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joining trees and the amino-acid maximum parsimony phylogenies, and 100 replicates for
the nucleotide maximum likelihood tree and the amino-acid distance-based analyses
(Dayhoff PAM matrix) (see Supplementary Information for additional trees and summary
of bootstrap support). We performed tests of alternative phylogenetic hypotheses using
Kishino±Hasegawa29 (parsimony and likelihood) and Templeton's non-parametric30 tests.
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Most of the 470-million-year history of plants on land belongs to
bryophytes, pteridophytes and gymnosperms, which eventually
yielded to the ecological dominance by angiosperms 90 Myr
ago1±3. Our knowledge of angiosperm phylogeny, particularly
the branching order of the earliest lineages, has recently been
increased by the concurrence of multigene sequence analyses4±6.
However, reconstructing relationships for all the main lineages of
vascular plants that diverged since the Devonian period has
remained a challenge. Here we report phylogenetic analyses of
combined dataÐfrom morphology and from four genesÐfor 35
representatives from all the main lineages of land plants. We show
that there are three monophyletic groups of extant vascular
plants: (1) lycophytes, (2) seed plants and (3) a clade including
equisetophytes (horsetails), psilotophytes (whisk ferns) and all
eusporangiate and leptosporangiate ferns. Our maximum-like-
lihood analysis shows unambiguously that horsetails and ferns
together are the closest relatives to seed plants. This refutes the
prevailing view that horsetails and ferns are transitional evolu-
tionary grades between bryophytes and seed plants7, and has
important implications for our understanding of the development
and evolution of plants8.

Estimates of a phylogeny for the main groups of land plants, each
with highly divergent morphologies, have been many, and all have
been contested. Bryophytes (liverworts, hornworts and mosses) are
consistently shown to be a basal grade, but their relationships to one
another and to vascular plants are controversial1,2,9±13. Most phylo-
genetic analyses of vascular plants consistently reconstruct two
main lines of evolution: the Lycophytina (clubmosses and relatives),
with 1% of extant diversity, and the Euphyllophytina (all other
vascular plants)1,2,10,11,14±17. Extant Euphyllophytina1,2 comprises six
major monophyletic lineages: Equisetopsida (horsetails), Polypo-
diidae (leptosporangiate ferns), Spermatophytata (seed plants),
Psilotidae (whisk ferns; simple plants regarded by some to be
living relicts of the earliest vascular plants7,18), Marattiidae and
Ophioglossidae (eusporangiate ferns). Phylogenetic assessments
based on single genes10,11,14,15,19 and/or morphology1,7,12,17,20 have
provided only weak and usually contradictory evidence for the
relationships among these euphyllophyte lineages. Resolving these
relationships would not only stabilize a pivotal region of vascular
plant phylogeny but is also key to identifying the most appropriate
outgroup for addressing questions related to the evolution of seed
plants.

Recent palaeontological studies1,2,7 attempted to demonstrate that
approaches based solely on living species would have dif®culties
reconstructing relationships among major lineages of vascular
plants. Inadequate taxon sampling, rate heterogeneity across DNA
nucleotide sites among lineages, and inappropriate algorithms also
have been cited as impediments to resolving ancient branching
events21. However, as predicted by recent theoretical studies22,
combined analysis of DNA sequences from multiple loci proves to
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be very useful in inferring deep phylogenetic patterns4±6. With few
exceptions12,20, broad phylogenetic studies rely solely on combined
nucleotide sequence data, with authors arguing that morphological
character homology assessment among ancient and divergent
groups is too challenging. This practice ignores the higher complex-
ity of morphological characters that can conserve character states
over time and that have a lower probability of random evolution of
similar structures.

