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ABSTRACT

Extant vascular plants comprise three major lineages: Lycophytina, Monilifor-
mopses and.Spermatophytata. We have investigated the evolution of body plans of
vascular plants using a phylogenetic framework to reconstruct morphological char-
acter state changes. Our phylogenetic definition of body plans is based on synapo-
morphies of the lineages of extant vascular plants. Fundamental body plan features
considered include the structure of meristems, the position of sporangia,
spore/pollen wall development, and life cycle changes. Phylogenetic evidence sup-
ports the presence of roots in the common ancestor of extant vascular plants and a
single origin of euphylls prior to the divergence of extant euphyllophytes. Hetero-
chronic and heterotopic mutations and morphological simplification have each
played major roles in the evolution of vascular plants. Phylogenetic evidence and the
fossil record are integrated to reflect our current understanding of the evolution of
vascular plants since their origin in the late Palaeozoic. The phylogenetic position of
model organisms commonly used in developmental gene studies illustrates the
importance of improving and diversifying taxon selection in future evolutionary
studies that use developmental genes.

17.1 Introduction

Current studies in plant evolution focus on three themes: (1) phylogenetic relation-
ships among extant and/or extinct lineages of vascular plants; (2) evolution of plant
structures and shapes; and (3) the evolution of genes that control plant development.
All of these themes are pertinent to what has become known as evolutionary’
developmental genetics. In the past, and to some extent still today, studies focusing
on phylogenetic relationships and the evolution of form interpreted the anatomy and
morphology of extant plant taxa using ad hoc statements to identify primitive or
derived characters (Goebel, 1933; Bower, 1935; Troll, 1937, 1939; Campbell, 1940;
Wardlaw, 1952, 1965; Kaplan, 1977; Kaplan and Groff, 1995; Kato and Imaichi,
1997; Hagemann, 1999; Niklas, 2000a, b). Several studies have also used the fossil
record to reconstruct the first appearance of taxa and characters that were then used
as empirical data to interpret plant relationships and the evolution of plant mor-
phology (Zimmermann, 1959, 1965; Gensel, 1977, 1992; Gensel et al., 2001).
Investigations of developmental and functional aspects of plant structures, such as
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biomechanical properties in the reconstruction of fossils, have also been popular
approaches to infer the evolution of vascular plants (Wardlaw, 1952, 1965; Speck
and Rowe, 1999; Niklas, 2000a, b; DiMichele et al., 2001).

Recently, two new approaches have made possible remarkable advancements in
our understanding of plant evolution. In the first approach, plant phylogeny is
inferred from the application of stringent analytical methods (e.g. maximum parsi-
mony and maximum likelihood optimisation criteria) to both DNA sequence data
and morphological data. These studies have allowed new insights into plant rela-
tionships (Donoghue and Doyle, 2000; Soltis and Soltis, 2000; Pryer et al., 2001)
and the interpretation of morphological character evolution (Crane and Kenrick,
1997; Kenrick and Crane, 1997; Bateman et al., 1998; Doyle and Endress, 2000;
Graham et al., 2000; Renzaglia et al., 2000). The second approach is based on the
growing understanding of the role of dedicated genes (e.g. transcription factors) in
controlling plant development, which has inspired new studies that focus on plant
development in an evolutionary context (Doyle, 1994; Kramer and Irish, 1999,
2000; Frohlich and Parker, 2000; Lawton-Rauh et al., 2000; Riechmann et al.,
2000; Vergara-Silva et al., 2000). Varied terms have been used for the genetic
factors involved in the regulation of plant development, such as receptors, transduc-
ers and transcription factors (Doebley and Lukens, 1998). Here, we use the term
‘developmental genes’ in a broad sense (Arthur, 1997; Gilbert, 2000; Morange,
2000). In plants, MADS-box genes are the most commonly studied developmental
genes used to infer the evolution of key features of seed plants, such as the evolution
of flowers (Hasebe, 1999; Hasebe and Ito, 1999; Shindo et al., 1999; Winter et al.,
1999; Alvarez-Buylla et al., 2000a, b; Becker et al., 2000; Krogan and Ashton,
2000; Smyth, 2000; Svensson et al., 2000; Theiffen, 2000; Theiflen et al., 2000;
Vergara-Silva et al., 2000). Other kinds of plant developmental genes, such as home-
odomain genes (Bharathan et al., 1997, 1999; Aso et al., 1999; Richards et al.,
2000; Sakakibara et al., 2001), MYB genes (Kranz et al., 2000) and phytochrome
genes (Schneider-Poetsch et al., 1998; Basu et al., 2000), have been utilised in only a
few evolutionary studies. Other studies have explored the evolution of actin genes,
which encode a major component of the cytoskeleton, because duplication and mod-
ification of these genes is involved in the evolution of morphological complexity at
the cellular level (Bhattacharya et al., 2000).

The potential of these new sources of data to answer long-standing questions
about plant evolution is staggering. Developmental genes, such as HOX-box genes,
have already provided critical insights into the genetic basis of the developmental
evolution of animals (Hall, 1996; Raff, 1996; Arthur, 1997; Gellon and McGinnis,
1998; Graham, 2000; Grbic, 2000; Jenner, 2000; Kappen, 2000; Peterson and
Davidson, 2000; Wray ‘and Lowe, 2000), prompting the application of similar
approaches to plants (Hasebe, 1999; Kramer and Irish, 1999, 2000; Theifen, 2000;
Vergara-Silva et al., 2000). A future challenge will be to integrate phylogenetic
reconstruction, morphological studies and developmental genetic data (Bateman,
1999; Valentine et al., 1999; Kellogg, 2000a; Mabee, 2000). A series of nested
studies might be envisaged to meet this challenge: (1) nucleotide sequence data of
coding and/or non-coding DNA regions can be used to reconstruct the phylogeny;
(2) extensive data sets comprising anatomical, biochemical, cytological and mor-
phological characters can be used to infer character evolution on the resultant
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phylogeny; and (3) the phylogeny, with its explicit character transformation state-
ments, can be compared to gene trees based on sequence data of developmental
genes to further our understanding of the evolution of plant development.
Researchers favouring a total evidence approach (de Queiroz, 2000; Hillis and
Wiens, 2000) could combine steps 1 and 2 to construct a phylogeny based on both
morphological and molecular data. Whatever the approach used, it seems advisable
to maintain step 3 as an independent exercise.

