaf interior feeding, skeletoniza-
tion, stippling, blotch mines, and serpentine mines). The categories 
“normal margin” and “normal interior” represent boxes drawn on un-
damaged parts of the specimens and constitute “negative examples” 
for the training set; that is, examples of what damage regions do not 
look like. For an example of each annotation category, see Fig. 1.

Detection and classification experiments

High-quality automatic detection and classification of leaf-damage 
boxes require more annotated data than we had. Therefore, we split 
the detection and classification experiments into two groups and made 
simplifications to each of them. Specifically, in the first group of ex-
periments, we simultaneously detected and classified only two types of 
damage, namely, leaf margin feeding and leaf interior feeding, for each 
of which there are several hundred available annotations (Table 2). In 
the second group of experiments, we classified each of a set of manu-
ally annotated boxes into one out of eight categories (six damage cat-
egories and two “no damage” categories, see Table 2). Experiments in 
the first group demonstrate that joint detection and classification can 
work, although data scarcity required us to reduce the number of dam-
age categories from eight to two for this complex task. Experiments 
in the second group show that even the limited amount of data at our 
disposal is enough to address the eight-category classification problem, 
but only when classification is performed separately from detection. 
For both experiments, we extracted a subset of the data to be used for 
training, and we used the rest for performance evaluation. This data 
split is described in more detail below for each experiment.

Data split for detection experiments—Of the 120 images that were 
manually annotated, we retained the 105 images that contained 
some margin feeding and interior feeding annotations. Of these im-
ages, we selected 83 at random for training and kept the remaining 
22 for testing. The detection methods we used in our experiments 
work best with non-overlapping annotation rectangles. Because of 
this, we discarded a small fraction of annotations when overlaps 
occurred. In the end, training images contained 348 instances of 
margin feeding and 444 of interior feeding. Test images contained 
106 instances of margin feeding and 124 of interior feeding.

To sharpen the detector’s ability to distinguish between these 
types of damage (margin feeding and interior feeding) and normal 
parts of a leaf, or to distinguish them from other types of damage, 
we also provided what are called hard negative examples to the 
detector. Specifically, we added a third category, which can be in-
terpreted as a “null” category (that is, neither interior feeding nor 
margin feeding) and placed in it all the boxes in the training images 
that were annotated as different types of damage by the human an-
notators. The detector was then trained to detect boxes of the three 
types (margin feeding, interior feeding, and other types of damage), 
but all detections from the null category were eventually ignored 
during testing. This mechanism allows the detector to learn a more 
detailed understanding of the boundary between, e.g., an instance 
of margin feeding and an instance of a normal margin. Intuitively, 
negative examples teach the detector not only what margin feeding 
looks like, but also what it does not look like. Negative examples 
are most useful to a training algorithm when they are hard, that is, 
when they are similar to positive examples, because they are closer 
to the boundary in question, and therefore help to pin it down. 
Because of this, we did not include easy negative examples, such as 

TABLE 2. Number of leaf-damage rectangles annotated for each category and species in our data set. The last two columns denote “no damage” categories. Each 
rectangle was drawn to enclose the leaf damage tightly.

Species
Margin 
feeding

Interior 
feeding Skeletonization Stippling

Blotch 
mines

Serpentine 
mines

Normal 
margin

Normal 
interior

Onoclea sensibilis 39 28 8 0 11 11 46 25
Quercus bicolor 456 616 215 184 28 18 206 223

http://sernecportal.org/portal/
http://sernecportal.org/portal/


Applications in Plant Sciences 2020 8(6): e11369 Meineke et al.—Computer vision for quantifying herbivory • 5 of 11

http://www.wileyonlinelibrary.com/journal/AppsPlantSci © 2020 Meineke et al.

healthy tissue or healthy leaf margins. This strategy has been found 
useful in a variety of computer vision systems (Dong et al., 2017).

Data split for classification experiments—Annotation boxes are 
rectangles of arbitrary sizes that are drawn to enclose the leaf dam-
age as tightly as possible. We used deep neural networks, described 
in more detail later, as classifiers. Because a typical deep neural net-
work expects an input box of a fixed size, we wrote software that 
samples squares of 224 × 224 pixels from each of the annotation 
boxes. This is the smallest image size expected by a wide range of 
current deep learning architectures. For annotation boxes smaller 
than this size, a 224 × 224-pixel square was extracted from the orig-
inal image, with the annotation box at its center. For larger annota-
tion boxes, several 224 × 224-pixel squares were sampled, providing 
a crude form of data augmentation.