We obtained DNA sequences (5,072 aligned base pairs) of four
genes from two plant genomes: plastid atpB, rbcL and rps4, and
nuclear small-subunit ribosomal DNA. We also assembled a con-
gruent data set of 136 vegetative and reproductive morphological/
anatomical characters. We sampled 35 representatives from all major
monophyletic lineages of land plants. The selection of taxa re¯ects
our focus on basal vascular plants, and all six Euphyllophytina1

lineages are represented by two or more members. Five bryophytes
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Figure 1 Phylogenetic relationships for all the main lineages of vascular plants inferred

from maximum-likelihood (ML) analysis of the combined chloroplast rbcL, atpB, rps4 and

nuclear small-subunit rDNA data set. Numbers at nodes and before the slash are ML

bootstrap values $50%; maximum parsimony (MP) bootstrap values $50% appear after

the slash when these same nodes were supported in the MP unequally weighted analysis

of the combined four-genes plus morphology data set (single MP tree = 14165.04 steps).

A minus sign indicates a node had less than 50% bootstrap support in one or the other

analysis. The topology is rooted by all bryophytes, hence relationships depicted among

them are arbitrary. Branches leading to the three monophyletic clades of vascular plants

(lycophytes, seed plants and horsetails+ferns) are drawn medium thick. The branch

supporting the Euphyllophytina, with horsetails+ferns as sister group to seed plants, is the

thickest. Wiggled lines (at straight arrows) indicate three areas of con¯ict between the ML

and MP analyses. Branch lengths are proportional to number of substitutions per site

(scale bar). Thumbnail sketches of plant representatives accompany major clades.

Taxonomy follows ref. 1.
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were speci®ed as outgroups. We analysed the data sets using
both maximum-parsimony (MP) and maximum-likelihood (ML)
optimization criteria; bootstrap (BS) analyses were conducted to
measure the stability of observed phylogenetic patterns.

Using ML on the combined four-gene data set we recovered one
most likely tree (-ln likelihood = 36466.6365) for each of the 100
replicates (Fig. 1). We also observed an essentially identical topology
using MP on the combined four-gene and morphology data set
(three areas that differ are highlighted on Fig. 1). Regardless of the
analytical approach (MP or ML), three major lineages emerged as
monophyletic clades with exceptional support (100% BS). The ®rst
clade comprises the Lycophytina, increasingly recognized as a
distinct group of vascular plants only distantly related to other
extant pteridophytes and seed plants1,16. The second diverging
lineage corresponds to seed plants. The third, novel, clade includes
all non-seed-producing lineages of Euphyllophytina, including
horsetails (Equisetopsida), leptosporangiate ferns (Polypodiidae),
eusporangiate ferns (Marattiidae, Ophioglossidae) and whisk ferns
(Psilotidae). Seed plants, ferns and horsetails are united as a
monophyletic group, to the exclusion of lycopods, in both the ML
(92% BS) and MP (,50% BS) analyses.

We observed one unambiguous length discrepancy in rps4 that
can be interpreted as a molecular `signature' providing additional
support for horsetail±fern monophyly. A portion of the rps4
alignment is shown for base pairs 646±696 (Fig. 2), which includes
27 ambiguously aligned base pairs (658±684) ¯anked by unam-
biguously aligned regions. The ambiguously aligned region was
excluded entirely from the ML analysis. In the MP analysis, the same
region was recoded simply as a single absence/presence character for
the observed length increase. This multi-residue length increase in
horsetails and ferns is not as likely to be a random convergence as is
a single point mutation and provides further evidence for this clade.

Within the horsetail±fern lineage, Psilotidae is most closely
related to Ophioglossidae (100% BS). Although this association
was only weakly suggested in recent single-gene analyses11,19,20, the
current evidence unambiguously invalidates the traditional mor-
phological and palaeobotanical view that Psilotidae are relatively
unaltered descendants of the psilotophytes, among the earliest
vascular plant fossils7,18. Ophioglossidae and Psilotidae differ so
radically in phenotype that this close relationship, implying a shared
origin of phenotypic simpli®cation, was never before explicitly
considered. All other ferns and horsetails make up its sister clade
(87% BS). The relationships of horsetails also have been con-
troversial: sister to seed plants7, sister to leptosporangiate (Poly-
podiidae) and eusporangiate (Ophioglossidae and Marattiidae)
ferns1, or as a basal grade euphyllophyte lineage17. Our analysis
clearly (100% BS) places Equisetum within the non-lycophyte
pteridophyte clade, although its exact relationships within this
clade are not yet well resolved. In the ML analysis, Equisetum is
sister to Marattiidae (62% BS), whereas in the MP analysis, it is
sister to leptosporangiate ferns (,50% BS). This study also con-
®rms a sister relationship between tree ferns and the more derived
`polypodiaceous' leptosporangiate ferns (90% BS), and places the
heterosporous water ferns as sister to this clade (100% BS) (Fig. 1).
Relationships among these groups were equivocal in earlier
studies17,20.