A recent phylogenetic study by Pryer et al. (2001) utilising five data sets compris-
ing three chloroplast genes (atpB, rbcL, rps4), nuclear small subunit (SSU) ribosomal
DNA, and an extensive morphological matrix resulted in a new understanding of the
relationships among major lineages of extant vascular plants. They refuted previous
hypotheses of spore-bearing vascular plants as transitional evolutionary grades
between bryophytes and seed plants. In particular, the hypothesis that Psilotum is a
‘living fossil’ with a close relationship to Lower Devonian psilophytes (Kaplan, 1977;
Wagner, 1977; Rothwell, 1999) no longer appears tenable. These results call for a
reinterpretation of the evolution of plant morphology. Reconstruction of phylogeny
and morphological character state changes allows us to infer the relationship between
ontogeny and phylogeny (Rieppel, 1993; Bang et al., 2000; Collazo, 2000), mechan-
isms of evolution (Hall, 1996; Raff, 1996, 1999; Arthur, 1997, 2000a; Budd, 1999;
Donoghue and Ree, 2000; Gibson and Wagner, 2000; Wagner and Schwenk, 2000),
and the acquisition of ‘key innovations’ and body plans in the evolution of organisms
(Arthur, 2000b; Graham et al., 2000; Wagner et al., 2000).

17.2 Methodology

17.2.1 Reconstruction of phylogenetic relationships

A phylogeny of vascular plants comprising representatives from all major extant
clades was reconstructed using maximum likelihood analysis of nucleotide sequences
from three chloroplast genes (atpB, rbcL, rps4) and nuclear SSU rtDNA (Pryer et al.,
2001). This phylogeny is referred to subsequently as ‘Phylogeny 2001’. Relation-
ships among the bryophyte outgroups are the subject of current controversy (Lewis
et al., 1997; Nickrent et al., 2000; Qiu and Lee, 2000). Because Phylogeny 2001
exhibited a polytomy among the outgroups, we follow here a most recent hypothesis
of the relationships among the four lineages of land plants (Lewis et al., 1997; Nick-
rent et al., 2000; Qiu and Lee, 2000) in order to optimise character state reconstruc-
tion (Maddison and Maddison, 1992). Three alternative topologies, in which the
sister group to tracheophytes is either (1) hornworts, (2) mosses or (3) a clade com-
prising liverworts and mosses, were considered initially. Reconstruction of character
states within the vascular plants was not affected by these outgroup choices; there-
fore, character state changes were reconstructed using liverworts (Marchantiomor-
pha) as outgroup.

17.2.2 Reconstruction of character evolution

Characters taken from an extensive morphological data set were mapped onto Phy-
logeny 2001 (see Section 17.2.1). This morphological data set consists of 136
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characters, including features of general morphology, anatomy, cytology, biochem-
istry and some structural DNA data. The data set was especially designed for an
independent analysis of phylogenetic relationships among vascular plants and does
not generally include characters that are of interest only for terminal groups such as
flowering plants, horsetails, derived ferns, or for relationships among the outgroups.
The morphological data matrix is available from the senior author. Character evolu-
tion was reconstructed for this data set using both accelerated transformation
(Acctran) and delayed transformation (Deltran) optimisation as implemented in
MacClade 3.0 (Maddison and Maddison, 1992). Character state changes were
treated as ambiguous if the application of the two optimisation criteria resulted in
different reconstructions. All characters shown in Figures 17.2-17.8 are treated as
unordered. The reconstructed phylogeny (Section 17.3) and optimised character
state changes (Section 17.4) formed the basis of an investigation into the nature of
evolutionary transformations among vascular plants (Section 17.5).

17.3 Phylogeny of vascular plants (phylogenetic
statements)

Extant vascular plants comprise three major lineages (Phylogeny 2001, Figure 17.1):
lycophytes, seed plants and non-lycophyte pteridophytes. The third lineage com-
prises leptosporangiate ferns (Polypodiidae), two extant lineages of eusporangiate
ferns (Marattiidae, Ophioglossidae), whisk ferns (Psilotidae) and horsetails (Equise-
topsida). This clade is referred to throughout this chapter as Moniliformopses (or
moniliforms), reflecting a classification first introduced by Kenrick and Crane
(1997). The horsetails (Equisetopsida) and Marattiidae form a clade that is, in turn,
sister to the leptosporangiate ferns (Polypodiidae). The basalmost branch of the
Moniliformopses is a clade that includes Psilotidae and Ophioglossidae. Within seed
plants, angiosperms are shown as sister to a monophyletic gymnosperm clade. This
is not the first time that the anthophyte hypothesis has been refuted. Other phyloge-
netic analyses using DNA sequence data and denser taxonomic sampling also show
that Gnetaceae is not sister to angiosperms (Doyle, 1996, 1998; Donoghue and
Doyle, 2000; Sanderson et al., 2000). Here, Gnetum is sister to the conifer Pinus;
similar topologies are reported in recent studies focused on seed plant phylogeny
(Doyle, 1998; Barkman et al., 2000; Bowe et al., 2000; Chaw et al., 2000;
Donoghue and Doyle, 2000).

17.4 Character evolution of vascular plants

17.4.1 Character state changes and vascular plant lineages

The total number of character state changes, as well as the number of unambiguous
character state changes, are reported for each branch in Figure 17.1 for the 136
morphological characters that were mapped onto Phylogeny 2001. The morphologi-
cal data set did not include characters that are informative only for terminal groups
(e.g. floral characters). The number of character state changes, therefore, is relatively
low for several derived branches.