For the margin feeding, interior feeding, and normal margin 
categories, it was important that each box contain both leaf and 
background. To this end, we wrote image segmentation software 
to identify the boundaries between leaf and background, and only 
sampled boxes for which the leaf covered at least 40% of the area. 
This software is described in Appendix 1. Although our software 
is fully adequate for our purposes, recent specimen segmentation 
methods (White et al., 2020) may produce even more accurate 
plant/background separation in more demanding scenarios.

Our sampling procedure resulted in a data set with 6616 samples 
that were split uniformly at random into 4157 samples for training, 
1354 for validation, and 1105 for testing. This split was executed at 
the annotation-box level so that all boxes from a given annotation 
fall into exactly one of the three sets. A classifier was trained on 
training samples and evaluated on test samples. Validation samples 
are used during training to estimate when the classification algo-
rithm has reached its best generalization performance.

Experimental machine learning architectures and pre-training 
detection network architecture

We used the Single Shot Multibox Detector (SSD) with a VGG16 
base classification network (Liu et al., 2016) to simultaneously detect 
and classify interior feeding and margin feeding. This detector sam-
ples the set of all possible boxes and produces thousands or tens of 
thousands of box hypotheses in the input image. Box hypotheses dif-
fer by both their location in the image and their shape and size. The 
base classification network then classifies each box hypothesis and 
computes a score for each of them, which measures the network’s 
confidence in the classification result. The numerical values of these 
scores do not admit an immediate interpretation in isolation: during 
training, the network is penalized every time it assigns a small score 
to a correct result or a large score to an incorrect one. As a conse-
quence, the network learns to assign larger scores to correct results 
than it does to incorrect ones. During testing, each high-score box 
is output as a detection, together with the category that yielded the 
maximum score for that box. A box is not output if it has a score that 
is high, but lower than that of another box with which it overlaps. 
This criterion prevents overlapping detections to be output.

Classification network architecture—The damage type classi-
fier was adapted from a residual net architecture (He et al., 2016) 
with 18 layers. This is a standard, small deep network that has 
shown good performance in a variety of image recognition tasks. 
Originally designed to distinguish among 1000 object categories, 

we adapted it to work with our eight damage type categories instead 
of the original 1000. The only layer in the network that depends on 
the number of categories is the last one, so we only had to change 
the structure of this layer. Details of the classifier’s architecture are 
given in Appendix 2.

Pre-training—The detection network we use in our experiments 
has 11,180,616 parameters to be estimated during training. These 
parameters are the coefficients and bias parameters in the convo-
lution kernels listed in Appendix 1. This necessitates large amounts 
of annotated data for training. In order to address the disparity 
between the size of our training set and the number of parame-
ters to train, we used what is called “pre-training” in the literature. 
Specifically, we started our training with neural networks (both for 
the base classifier in the SSD detector and for the damage type clas-
sifier) that had already been trained on a classification task that is 
entirely different from the target task and for which ample data are 
available, namely, the ImageNet database (Russakovsky et al., 2015). 
This data set contains millions of labeled images of ordinary scenes 
and objects in thousands of categories. This initial phase is called 
the pre-training phase, and its purpose is to replace random values 
for the network parameters with values that at least relate to plausi-
ble images. We then further trained the networks on our annotated 
images. This technique, which is commonly used in computer vi-
sion, has also proven useful in the domain of plant species identifi-
cation (Carranza-Rojas et al., 2017).

RESULTS

Damage detection

Simultaneous detection and classification, as performed by the SSD 
(Liu and Stiling, 2006) or similar detectors (Sermanet et al., 2013; 
Redmon et al., 2016), requires large amounts of annotated images 
per class. In our data, only interior feeding and margin feeding 
damage have several hundred manually annotated boxes, and af-
ter the data split these two categories have 392 and 321 training 
examples, respectively. These numbers are barely enough for detec-
tion classification and, even so, we had to use both pre-training and 
hard negative examples, as described earlier, in order to achieve 
the performance described in the experiments. Without pre-train-
ing, there is just not enough data for the neural network parame-
ter settings to converge to repeatable values during training. Hard 
negative examples, on the other hand, improve performance more 
modestly, by increasing mean average precision (reported later) 
by 13% on average. Because of this scarcity of annotated data, we 
limited our detection experiments to these two categories, as ex-
plained above.