The only noteworthy disagreement between our ML and MP
analyses is localized within seed-plant relationships, a subject of
much current controversy21,23,24. Our ML analysis resolved gymno-
sperms as monophyletic (65% BS) and Gnetum as sister to Pinus
(89% BS). Our MP analysis supports Gnetum as basal among seed
plants (87% BS), and all other gymnosperms as monophyletic (67%
BS) and sister to angiosperms.

In the ML analysis of the combined four-gene data set, there is
persuasive support for the Euphyllophytina (92% BS), with a basal
dichotomy indicating that the horsetail±fern clade (100% BS) is
the closest relative to seed plants (100% BS). To the best of

our knowledge, this relationship has been proposed only once
previously1, as a tentative hypothesis on the evidence of a single
anatomical character (protoxylem distribution). This led to the
provisional classi®cation of the horsetail±fern clade as infradivision
Moniliformopses (moniliforms); Psilotidae, however, was not
included in that study1. Although this same deep dichotomy is
also robustly resolved in the MP analysis of the combined four-
genes plus morphology data set, the Euphyllophytina node is weakly
supported (,50% BS). Exceptionally long branches in each of the
three main clades (Fig. 1: Selaginella, Gnetum and Equisetum) and
the greater sensitivity of MP over ML to long-branch attraction
(statistical inconsistency) effects21,25 probably explain why par-
simony bootstrapping failed to recover this clade with high con-
®dence. When these long-branch taxa were removed and the
combined four-genes plus morphology data set was re-analysed
with MP, this same basal Euphyllophytina node was highly sup-
ported (83% BS, results not shown). Each of our separate single-
gene analyses, with the exception of rps4, did not resolve the
horsetail±fern clade, and none was able to determine con®dently
the closest relatives to seed plants. Only our morphological data set,
when analysed alone with MP, provided the same conclusions

Figure 2 A portion of the chloroplast rps4 alignment. An ambiguously aligned region (grey

box) containing a 9-base-pair length difference distinguishes horsetails and ferns (bottom

block) from bryophytes, lycophytes and seed plants (top block). Amino-acid translations

are interleaved below each DNA sequence. Dashes indicate gaps.
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regarding the Euphyllophytina as when the four genes were analysed
simultaneously with ML. A study using mitochondrial small-sub-
unit rDNA sequence data10 with a smaller selection of taxa suggested
support for this hypothesis; however, critical euphyllophyte taxa
(Psilotidae and Marattiidae) were not included. A more recent
study26 that combines data from two genes (nuclear and mitochon-
drial small-subunit rDNA) strongly corroborates a horsetail±fern
clade as sister to seed plants, despite a limited sampling of only seven
euphyllophyte taxa from all pertinent lineages.

Our report of a basal dichotomy in the Euphyllophytina, a split
that occurred in the early±mid Devonian (about 400 Myr ago),
necessitates abandonment of the prevailing view that ferns and
horsetails represent paraphyletic successive grades of increasing
complexity in early vascular plant evolution, which eventually led
to the more complex seed plants, and ultimately to angiosperms.
A parallel deep reorganization of metazoan phylogeny has recently
been proposed27, with `simple' bilaterian taxa (for example, platy-
helminths and nemerteans) being displaced from the base of the
metazoan tree to within the large lophotrochozoan clade.