The branches supporting the main lineages of vascular plants have relatively high
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Figure 17.1 Phylogeny of vascular plants (referred to as Phylogeny 2001 throughout the text) as
shown in Pryer et al. (2001), except for outgroup relationships, which have been
redrawn (see Section 17.2.1). Character state evolution was reconstructed for 136
morphological characters using this phylogeny. The number of unambiguous morpholog-
ical character state changes is given for each branch; total number of morphological
character states changes (ambiguous + unambiguous) is shown after the slash. Taxon-
omy follows Kenrick and Crane (1997). -

numbers of unambiguous and total character state changes: Lycophyta (3/11),
Euphyllophytes (6/12), Spermatophytata (17/36), Moniliformopses (4/17) (Figure
17.1). The number of character state changes for the seed plant clade is high, reflect-
ing the remarkable evolutionary transformation of major morphological features
within this lineage after its divergence from other vascular plants. The majority of
these spermatophyte character state changes are associated with the evolution of
seeds. Within Moniliformopses, each of the five principal lineages shows a relatively
high number of character state changes: Equisetopsida (10/21), Marattiidae (13/26),
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Ophioglossidae (3/8), Polypodiidae (11/20), Psilotidae (7/10). In striking contrast,
the deeper branches that support clades such as Ophioglossidae + Psilotidae (1/10)
and Equisetopsida + Marattiidae (0/4) show one and no unambiguous character
state changes, respectively. This imbalance between support for these deeper clades
and clades one step higher in the phylogenetic hierarchy is remarkable.

17.4.2 Phylogenetic classification of body plans of vascular
plants

The reconstruction of morphological character state changes on a robust phylogeny
provides us with guidelines to define the body plans of vascular plants. This
approach differs from previous attempts to define body plans of vascular plants,
which were based on ad hoc interpretations combining historical and functional
aspects (Rothwell, 1995; Niklas, 2000a). A brief definition of tracheophyte body
plans, based primarily on characters of extant taxa, is given here.

All vascular plants share such character states as an independent sporophyte and
multiple sporangia. Nearly all vascular plants, except some genera of Lemnaceae
(Cook, 1999), possess differentiated vascular tissues and endodermal sheaths. Most
vascular plants also produce lignin and mechanical tissues such as sclerenchyma and
collenchyma. Tracheophytes exhibit two major body plans: (1) shoots with exarch
protoxylem poles, dichopodial roots with endarch protoxylem poles, and lycophylls
(=microphylls), which are characteristic of lycophytes; (2) shoots with endarch to
mesarch protoxylem poles, monopodial roots with exarch protoxylem poles, and
euphylls (=megaphylls), which are characteristic of euphyllophytes. Roots are
absent from few groups of euphyllophytes.

Extant lycophytes include two major kinds of body plans: (1) the ligulate type
and (2) the non-ligulate type. The ligulate type possesses a ligule on the adaxial
surface of the microphylls and has differentiated structures (rhizophores or
rhizomorphs) that bear roots. Extant euphyllophytes also include two distinct
body plan types: (1) the seed plant type with eusteles, general occurrence of sec-
ondary growth, lateral roots borne from pericycle/pericambium cells, extreme hetero-
spory and seeds; and (2) the moniliform type with solenosteles (or dictyosteles),
generally lacking secondary growth, lateral roots borne from endodermis cells,
periplasmodial tapetum, pseudoendospore and spore wall development that is exclus-
ively centrifugal.

Extant moniliforms include five main body plans that correspond to each of the
main lineages: (1) the psilotoid-type is defined by the absence' of roots, reduced
euphylls, and differentiation of the shoot into an erect photosynthetic portion and a
creeping non-photosynthetic portion; (2) the ophioglossoid-type is defined by a
reduction in the number of euphylls to one per shoot produced at any given time,
usually unbranched roots, and the absence of root hairs; (3) the marartioid-type is
defined by shoots with polycyclic steles, roots with septate root hairs, and leaves
with pulvini, scattered pneumathodes, and polycyclic vascular bundles; (4) the equi-
setoid-type is defined by reduced euphylls that are arranged in whorls, shoots differ-
entiated into creeping and erect parts, presence of extensive lacunae systems in the
ribbed shoots, and endogenous origin of lateral shoots; and (5) the polypodioid-type
is defined by the occurrence of leptosporangiate sporangia formed from single
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epidermal cells, a reduced number of protoxylem poles per root (in general two),
and the absence of a root pith.

Extant seed plants include two major body plans: (1) the gymnosperm-type with
embryos that arise from a multinucleate zygote, phloem tissue with Strassburger
cells, and secondary xylem cells of the coniferoid-type; and (2) the angiosperm-type
with embryos that arise from a uninucleate zygote, phloem tissue with companion
cells, a secondary endosperm, and flowers. Detailed definitions of the four body plan
subtypes nested within the gymnosperm-type (cycadoid, ginkgoid, gnetoid, conifer-
oid) are not presented here because definitions need to be based on a phylogenetic
analysis with a broader taxon sampling of seed plants.

17.4.3 Evolution of main features of vascular plants

The evolution of tracheophyte characters in comparison to other land plants and
green algae has been examined in detail in previous studies (Kenrick and Crane,
1997; Edwards, 1999; Graham et al., 2000; Renzaglia et al., 2000). In the following
text, we infer the evolution of a few selected characters (Figures 17.2-17.8) within
vascular plants using Phylogeny 2001 (Pryer et al., 2001).

A. Life cycle

Although the evolution of the life cycle of land plants has been explored in previous
studies (Kenrick, 1994; Kenrick and Crane, 1997), differences in the life cycles
among tracheophytes have yet to be examined in detail. It has been suggested that
bryophytes and tracheophytes share a common ancestor possessing isomorphic
gametophytic and sporophytic phases (Kenrick, 1994; Kenrick and Crane, 1997),
whereas extant land plants have two phases that differ in form (heteromorphic) and
duration. It is well known that vascular plants differ from bryophytes in having a
dominant (or co-dominant) and independent sporophyte (Figure 17.2a, b). In
general, tracheophytes have a gametophytic phase that is short-lived, although this is
not the case in several basal lineages (Lycopodiales, Marattiidae, Ophioglossidae,
Psilotidae). Nevertheless, it appears that the condition of having extremely short-
lived gametophytes and long-lived sporophytes has evolved at least three times
within vascular plants: heterosporous lycophytes (Isoétales, Selaginellales), seed
plants (Spermatophytata), and leptosporangiate ferns (Polypodiidae) (Figure 17.2a).

Another interesting aspect of the life cycle of land plants is the existence of a
period of dormancy, which is intercalated between the sporophytic and gameto-
phytic phases in bryophytes and pteridophytes (in the form of a haploid spore), but
which occurs between the gametophytic and sporophytic phases in seed plants (in
the form of a diploid embryo enclosed in a seed) (Figure 17.2b).