Detailed results—Figures 2 through 4 show all the experimen-
tal results for the 10 images for which we asked the annotator to 
exhaustively annotate all the margin feeding and interior feeding 
boxes. Specifically, Fig. 2 shows all true-positive detections of inte-
rior damage. These are instances where the human annotator and 
detection algorithm agree, in the sense that their two boxes overlap 
at least 50% of the size of the smaller of them. Figure 2A shows 
results for interior damage (green boxes; dashed line for annota-
tions and solid line for predictions) and Fig. 2B shows results for 
margin damage (red boxes; dashed line for annotations and solid 
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line for predictions). Looking at the example in the top left box in 
Fig. 2A, we see that a human annotator may annotate an entire area 
of sparse damage with a single, large box, while the algorithm may 
detect small, separate sub-areas as distinct instances or, in this par-
ticular case, miss several of the sub-areas altogether. This is also the 
case for margin damage (Fig. 2B).

Figure 3 shows all false negatives, that is, all the human an-
notation boxes that the detector missed. Comparison of Figs. 2A 
and 3A suggests that the detector “got used” to identifying interior 

damage as being more or less oval holes and 
did not have enough examples of more com-
plex shapes to adapt to these during train-
ing. Perusal of Figs. 2B and 3B suggests that 
the shapes of margin feeding instances are 
highly varied, and many more examples 
would be necessary for the network to learn 
an appropriate model of them.

Figure 4 shows all false positives, that is, 
image regions that the detector thought to 
be examples of interior (Fig. 4A) or margin 
(Fig. 4B) feeding, but that the human annota-
tor did not mark. First, the false-positive rate 
is 35% (12 out of 34 boxes). Second, some 
of the detections seem to be genuine dam-
age, although not necessarily of the declared 
type. For example, many of the oval lesions 
seen in Fig. 4 could be from disease (perhaps 
fungal) rather than insects. An additional 
consideration about Fig. 4 is the misclassifi-
cation of digits from the printed text in the 
specimen images as either interior (Fig. 4A) 
or margin (Fig. 4B) feeding. It would be rel-
atively straightforward to develop image pre- 
processing routines that exclude these areas 
from consideration. We left these detections 
in the figure because they clearly point to 
overfitting; the digits in Fig. 4A all contain 
closed ovals, and this reinforces the obser-
vation we made for Fig. 3A, that the detec-
tor takes anything that looks like an oval and 
classifies it as interior damage. Similarly, all 
digits in Fig. 4B contain at least some open 
digits, whose shape could be interpreted as 
the profile of part of a leaf ’s boundary. In 
this context, overfitting means that the detec-
tor formed a naive model of what these two 
types of damage look like, based on sparse 
data. More data would be needed to develop a 
more robust model.

Issues with aggregate measures of perfor-
mance—It is standard practice in machine 
learning papers to give aggregate measures 
of performance such as overall error rates or 
accuracy. For a detector, one very popular 
measure is the average intersection over union 
(IoU): A human annotation box H and a de-
tected box D are said to match if they overlap, 
and the extent of overlap is measured by the 
area of the overlap region (the intersection) 

divided by the area of the union of the two regions. If H and D are 
identical, this measure is equal to 1, and if H and D do not overlap 
the measure is 0. The average IoU over all boxes in the test set then 
gives an overall measure of performance.

For damage detection, this measure would be very misleading, 
and the examples discussed above show why. What constitutes “a 
single instance” of damage is a poorly defined concept, and even 
when the human and the detector happen to disagree, both results 
are sometimes plausible. For instance, even if the detector had 

FIGURE 2. A collage of all true-positive detections for interior leaf damage (A) and leaf margin 
damage (B) in 22 test images. A true positive is an instance of damage that was annotated by a 
human and detected by the detector. In these images, dashed boxes represent human annota-
tions, and solid boxes represent detector results. Green boxes represent interior feeding, and red 
boxes represent margin feeding.