A corollary of the demise of the paraphyletic interpretation of
early vascular plant evolution is that it is now necessary to confront
the many recurring models that derive morphological, develop-
mental and physiological conditions in seed plants from an `inter-
mediate' or `primitive' pteridophyte ancestor. We predict that this
will require a signi®cant revision in the interpretation of the
underlying processes of vascular plant evolution. For example, a
number of homeotic genes, such as the MADS-box genes that
encode transcription factors critical for regulating physiological
and developmental processes, especially ¯ower development, have
been well studied in angiosperms28. Clarifying the origin of these
genes has been hampered by the few reports of homologues from
non-seed plants, and therefore it is not known to what extent
changes in number, regulation and function of these and other
homeotic genes may have driven land plant evolution. The study of
these genes from across a stable phylogenetic framework is critical.
We note that all the main plant model organisms (for example,
Arabidopsis, Glycine, Lycopersicon, Oryza, Petunia and Zea) are
recently evolved angiosperms. Efforts to promote developmental
and genomic research on model systems in the horsetail±fern clade
(for example, Ceratopteris29), will probably lead to an improved
understanding of fundamental aspects of vascular plant develop-
ment and evolution8. M

Methods
Taxon sampling and morphological data set

We selected 35 taxa to sample explicitly at least two members of each major monophyletic
group of land plants. The various groups were determined from recent broad-scale
phylogenetic analyses1,12,17,20, and we speci®ed the bryophytes Anthoceros, Haplomitrium,
Marchantia, Polytrichum and Sphagnum as outgroups. Our morphological data set
comprised 136 parsimony-informative characters (H.S. et al., manuscript in preparation),
which we, for the most part, adopted or modifed from recent studies1,7,12,17,20.

Gene sequencing

We ampli®ed chloroplast rbcL, atpB, rps4, and nuclear small-subunit rDNA genes for all 35
taxa from total cellular DNA by polymerase chain reaction (PCR) and sequenced them
using an ABI 377 automated DNA sequencer (PE Applied Biosystems). Details of taxon
sampling, DNA isolation, PCR ampli®cation, sequencing, sequence alignment, exclusion
and recoding of ambiguously aligned regions, data set combinability testing, and
phylogenetic analysis will be published elsewhere (K.M.P. et al., manuscript in prepara-
tion). Most atpB, rps4, nuclear small-subunit rDNA, and some rbcL sequences were
generated as part of this study. For voucher information, GenBank numbers and the
aligned data matrices, see Supplementary Information and http://www.fmnh.org/
research_collections/botany/botany_sites/ferns/publications.html; data matrices are also
available in TreeBASE, accession number S543, at
http://www.herbaria.harvard.edu/treebase/.

Phylogenetic analyses

We conducted heuristic MP (unequal weighting schemes, 1,000 random-addition
replicates, tree bisection-reconnection (TBR) branch swapping) and ML (general time-
reversible model, accommodating unequal nucleotide frequencies and different-

probabilities for each of six substitution types, plus three heterogeneous rate categories
across sites following a discrete approximation of the gamma distribution, 100 random-
addition replicates) analyses using PAUP* version 4.0b2a30. The ML analysis was restricted
to the combined four-gene data set because it is not possible to simultaneously implement
two models of evolution, one for morphology and one for DNA sequence data, in any
currently available computer programs. We further performed both parsimony bootstrap
(unequal weighting schemes, 1,000 replicates, each with 10 random-addition replicates
and TBR branch swapping) and likelihood bootstrap analyses (212 replicates, using
identical parameters to those used to ®nd the most likely tree).
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Previous studies support a model in which the physiological O2

gradient is transduced by haemoglobin into the coordinate release
from red blood cells of O2 and nitric oxide (NO)-derived vasoac-
tivity to optimize oxygen delivery in the arterial periphery1,2. But
whereas both O2 and NO diffuse into red blood cells, only O2 can
diffuse out3±5. Thus, for the dilation of blood vessels by red blood
cells, there must be a mechanism to export NO-related vasoactiv-
ity, and current models of NO-mediated intercellular commu-
nication should be revised. Here we show that in human
erythrocytes haemoglobin-derived S-nitrosothiol (SNO), gener-
ated from imported NO, is associated predominantly with the red
blood cell membrane, and principally with cysteine residues in the
haemoglobin-binding cytoplasmic domain of the anion exchan-
ger AE1. Interaction with AE1 promotes the deoxygenated struc-
ture in SNO±haemoglobin, which subserves NO group transfer to
the membrane. Furthermore, we show that vasodilatory activity is
released from this membrane precinct by deoxygenation. Thus,
the oxygen-regulated cellular mechanism that couples the synthe-
sis and export of haemoglobin-derived NO bioactivity operates, at
least in part, through formation of AE1±SNO at the membrane±
cytosol interface.