B. Meristems

Sporophytes of euphyllophytes possess at least three kinds of apical or marginal
meristems that are involved in the formation of new organs: shoot meristems, root
meristems, and leaf meristems. Intercalary meristems and cambia are ignored
here because in general they are not involved in the formation of new organs. Fossil
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evidence suggests that the common ancestor of vascular plants possessed only one
type of meristem per sporophyte and one type of meristem per gametophyte (Philip-
son, 1990; Kenrick and Crane, 1997). In bryophytes, the gametophytes possess only
one meristem type, whereas the sporophytes have one apical shoot meristem or
grow exclusively via an intercalary meristem (Kenrick and Crane, 1997).

Reconstruction of root evolution (Figure 17.3a) suggests a differentiation of shoot -
and root meristems in the common ancestor of all extant lineages of tracheophytes.
Subsequent differentiation of meristem types in the common ancestor of the euphyl-
lophytes resulted in a leaf meristem that produces euphylls (Figure 17.4b), whereas
lycophylls grow exclusively with an intercalary meristem (Figure 17.4a). This sce-
nario is consistent with the phylogeny but it needs to be confirmed with studies that
address the genetic control of organogenesis and, in particular, organ identity. Genes
controlling leaf identity of euphylls are assumed to be different from those control-
ling leaf identity of lycophylls (Kerstetter and Poethig, 1998; Foster and Veit, 2000;
Frugis et al., 1999; Tsukaya, 2000), whereas root identity genes are assumed to be
homologous among tracheophytes (Benfey, 1999; Bai et al., 2000; Costa and Dolan,
2000).

The three organs found in moniliforms (leaves, roots, shoots) have a meristem
structure that has a single apical cell, similar to that found in bryophytes and the
lycophyte lineage Selaginellales (Figure 17.5a). In contrast, the two other extant lin-
eages of lycophytes (Lycopodiales and Isoétales) and seed plants possess complex
meristems. The meristems of lycophytes and seed plants differ substantially, and it is
still unclear whether complex meristems are homologous, as proposed by Philipson
(1990), or merely analogous.

C. Root—shoot differentiation

The root is one of the three basic organs of vascular plants, yet the phylogenetic
origin of roots is rarely discussed (Zimmermann, 1965; Kutschera and Sobotik,
1997; Gensel et al., 2001; Raven and Edwards, 2001). Some authors (Goebel, 1933;
Hagemann, 1992, 1997, 1999) suggest that roots originated as tuberous storage
organs. However, some Lower Devonian vascular plant fossils suggest that roots
evolved from creeping, elongate shoot-like structures (Remy et al., 1997; Gensel et
al., 2001; Raven and Edwards, 2001). It has been argued that roots of lycophytes
and euphyllophytes are not homologous because roots are unknown from many
Lower Devonian trimerophytes and zosterophytes (Gensel, 1992; Stewart and Roth-
well, 1993; Taylor ‘and Taylor, 1993; Gensel et al., 2001; Raven and Edwards,
2001). However, fossil evidence for roots is often ambiguous (Kenrick and Crane,
1997; Gensel et al., 2001; Raven and Edwards, 2001) and root-like structures are
known for some Lower Devonian taxa (Remy et al., 1997; Gensel et al., 2001;
Raven and Edwards, 2001). Phylogenetic evidence indicates that roots of lycophytes
and euphyllophytes are homologous (Figure 17.3a).

Roots of euphyllophytes and lycophytes share several structural features such as a
calyptra, endogenous origin of the shoot-borne root and presence of root hairs, but
they differ in two notable characters. First, shoot-borne roots of lycophytes show
dichopodial branching, whereas shoot-borne roots of euphyllophytes show mono-
podial branching with lateral roots differentiated endogenously (Figure 17.3b). This



wninjwolde
enueyde
sosadoauy [

ejzradny
$23005]
e|jouidejag
edajieqoasny
snyaueIolyD
seako
odjuo

snuiy
wmaug

sudisow ) [}
wnojisg !7

wniyainog
wnssojoiydo
eaRUR(]
eRIEIR)
suadoiBuy
|wmasinby
Zwmasinby
BpUNWSQO
wn|jdydouswdp
SNIososaURY
BlUAYIIBID
wnipo84y
EluiAes N
LETTEI LN
eayedD
elA3018ey
BluoSPIq
wnipLalg
wnuydalg

Root/shoot meristem differentiation

[] absent

B present

=
=

wnpiwolde
BRURYDIEY
soJadoyauy
wnydL4jog
wnudeydg
eizsadny
$31905|
ejjauideag
edajieqosisny
snyauelolyD)
seakd

odjuio

snuiyg
wmaug
sudisaw |
wnojisq
wniyodnog
wnssojdoiydo
eaRUR(]
LIS LE LN
suadoiduy
|wniasinbgy
Zwmasinby
BpUNWSO
wnjjdydouswiy
Snlosouaueyy
UETRIE)
wniposAq
BIUIA[ES
LCIENEN]
eaypedn
elA3018e)4
BluosIQq
wnipuag
wnuya|g

Shoot-borne root branching

[ dichopodial

Bl monopodial

equivocal

—_
D
=

y 2001. (a) Root/shoot meristem differentiation. (b)

Figure 17.3 Root characters plotted on Phylogen

pplicable to taxa with

Branching of shoot-borne roots. The latter character is not a

Tmesipteris) and Salvinia. Shoot-borne roots of
the exception of Ophioglossum palmatum, which

borne roots (Ophioglossum, Botrychium) and rootless taxa such as

8

2

o

2
g5¢
33£
85,0
L8>
Sca
w e 0
E5E
k.m.m
oy J £
09 g.=
ohud
$5%g
. E<
8E2y
SREE
C L o
£829
5 9= E
nwlb.o
500 a



wnjwojde
eRURYDIEY
soJadoyuy
wnyaL4kjo4
wnugeyds
eizsadny
5§92205|
e||auidejag
ehajieqonasny
snyaueIolYD
sedxhn
odjuin

snuig
wmaun
sidisaw |
wmojisg
wnjys4n0g
wnssojBoiydo
eaRURQ
BIRIR)
sadoiduy
Jwn3asinbg
Zwmasinbg
ePUNWSO
wn|jAydouswiip
SNJOsOJaURYY
BIUIYIIR|D
wnipod4
BIUIAJES
eajisJely
eayaedn
eli43018ey
eluOSIQ
wnpLglyg
wnuyd9|g