FIGURE 3. A collage of all false-negative detections for interior leaf damage (A) and leaf margin 
damage (B) in 22 test images. A false negative is an instance of damage that was annotated by a 
human but was missed by the detector. In these images, dashed boxes represent human annota-
tions, and solid boxes represent detector results. Green boxes represent interior feeding, and red 
boxes represent margin feeding.
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found all the small holes in the top-left box of Fig. 2A, the intersec-
tion would be the aggregate area of the small holes, and the union 
would be the area of the human annotation. The ratio of these two 
quantities is small, suggesting poor performance. However, most 
people would agree that either interpretation (one large box or 
several small ones) effectively identifies the same damage. Similar 
considerations hold for other aggregate measures of performance.

Nonetheless, we report mean average precision (mAP), a pop-
ular measure of performance for detection algorithms, for the sake 
of completeness. To this end, we note that a box is detected when 
the detection score computed by the neural network exceeds some 
threshold. Increasing this threshold reduces the number of detections 
and therefore improves precision (fraction of detected boxes that are 
correct) at the expense of recall (fraction of all existing true boxes that 
are detected). Decreasing the threshold has the opposite effect.

We then calculate precision and recall on the test set for a sam-
pling of all possible thresholds. The average precision (AP) for one 

type of damage is the mean of precision val-
ues integrated over all recall values, and the 
mean AP (mAP) is the mean of the average 
precision values over the two types, weighted 
by the number of instances in each type. We 
measured APs of 34% for margin feeding (106 
true boxes) and 54% for interior feeding (124), 
for a mAP value of 45%.

Damage classification

Our damage classifier network returned the 
correct answer in 81.5% of the 1105 testing 
samples (those that were not used for train-
ing or validation). The confusion matrix for 
our results is shown in Table 3. Each row in 
the table corresponds to a true answer, and 
each column corresponds to the answer given 
by the classifier. Each entry in the table is the 
number of times an instance from a row cat-
egory was classified into a column category. 
For instance, the entry 39 in the first column 
means that a normal margin was mistaken for 
an instance of margin feeding in 39 cases. An 
ideal confusion matrix would have non-zero 
entries only on the diagonal, which contains 
the number of correct classifications (bold-
faced in Table 3).

The damage classifier was quite accurate for 
those categories with at least 100 test sample boxes (margin feeding, 
interior feeding, normal margin, normal interior). These are catego-
ries for which the entries in the rows of Table 3 add up to more than 
100. As explained earlier, we split the sample boxes in the data set 
into training, validation, and test sets, and placed four boxes into the 
training set for each box in the test set. Therefore, the four categories 
above have at least 400 training samples each.

The classifier error rate on these four categories was 8.8%. The 
main contributor to this error rate was the confusion between normal 
margin and margin feeding (39 in the first column and 14 in the next-
to-last column). The results for more sparsely represented categories 
are not very meaningful statistically except for blotch mines, which 
are very often confused with skeletonization damage (81 cases). 
Interestingly, the damage that insects make within blotch mines is 
skeletonization, so the error is not overly surprising and indicates to 
us that critical refinements will be needed in specifying our damage 
types moving forward.

FIGURE 4. A collage of all false-positive detections for interior leaf damage (A) and leaf margin 
damage (B) in 22 test images. A false positive is an image region that was detected by the algo-
rithm but not marked as either interior feeding or margin feeding by the human annotator. In 
these images, dashed boxes represent human annotations, and solid boxes represent detector 
results. Green boxes represent interior feeding, and red boxes represent margin feeding.

TABLE 3. Confusion matrix with correct/incorrect predictions made by our classifier on the 1105 sample boxes (of size 224 × 224 pixels) in our test set. Each rectangle 
counted in Table 2 produced a variable number of sample boxes (see text for details).a

Margin 
feeding

Interior 
feeding Skeletonization Stippling

Blotch 
mines

Serpentine 
mines

Normal 
margin

Normal 
interior

Margin feeding 114 13 0 1 0 0 14 0
Interior feeding 4 128 2 0 0 0 0 0
Skeletonization 1 1 31 2 2 0 0 0
Stippling 1 0 3 30 2 0 0 1
Blotch mines 5 3 81 13 40 0 0 1
Serpentine mines 0 0 1 0 1 3 0 1
Normal margin 39 0 0 0 0 0 334 1
Normal interior 1 0 0 1 0 0 6 224

aBoldfaced numbers show correct classifications. 
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DISCUSSION