As the ®rst step in analysing the fate of haemoglobin (Hb)-
derived NO in situ, we determined the disposition of NO groups
transfered physiologically from the haems of Hb to b-chain Cys 93
in intact human erythrocytes3,4. Red blood cells (RBCs) held at less
than 1% O2 were exposed for 5 min to physiological amounts of NO
(100 nM to 1 mM; NO:haem ratios 1:1,000 to 1:100) followed by
reoxygenation (21% O2), and membrane and cytosolic fractions
were prepared. Fractions were solubilized with Triton X-100
(TX100), and the NO content of extracts was measured by photo-
lysis/chemiluminescence3,4. At the lower NO:haem ratios, which
produced intracellular NO concentrations matching those found in
vivo (100±800 nM), recovery of NO was essentially complete, that
is, none was lost to nitrate (Fig. 1a). In this model system, about 15±
20% of NO incorporated by RBCs was present as SNO; the
remainder was ascribed largely to iron nitrosyl haem (FeNO)1,3,4,6.
Most iron nitrosyl Hb was recovered with the cytosolic fraction
(Fig. 1b). In contrast, SNO was associated predominantly with the
membrane fraction (Fig. 1c). These results con®rm that, in intact
RBCs7 as with isolated reactants3,4, Hb will ef®ciently capture and
preserve NO, and form SNO, under physiological conditions.
Unexpectedly, however, the formation of SNO is compartmenta-
lized within the RBC.

Haemoglobin associates with the cytoplasmic face of the RBC
membrane through speci®c protein±protein interactions8±10. To
determine the disposition of Hb-derived membrane SNO, we

examined the interaction of SNO±Hb5,6 with inside-out vesicles
(IOVs) prepared by everting RBC membrane ghosts11. IOVs incu-
bated with SNO±Hb and washed at pH 8 to remove bound Hb
incorporated about 450 pmol NO per mg of TX100-extracted IOV
protein (Fig. 1d). All the incorporated NO was present in complex
with thiol, that is, as SNO. It is important to note that SNO was not
detected in extracts of IOVs exposed to NO in the absence of Hb
(data not shown).

To rule out the possibility that apparent NO group transfer
to IOVs was an artefact of residual membrane-bound SNO±Hb,
we incubated IOVs with SNO±Hb immobilized on Sephadex
beads. After centrifugal separation, washes at pH 7 and solubiliza-
tion in TX100, extracts of IOVs were free of Hb as assessed by
spectrophotometric detection of haem. SNO was present in those
extracts at somewhat higher levels than in extracts derived from
IOVs incubated with free SNO±Hb (suggesting a greater loss of
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Figure 1 Haemoglobin-derived SNO is associated with cysteine thiols of RBC membrane

proteins. a±c, Distribution in cytosolic and membrane fractions of NO groups after

exposure of intact RBCs to NO. Recovery of NO is essentially complete at low,

physiological NO:haem ratios (a), which yield 100±800 nM intracellular NO; FeNO is

predominantly cytosolic (b), whereas SNO is largely membrane associated (c) (P , 0.05

for all pairwise comparisons). d, SNO content of IOVs exposed to free or Sepharose-bound

SNO±Hb (50 nmol SNO±Hb per mg IOV protein). Transfer of NO groups to the membrane

is greatly reduced (P , 0.05) after treatment of IOVs with the thiol-modifying reagent

PCMPS and after mild digestion of IOVs with chymotrypsin (chymo). (n = 3±7 for a±d.)
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