Lycophylls

[] absent

B present

(@)

wninjwoldeH
ERURYDIEL [
soJa30uy [f
wnydL4od [
wnuSeyds f
eizsadnH [
$33305| [
®|jouidejas [
edajreqoaasny
snyueIolYD)
seakn
)
snuy
wnpun
sudisaw |
wniojisd
wniyrdnog
wnssojdoiydo
eaeueq
emeIe)
suadoiduy
|wniasinby
gwmasinb3
BPUNWSQO
wnjdydouawiy
SNJ0SOJaURYY
BIUBYIRID
wnipodA]
BIUIAES
e3jistely
eayedD)
elik3018e|g
BlUOSIQ
wnipiag
wnuyda|g

Euphylls

[ absent

B present

—
e)
=
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sporangia relative to leaf-like organs; adaxial sporangia are attached to the shoot above
the leaf or on the adaxial surface of the leaf, abaxial sporangia are attached to the
abaxial surface of the leaf. Salvinia is scored as unknown because the interpretation of
the highly modified, submerged, sporangia-bearing organ is unclear. Seed plants are
scored according to Doyle (1996). Bryophyte sporophytes lack leaf-like structures and
the character is therefore not applicable.
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character is not applicable to rootless taxa such as Psilotidae and taxa with
unbranched roots, such as the majority of Ophioglossidae. Second, protoxylem poles
are located in an endarch position in lycophytes but exarch in euphyllophytes. This
character has a reverse correlation with the position of protoxylem strands in the
shoot stele, which are exarch in lycophytes and endarch or mesarch in euphyllophytes.

The main features of roots are conserved in the evolution of euphyllophytes
except in the Ophioglossideae + Psilotidae clade, where root systems are reduced or
absent (Figure 17.3a, b). Leptosporangiate ferns (Polypodiidae) are characterised by
the absence of a root pith. This loss of a root pith may have occurred twice in
closely related lineages, Polypodiidae and Equisetopsida, or it may be a synapomor-
phy of the clade including these two lineages and Marattiidae, with a reversal in
Marattiidae.

Several other characters of root systems correlate with characters found in other
organs; for example, roots with secondary growth are found only in taxa with sec-
ondary shoot growth, and homorhizy is correlated with the presence of seeds.

D. Leaf-shoot differentiation

The evolution of leaves is often discussed with reference to various ‘leaf’ characters,
such as dorsiventral organisation, leaf gaps, and branched venation (Arber, 1950;
Wagner, 1977; Wagner et al., 1982, Rutishauser, 1999; Dengler and Tsukaya, 2001).
Recent phylogenetic studies support the independent origin of two leaf-like organs in
vascular plants (Figure 17.4a, b): the lycophylls (=microphylls) of lycophytes, and the
euphylls (=megaphylls) of euphyllophytes (Kenrick and Crane, 1997; Pryer et al.,
2001). Crane and Kenrick (1997) proposed that lycophylls are transformed sporangia,
whereas euphylls appear to be modified shoot systems (Zimmermann, 1959, 1965).
Differences of opinion surrounding leaf origin in land plants (Niklas, 2000a, b) can be
attributed, in part, to the use of different criteria to define leaves (Rutishauser, 1999).
Only two features are consistently present in all leaves of euphyllophytes (with very
few exceptions) but always absent from lycophytes: leaf gaps and development by an
apical or marginal meristem. A further observation is the association of euphylls with
lateral branches (Arber, 1950; Rutishauser, 1999), which are always axial only in
extant seed plants. In moniliforms, lateral branches are generally located close to, but
rarely within, the axils of leaves (Galtier, 1999). In addition, shoot branching patterns
were more varied in Palaeozoic seed plants than they are in extant ones, and included
non-axial and axial lateral branches (Galtier, 1999).

Other features used to define leaves often reflect functional specialisation and
therefore are not useful for determining homology. For example, leaf-like structures
of bryophytes and vascular plants share a planar shape, yet this is not an indicator
of homology but is probably the result of functional constraints (Beerling et al.,
2001; Raven and Edwards, 2001). Branched veins in leaves of a few species of
Selaginella (Wagner et al., 1982) are also likely to be the result of independent evo-
lutionary innovation and not evidence for their homology with euphyllophyte
leaves. Similarly, several leaf characters, such as dorsiventral organisation, petiole-
blade differentiation, marginal meristem, simple blades, anastomosing venation, and
differentiation of palisade and spongy parenchyma, may have evolved or been lost
independently in different lineages after the establishment of euphylls.
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The homology of leaves of ferns and seed plants has been questioned (Wagner et
al., 1982; Rutishauser, 1999) even though they share the occurrence of leaf gaps and
of apical and/or marginal meristems. Leaves of extant members of these lineages do
differ substantially in their development (Hagemann, 1984), but similar foliage pat-
terns observed in progymnosperms and ferns suggest that a shared developmental
program of leaf formation existed in the common ancestor of moniliforms and seed
plants. Angiosperms have a notable diversity of leaf development patterns (Tsukaya,
2000; Kaplan, 2001), but a comparative study including other seed plant lineages is
lacking. Some features such as basipetal growth (Hagemann, 1984; Tsukaya, 2000)
are likely to be restricted to flowering plants.

Current studies of genes that control leaf identity and formation have been
carried out exclusively on derived angiosperms (Bowman, 2000; Foster and Veit,
2000; Tsukaya, 2000; Dengler and Tsukaya, 2001), and the results were rarely
reported in a comparative framework and, unfortunately, never with a phylogenetic
perspective. The remarkable diversity of leaf shapes and structures in early euphyllo-
phytes (Taylor and Taylor, 1993; Galtier and Phillips, 1996) is evident in some fea-
tures of the leaves of horsetails (Equisetopsida), whisk ferns (Psilotidae) and
moonworts (Ophioglossidae). In horsetails and whisk ferns the leaves are extremely
reduced and no leaf gap is present in Psiloturn. However, the closely related genus
Tmesipteris possesses larger leaves with leaf gaps. The leaves of Psilotidae and
Ophioglossidae are not associated with lateral branches but with fertile structures
called sporangiophores. The homology of these structures is unclear, but it is
thought that they are reduced branches. In addition, the long and extensive fossil
record of members of the horsetail lineage documents a reduction (simplification) of
the leaves during their evolution (Zimmermann, 1965; Stewart and Rothwell, 1993;
Taylor and Taylor, 1993).