We developed automated techniques that detect insect damage for 
two categories (leaf interior feeding and leaf margin feeding) and 
categorize a diverse array of insect herbivory by damage morphol-
ogy from pre-segmented damage boxes. To the best of our knowl-
edge, this is the first attempt to develop automated techniques that 
will scan pressed plant specimens and identify clear instances of in-
sect damage. The overall performance observed in this study, which 
includes only a modest data set, is promising. Specifically, results 
of detection are mixed (45% mAP and Figs. 2–4), while herbivory 
classification results are objectively promising, with an accuracy of 
81.5% in an eight-class experiment. Future studies can improve the 
accuracy of the tools developed here.

The detection algorithm performed qualitatively well at detect-
ing damage where a human annotator detected damage. This is a 
promising initial step in the development of a model that can locate 
specific types of damage. However, for the detector, it is clear that 
much more data will be needed for performance that is accurate 
enough to be used to extract data to test ecological and evolutionary 
hypotheses. For both detector and classifier, the confusion between 
damaged and normal margins suggests that it may be useful to in-
troduce a damage mask to focus the damage classifier’s attention 
on the margin itself: most of a margin box contains pixels other 
than pixels on the margin (that is, it contains background pixels or 
healthy leaf pixels), and these non-margin pixels are irrelevant to 
classification. The mask would remove these pixels from the clas-
sifier’s input.

The confusion between blotch mines and skeletonization indi-
cates that explicit texture and color descriptors may help a classifier 
make more nuanced distinctions. An example of such a descriptor 
is a correlogram. For instance, a color correlogram is a function of 
three variables: two colors (c and c′) and a distance (d). The cor-
relogram specifies for each such triplet the frequency of instances 
in which colors c and c′ appear in the image separated by distance 
d. Thus, a correlogram describes the spatial distribution of colors to 
second order (occurrence of color pairs). Correlograms have been 
shown to enhance classification and retrieval of images (Huang et 
al., 1997). In our context, we would provide a correlogram as an 
additional input to the classifier, to make information about spa-
tial color distribution more explicit. We did not use either damage 
masks or correlograms in our preliminary experiments.

The issues described earlier concerning aggregate measures of 
performance are not just a technicality, but rather suggest a possible 
fundamental shift in the entire approach. To understand this point, 
consider that a detector is trained by minimizing a measure of the 
average loss one incurs every time a detection mistake is made. In 
the SSD system we used for our experiments (Liu et al., 2016), one 
of the components of this loss penalizes errors in box localization. 
Because of the complex shapes that regions of damage exhibit in 
specimen images, the notion of a “true box” is simply not well de-
fined, and the localization error is therefore also ill-defined as a 
consequence. No amount of data will make this weakness go away.

A better approach may be to cast the damage-detection problem 
as a problem of image segmentation: Dispose of boxes altogether, 
and instead build a system that classifies each pixel of the image 
into “no damage,” “interior damage,” or “margin damage” (or more 
categories, once more data are available). The output from the seg-
mentation system is then a new image, a map that represents re-
gion areas in their full complexity, one pixel at a time. The main 

drawback of a segmentation approach is that manual image anno-
tations would also have to be in the form of images, in which every 
pixel that belongs to a damage region is “painted” with a label that 
identifies the damage type. The annotation burden would be much 
greater, but it may be possible to develop a user interface that allows 
an annotator to “paint” damage regions efficiently. We plan to inves-
tigate related approaches in future work.

Regardless of the exact approach used, we knew that one of the 
key challenges of this project would be to annotate enough instances 
of different types of leaf damage to accurately train the damage de-
tector and the damage classifier. The size of the training set is crit-
ical. As other researchers have discovered––even in the domain of 
leaf classification––thousands of images are needed for the simpler 
task of binary classification of an entire specimen image into mer-
cury-stained or unstained (Schuettpelz et al., 2017), and hundreds of 
thousands are needed for more complex tasks, such as species classifi-
cation (Carranza-Rojas et al., 2017). As discussed above, box detection 
is even harder. We expect that tens of thousands of annotations per 
damage type will eventually be necessary for high-quality results, and 
it will take time and effort to accomplish this in follow-up studies.