E. Position of sporangia

Sporangia are found attached either to the adaxial or abaxial surface of a leaf-like
structure (Figure 17.5b). Abaxial sporangia are found in Polypodiidae and Marat-
tildae, whereas adaxial sporangia are found in the most basal lineage of moniliforms
comprising Ophioglossidae and Psilotidae. Traditional interpretations of the posi-
tion of sporangia in Equisetopsida (Stewart and Rothwell, 1993; Taylor and Taylor,
1993) suggest an attachment of the sporangia to an adaxial sporangiophore, similar
to the condition found in Psilotidae and Ophioglossidae. This hypothesis indicates
either an independent origin of abaxial sporangia in Marattiidae and Polypodiidae
or a reversal to the adaxial position in Equisetopsida (Figure 17.5b). According to
Doyle (1996), most extant seed plants bear sporangia in an adaxial position.

F. Sporelpollen wall evolution

Spore and pollen wall formation is a highly conserved character within the major
lineages of land plants. The exine of bryophytes, lycophytes and seed plants devel-
ops in two directions, centripetally and centrifugally, but the exine of moniliforms
develops exclusively centrifugally (Figure 17.6a) (Rowley, 1996). Moniliforms share
several unique features of spore development and structure, such as periplasmodial
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fossils have suggested that early land plant gametophytes were cylindrical (Gensel,
1992; Kenrick, 1994; Kenrick and Crane, 1997; Edwards, 1999; Gensel et al.,
2001).

17.5 Categories of transformations involved in the
evolution of vascular plants

17.5.1 Iteration

Plants are modular organisms and in general each structure exists in several multipli-
cations (Tomlinson, 1984). It is, therefore, difficult to identify duplication events of
phylogenetic significance. Nevertheless, one example is the multiplication of vascular
stele cycles resulting in polycyclic structures within shoots or petioles. Polycyclic
steles are rare, occurring in only a few lineages of moniliforms, but they characterise
the Marattiidae. A further example of multiplication without modification is the
increased number of sperm cell flagellae in euphyllophytes (Renzaglia et al., 2000).

17.5.2 Modification of plant development

A. Heterochrony

Several character state changes may be caused by heterochronic mutations that
result in an alteration in the sequence and timing of developmental processes (Mos-
brugger, 1995; Raff, 1996; Friedman and Carmichael, 1998; Klingenberg, 1998;
Gould, 2000; Kellogg, 2000a; Li and Johnson, 2000). Changes in the length of the
gametophytic or sporophytic phases, as discussed above in Section 17.4.3A, are
likely to be the result of heterochronic events in the evolution of vascular plants
(Figure 17.2a). For example, extremely short-lived gametophytes have arisen at least
three times: ligulate lycophytes, seed plants and heterosporous leptosporangiate
ferns. Another possible example of heterochrony is the shift of the dormancy period
between life phases from the haploid spore to the diploid embryo enclosed in the
seed (Figure 17.2b). This transformation is correlated with the evolution of seeds,
and recent studies of the evolution of seed storage globulins have demonstrated that
a vicilin-like protein is specifically expressed in fern spores (Shutov et al., 1998). In
seed plants, members of this gene family are expressed exclusively in the seed (dor-
mancy phase). Heterochronic transformations may also be responsible for the reduc-
tion in number of spores produced per sporangium (Section 17.5.3; Figure 17.6b).

B. Heterotopy

Several character state changes may be caused by heterotopic mutations that result
in relocation of structures in the evolution of vascular plant body plans (Sattler,
1988, 1994; Sattler and Rutishauser, 1997; Kellogg, 2000a). Examples of hetero-
topic mutations are observed in anatomical characters, such as in the position of
protoxylem poles or sclerenchymatous tissue. As discussed in Section 17.4.3G, the
position of protoxylem poles in the root and the shoot is an important distinction
between lycophytes and euphyllophytes (Figure 17.7a, b). The endarch or mesarch
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position of protoxylem in the shoot distinguishes the seed plants and moniliforms
except for the Ophioglossidae + Psilotidae clade, which is distinct from all other vas-
cular plant lineages in having taxa with endarch, exarch or mesarch protoxylem
poles. Notably, it includes Psilotum, the only extant euphyllophyte with exarch pro-
toxylem poles in the shoot stele, a character state otherwise restricted to lycophytes,
whereas its sister genus Tmesipteris has mesarch protoxylem poles, which are typical
of moniliforms. Phylogenetic changes in the localisation of tissues such as pro-
toxylem are likely due to changes in the positional control of cell differentiation
(Benfey, 1999; Dolan and Okada, 1999; Costa and Dolan, 2000). Sclerenchymatous
tissue in the root cortex of leptosporangiate ferns (Polypodiidae) exemplifies reloca-
tion of cell types (Schneider, unpubl. obs.). Sclerenchymatous cells, if present, are
differentiated either in the inner or the outer cortex. Sporangial position is also an
example of structural relocation in the evolution of vascular plants (Figure 17.5b).
The sporangia in moniliforms are located either on the abaxial side of the leaves or
adaxially on sporangiophores (Section 17.4.3E). The phylogeny indicates one or
perhaps two transitions of sporangia from an adaxial to abaxial position in monili-
forms (Figure 17.5b).

C. Heterometry

Little evidence for heterometric mutations that result in changes in size of structures
(Zelditch and Fink, 1996; Gould, 2000) was found with this data set because quan-
titative characters were excluded. They are of great interest in studies of the evolu-
tion of closely related species but less informative for studies of deep phylogenies.

17.5.3 Simplification is ubiquitous in plant evolution

Duplication and subsequent modification result in a general trend towards increas-
ing the complexity of body plans of vascular plants (Valentine, 2000), but several
derived lineages are characterised by the reduction or absence of structures
(Bateman, 1996; Pryer et al., 2001). Obvious examples of simplification are the dele-
tion of organs during evolution. Psilotidae are rootless, but phylogenetic reconstruc-
tions indicate that their ancestors possessed roots (Figure 17.3a). Rootless plants are
found also in other clades of vascular plants, such as the heterosporous fern Salvinia
(Polypodiidae) and in flowering plants (e.g. Ceratophyllum, Wolffia). The absence of
lateral roots and root hairs in the Ophioglossidae, the sister clade of Psilotidae,
indicates that reduction of the root system is a shared trait of the Ophio-
glossidae + Psilotidae clade (Figure 17.3b), in which roots are either completely
absent (Psilotidae) or develop only as unbranched, shoot-borne roots without root
hairs (Ophioglossidae).

Other simplifications include the absence of mechanical tissue (collenchyma and
sclerenchyma) in Ophioglossidae and some Marattiidae, the reduction of euphylls to
scale-like structures in Psilotidae and Equisetopsida, and the absence of a root pith
in all Polypodiidae. The reduction in spore wall thickness and the number of spores
produced per sporangium in leptosporangiate ferns (Polypodiidae) are both
examples of simplification that may be explained by heterochronic or heterometric
mutations. The relatively gradual reduction in spore number per sporangium in
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leptosporangiate ferns is particularly notable (Figure 17.6b), proceeding sequentially
from more than 1000, to less than 1000 but more than 100, and finally to less than
100 (usually exactly 64). Heterochronic mutations may also be responsible for the
reduction observed in leaf production in Ophioglossidae; only a single leaf is pro-
duced each growing season.

17.6 Implications of a phylogeny for current studies

17.6.1 Time-scale and the evolution of vascular plant lineages

It is now generally accepted that the age of a given lineage of organisms can be
inferred from a combination of phylogenetic reconstruction and dates of first appear-
ance of the lineage in the fossil record (Norell and Novacek, 1992; Wagner, 1995;
Kenrick and Crane, 1997). Data regarding first appearances of various vascular plant
lineages are available in several recent studies (Stewart and Rothwell, 1993; Taylor
and Taylor, 1993; Collinson, 1996; Kenrick and Crane, 1997; Crane, 1999; Miller,
1999; Liu et al., 2000). This approach for dating lineages is limited by gaps in the
fossil record and is dependent on differentiating and correctly identifying the relation-
ships among early Palaeozoic tracheophytes (Gensel, 1992; Galtier and Philips, 1996;
Miller, 1999; Berry and Stein, 2000; Liu et al., 2000; Berry and Fairon-Demaret,
2001; Gensel et al., 2001). As a general rule, phylogenetic evidence provides age esti-
mates that considerably pre-date first appearances in the fossil record. Psilotidae and
Ophioglossidae are among the most prominent examples (Figure 17.9). Both are
known only from Cenozoic fossils (Stewart and Rothwell, 1993; Taylor and Taylor,
1993; Kenrick and Crane, 1997), whereas their phylogenetic placement necessitates
an origin of the Ophioglossidae + Psilotidae clade no later than the Devonian. A
similar conflict between phylogenetic topology and the fossil record exists among the
seed plants, especially with regard to the origin of flowering plants (=Magnolidra).
However, estimates for the age of the seed plant lineages based on DNA nucleotide
sequences appear to be consistent with the topology in Figure 17.9 (Goremykin et al.,
1997; Magallén et al., 2000). Further aspects of the phylogeny and fossil record were
reviewed recently for Coniferidra (Miller, 1999), Marattiidae (Liu et al., 2000) and
Polypodiidae (Collinson, 1996; Schneider and Kenrick, 2001). With regard to recon-
structing the evolution of plant development, it is important to note that the phy-
logeny (Figure 17.9) suggests that the major lineages of vascular plants, namely
lycophytes, moniliforms and seed plants, have been evolving independently since the
Devonian.-In addition, extant representatives or close relatives of members of these
three major lineages can be traced to a time before the Upper Devonian (lycophytes
and moniliforms) or the Permian (seed plants). Such long separation times between
the three major lineages may cause problems in studies attempting to infer the evolu-
tion of developmental genes (Becker et al., 2000).

17.6.2 Model organisms reconsidered in a phylogenetic
framework

A full understanding of the diversity and complexity of organisms is one of the
major challenges in biology. Complex structures, such as genomes, can presently be
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studied in detail only for a few species due to enormous cost considerations. Con-
sequently, current scientific progress relies on the assumption that similar structures
and processes are identical in various and often distantly related organisms, and
plant developmental genetics focuses on only a few plant species as model organ-
isms. To evaluate the current selection of plant model organisms used in develop-
mental genetic studies, we identified their position in Phylogeny 2001 (Figure 17.1)
and in more detailed phylogenetic studies for ferns (Hasebe et al., 1995; Pryer et al.,
1995), flowering plants (Qiu et al., 1999; Soltis et al., 1999) and mosses (Goffinet
and Cox, 2000). The phylogenetic positions of those model organisms for which
developmental gene sequences have been reported are indicated in Figure 17.10.

The vast majority of plant model organisms are members of the more recently
evolved lineages of angiosperms (Mandoli and Olmstead, 2000), and many of these
are of noted economic importance, such as monocotyledons (Poaceae: Zea, Oryza,
Triticum) and eudicots (Brassicaceae: Arabidopsis, Brassica; Scrophulariaceae: Antir-
rhinum; Solanaceae: Lycopersicon (=Solanum), Nicotiana, Petunia). A few studies
have attempted to establish some gymnosperms (e.g. Gnetum, and the conifers Picea
and Pinus) as additional model organisms, although their long generation times limit
their usefulness for genetic studies (Lev-Yada and Sederoff, 2000). The fern Ceratop-
teris (Pteridacae, Polypodiidae) and the moss Physcomitrella patens (Funariaceae,
Bryomorpha) have been widely used to represent pteridophytes and bryophytes,
respectively (Chatterjee and Roux, 2000; Cove, 2000). All model organisms are
members of the crown groups of their lineages, and most exhibit derived rather than
ancestral features in their clade. In angiosperms, the herbaceous growth form typical
of all model organisms is the derived condition (Qiu et al., 1999; Soltis et al., 1999;
Doyle and Endress, 2000), and the fern Ceratopteris has an unusually rapid repro-
ductive cycle (Hickok et al., 1995; Banks, 1999; Chatterjee and Roux, 2000), which
may indicate a fundamental modification in its reproductive biology from other lep-
tosporangiate ferns. The reproductive biology of Ceratopteris is unlikely to be
representative of the common ancestor of moniliforms and seed plants.