Anecdotally, it can be assumed that botanists may prefer to collect 
specimens with little or no insect damage. For this reason, any herbiv-
ory quantified on specimens is expected to be a conservative estimate 
of total herbivory experienced by plants. Thus, it is important to ac-
knowledge and/or account for these biases as machine learning meth-
ods continue to be developed. Importantly, the tool we present could 
be used on any pressed leaves, opening the possibility for automated 
scoring of percent leaf herbivory in situations where this down-bias 
is not an issue. For example, our techniques could be applied to leaves 
from field or greenhouse studies, which is perhaps a more common 
application in ecology than measuring herbivory on herbarium speci-
mens (e.g., Turcotte et al., 2014a, b; Johnson et al., 2016).

Paleobotanists have used insect damage data from fossils to 
quantify changing patterns of insect diversity during periods of 
warming in the fossil record (Wilf and Labandeira, 1999; Labandeira 
et al., 2002; Wilf et al., 2006). We show here that not only could her-
baria offer an analogous resource for examining modern changes 
in herbivory, but also that we may be able to use automated tech-
niques to extract damage types from specimens, allowing for the 
possibility of “big data” extraction. This is important because some 
limited data that are available on insect abundances (Boyle et al., 
2019; Wepprich et al., 2019) and biomass (Hallmann et al., 2017; 
Lister and Garcia, 2018) over time suggest that insects are in decline 
in the Anthropocene. However, these studies are highly debated 
today (Ries et al., 2019; Wepprich, 2019; Willig et al., 2019), and 
biomass studies often represent data collected from only two time 
points, one before and one after the acceleration of climate change. 
If the automated techniques described here are developed further 
and harnessed to their full potential, herbaria will offer an unprece-
dented opportunity to assess changing insect damage and diversity 
across broad scales of space, time, and plant phylogeny.
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APPENDIX 1. Specimen segmentation algorithm.

Our algorithm for separating pixels on the specimen from pixels in 
the background of specimen images is based on the consideration that 
the background has an unsaturated color: white or off-white in most 
images, and perhaps dark, or even black in others. In contrast, the color 
of leaves is much more saturated, as it is between green and brown 
in most cases. Saturation measures the “colorfulness” of a color, i.e., 
how far it is from gray. We used the hue, saturation, and value (HSV) 
definition of saturation (Smith, 1978): If a pixel has components R 
(red), G (green), and B (blue), let M be the maximum among R, G, B, 
and let m be the minimum. Then chroma is defined as C = M − m and 
saturation as S = C/M if M is nonzero and S = 0 otherwise.

Our segmentation algorithm computes saturation (S) for 
every pixel in the image and then builds a histogram of it. This 
histogram typically shows a large peak at low-saturation values for 
the background and another at higher-saturation values for the 
specimen. We used Otsu’s algorithm (Otsu, 1979) to compute an 
image-specific threshold τ for separating the two peaks. Comparing 
the saturation (S) of a pixel to this threshold classifies it into 
background if S < τ and if the specimen is otherwise.

APPENDIX 2. Classifier and training details.

Our neural net had an input convolutional layer with a 7 × 7 kernel, 
stride 2, batch normalization, a rectified linear unit (ReLU), and a 
max-pooling layer with a 3 × 3 kernel and stride 2. Four standard 
residual blocks followed, each with four convolutional layers 
with 3 × 3 kernels, batch normalization, and ReLU. After a 1 × 1 
convolution to adjust the output size to a vector of length 512, a 
final, fully connected layer changed the number of outputs to 8 
(i.e., the number of categories in our experiments). Classification 
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was achieved by identifying the largest entry in a soft-max 
transformation of the output. The exact architecture can be 
downloaded and modified with the following PyTorch commands: The model was trained with stochastic gradient descent with a 

constant learning rate of 0.0002 and a momentum of 0.9, and the 
cross entropy loss was used as the risk function to minimize.model = torchvision.models.resnet18(pretrained = True)

model.fc = torch.nn.Linear(model.fc.in_features, 8)