Several recent studies have inferred the evolution of various genes that were
demonstrated to control the development of various plant structures (Riechmann et
al., 2000; Riechmann and Ratcliffe, 2000). These studies often include a broad
taxon sample, but several critical taxa are usually lacking. MADS-box gene evolu-
tion is the best studied among these examples. These studies usually focus on seed
plants (Hasebe, 1999; Shindo et al., 1999; Winter et al., 1999; Alvarez-Buylla et al.,
2000a, b; Becker et al., 2000; Theifen et al., 2000, 2002). Ceratopteris, and some-
times Ophioglossum, are included in some of these studies as the only non-seed
plant representatives. Only recently have MADS-box genes been described for some
other critical taxa, including the bryophyte Physcomitrella patens (Krogan and
Ashton, 2000) and the lycophyte Lycopodium annotinum (Svensson et al., 2000).
The last two taxa have not yet been included in a phylogenetic study of MADS-box
genes (but see Langdale et al., 2002). In contrast, the sampling of seed plants for
MADS-box genes has been much improved during the last few years, with sequences
from Gnetatac (Gnetum), Coniferidra (Picea, Pinus), Ginkgoatae (Ginkgo) and
Magnolidra (e.g. Arabidopsis, Brassica, Oryza, Petunia, Solanum) now available,
although Cycadatae and representatives of basal lineages of angiosperms are still
lacking.
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Figure 17.10 Phylogenetic position of taxa with reported sequence data for five developmental gene
families. (1) MADS-box (Winter et al., 1999; Becker et al, 2000; Krogan and Ashton,
2000; Svensson et al., 2000; Theiflen, 2000; TheiBen et al., 2002), (2) LEAFY (Frohlich
and Estabrook, 2000; Frohlich and Parker, 2000; Frohlich, 2002), (3) HD-genes
(Bharathan et al., 1997, 1999; Juarez and Banks, 1997; Aso et al., 1999; Reiser et dl,
2000; Champagne and Ashton, 2001; Sakakibara et al., 2001), (4) MYB genes (Kranz et
al.,, 2000), (5) Phytochrome genes (Schneider-Poetsch et al., 1998; Basu et al., 2000).
Not all of the sequences available for MADS-box, LEAFY, HD-genes and MYB-genes
have been included in single comprehensive studies. Unfortunately, some sequences
are not accessible because they have not been submitted to public gene databases.
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The phylogeny of another developmental gene, LEAFY, was inferred in recent
studies including representatives of all five main lineages of seed plants and
Nymphaea as representative of the basal lineage of angiosperms, but only two non-
seed vascular plants were included (Frohlich and Estabrook, 2000; Frohlich and
Parker, 2000; Frohlich, 2002). A third group of developmental genes, homeodomain
proteins (HD genes), has been studied in the broad context of the evolution of this
gene family in a clade including animals, fungi and plants (Bharathan et al., 1997),
but in plants they are known nearly exclusively from angiosperms. This is especially
the case with one class of HD genes, the KNOTTED genes (Bharathan et al., 1999).
Although KNOTTED genes have been reported from the fern Ceratopteris (Juarez
and Banks, 1997; Banks, 1999; Reiser et al., 2000) and the bryophyte
Physcomitrella (Champagne and Ashton, 2001), they have not been included in an
extensive phylogenetic study. Several copies of homeodomain-leucine-zip genes
(HD-zip genes) are known from the fern Ceratopteris and the bryophyte
Physcomitrella, and have been included in a comprehensive phylogenetic analysis
together with derived angiosperms (e.g. Arabidopsis, Daucus, Oryza) (Aso et al.,
1999; Sakakibara et al., 2001). Other developmental genes, such as the MYB genes
(Kranz et al., 2000; Langdale et al., 2002) and phytochromes (Schneider-Poetsch et
al., 1998; Basu et al., 2000) have been studied with a better taxon sampling of
bryophytes and pteridophytes than in MADS-box gene studies. For several develop-
mental gene families, such as YABBY genes, which are involved in the control
mechanisms of axial patterning (Bowman, 2000), no homologous sequences are
known from bryophytes or pteridophytes. The actin gene family is a noteworthy
exception because its evolution has been inferred in studies (Meagher et al., 1999;
Bhattacharya et al., 2000) that included a wide sampling of algae, liverworts, lyco-
phytes, moniliforms and seed plants.

The phylogenetic framework we discuss here underscores the importance of
appropriate taxon selection when inferring the evolution of developmental genes,
including the detection of gene duplication and functional shifts (Eizinger et al.,
1999; Ganfornina and Sanchez, 1999; Holland, 1999; Wray, 1999; Kellogg, 2000b).
A denser and more diverse phylogenetic sampling is a critical issue in studies of the
evolution of development (Browne et al., 2000; Hughes and Kaufman, 2000; Wray,
2000) because it is essential to distinguish convergence, parallelism and reversal.
There is an obvious positive trend to broaden taxon sampling, and several aspects
need to be considered in selecting new ‘model’ organisms: phylogenetic position,
developmental mode and experimental practicality (Hughes and Kaufman, 2000).
Our phylogenetic framework, which includes statements abput the relationships of
taxa (phylogenetic statements) and the character state changes that support lineages
(taxic statements), provides a sound basis for selecting additional taxa that are criti-
cal in studies of the evolution of plant development.

17.6.3 Significance of phylogenetic studies in evolutionary
developmental biology

Phylogeny estimation is best approached by analysing DNA sequence data and/or
morphological data (de Queiroz, 2000; Hillis and Wiens, 2000; Thornton and
DeSalle, 2000). The evolution of development should be evaluated by comparing
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these independent data sources and their resultant trees with phylogenies generated
from developmental genes. A step-by-step procedure that advances from an estimate
of phylogenetic relationships, to the reconstruction of morphological character evo-
lution, and finally to the identification of evolutionary changes in development is
recommended for moving towards a synthesis of developmental and evolutionary
biology. ¥
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