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Molecular rate heterogeneity, whereby rates of molecular evolution vary among groups of organisms, is a well-documented

phenomenon. Nonetheless, its causes are poorly understood. For animals, generation time is frequently cited because longer-lived

species tend to have slower rates of molecular evolution than their shorter-lived counterparts. Although a similar pattern has been

uncovered in flowering plants, using proxies such as growth form, the underlying process has remained elusive. Here, we find a

deceleration of molecular evolutionary rate to be coupled with the origin of arborescence in ferns. Phylogenetic branch lengths

within the “tree fern” clade are considerably shorter than those of closely related lineages, and our analyses demonstrate that this

is due to a significant difference in molecular evolutionary rate. Reconstructions reveal that an abrupt rate deceleration coincided

with the evolution of the long-lived tree-like habit at the base of the tree fern clade. This suggests that a generation time effect

may well be ubiquitous across the green tree of life, and that the search for a responsible mechanism must focus on characteristics

shared by all vascular plants. Discriminating among the possibilities will require contributions from various biological disciplines,

but will be necessary for a full appreciation of molecular evolution.
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Rates of molecular evolution are known to be highly variable
across the tree of life (Bromham and Penny 2003; Jansa et al.
2006; Johnston et al. 2006; Schuettpelz and Pryer 2006; Thomas
et al. 2006; Lumbsch et al. 2008; Smith and Donoghue 2008;
Stengien 2008; Welch et al. 2008). For animals, this phenomenon
is frequently attributed to differences in generation time, whereby

4Current address: Systematic Biology, Evolutionary Biology Cen-
tre, Uppsala University, Norbyvdgen 18D, SE-752 36 Uppsala,
Sweden.

species with shorter life cycles have more germ line replications,
and hence are prone to more mutations, per unit time (Laird
et al. 1969; Wu and Li 1985). A similar generation time effect
has been put forward as a possible explanation for the molecu-
lar rate heterogeneity observed in plants (Gaut et al. 1992, 1996;
Ainouche and Bayer 1999; Andreasen and Baldwin 2001), but
the paucity of life-history information available has necessitated
a focus on such indirect measures of generation time as peren-
niality or growth form. Studies comparing annuals to perenni-
als and herbaceous to arborescent taxa have uncovered striking
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differences in their rates of molecular evolution. In most cases
(Gaut et al. 1996; Ainouche and Bayer 1999; Andreasen and
Baldwin 2001; Smith and Donoghue 2008; Soria-Hernanz et al.
2008), annuals have been shown to evolve faster than perenni-
als, and herbaceous taxa faster than those that are arborescent.
However, these studies focused almost exclusively on flowering
plants and it remains to be seen whether this pattern is more
widespread—a critical next step if we are to ever fully understand
the link between generation time and rates of molecular evolution
in plants.

Outside the extant seed plants, arborescence is today only
present in ferns, where it is mostly restricted to the “tree fern”
clade (Korall et al. 2006; 2007). Strongly supported as mono-
phyletic, this group comprises eight families, 15 genera, and more
than 600 species (Smith et al. 2006). Tree ferns are a conspic-
uous component of tropical, subtropical, and even south tem-
perate floras, where closely related clades are also especially
diverse (Smith et al. 2006). As the name implies, tree ferns gen-
erally have tall, erect stems, frequently reaching heights up to
20 m. Investigations of generation times, along with those of phe-
nology and demography, have shown that the members of this
primarily arborescent clade have longer generation times than
closely related nonarborescent lineages (Stein 1971; Windisch
and Pereira-Noronha 1983; Prange and von Aderkas 1985; Ash
1987; Cousens et al. 1988; Bittner and Breckle 1995; Mehltreter
and Palacios-Rios 2003; Mehltreter and Garcia-Franco 2008). In
this study, we investigate whether the origin of arborescence in
ferns is coupled with a slowdown in molecular evolutionary rate,
thereby determining whether or not a generation time effect exists
outside of flowering plants. To this end, we employed a multi-
faceted approach, combining phylogenetic inference with tests of
molecular rate differences and ancestral state reconstructions, to
explore the links between changes in rate and the evolution of
arborescence.

Material and Methods

DATA

We assembled a four-gene (plastid atpA, atpB, rbcL, and rps4)
by 106-taxon dataset, including 57 tree fern species and 49
other vascular plants (Table S1). Outside the tree fern clade,
our sampling mirrored that of two previously published stud-
ies (Pryer et al. 2004; Schuettpelz et al. 2006), although Gleich-
enella and Saccoloma were excluded here due to missing data.
Most plastid gene sequences were obtained from GenBank, but
38 tree fern sequences (Table S1) were newly generated follow-
ing established protocols (Korall et al. 2006, 2007). The new
DNA sequences were deposited in GenBank (accession numbers
FN667541-FN667578, Table S1).

PHYLOGENETIC ANALYSES

Phylogenetic analyses were conducted using MrBayes 3.1.1
(Huelsenbeck and Ronquist 2001; Ronquist and Huelsenbeck
2003), with models of sequence evolution identified using mrAIC
(Nylander 2004) in combination with PHYML version 2.4.4
(Guindon and Gascuel 2003). For each gene, two independent
Bayesian analyses were run for 5 million generations, employ-
ing the best-fitting model (GTR+I+T" for atpA, atpB, and rbcL,
and GTR+T for rps4), eight parallel chains, and a temperature
parameter of 0.1. Trees were sampled every 1000 generations
and the first 1000 trees from each analysis were discarded (con-
servatively) as the “burnin.” The remaining 4000 + 4000 trees
were pooled and a majority-rule consensus was calculated. These
single-gene consensus trees were then examined for conflict (i.e.,
well-supported incongruence). Finding none, the four genes were
analyzed in unison following the approach above, with each gene
retaining its independent model of sequence evolution.

TESTS FOR UNEQUAL RATES

Using the combined dataset and a pruned topology, we tested
for molecular rate heterogeneity among the three groups of core
leptosporangiates (heterosporous ferns, polypods, and tree ferns;
Fig. 1). Employing the likelihood ratio test statistic (Felsenstein
1981), we compared three different null two-rate models (het-
erosporous fern rate = polypod rate # tree fern rate; heterosporous
fern rate = tree fern rate # polypod rate; and polypod rate = tree
fern rate # heterosporous fern rate) to an alternative three-rate
model (heterosporous fern rate # polypod rate # tree fern rate).
All likelihoods were calculated in Baseml (Yang 2007) with the
GTR+T model of sequence evolution.

ANCESTRAL RATE RECONSTRUCTIONS

To estimate ancestral rates of molecular evolution, we used a pe-
nalized likelihood approach, as implemented in r8s (Sanderson
2003). We combined 23 fossil age constraints (Mohr and Lazarus
1994; Cantrill 1998; Lantz et al. 1999; Pryer et al. 2004) (Table S2)
with a set of 2000 trees obtained in the combined Bayesian analy-
sis. To simplify the compilation of results (Eriksson 2008), these
2000 trees were drawn at random from the subpool of trees that
contained each of the well-supported (PP > 0.95) nodes.

ANCESTRAL STATE RECONSTRUCTIONS

Using MrBayes 3.1.1 (Huelsenbeck and Ronquist 2001; Ronquist
and Huelsenbeck 2003) and a reduced dataset of all sampled
core leptosporangiates and schizaeoids (76 total taxa), we recon-
structed arborescence for all well-supported (PP > 0.95) nodes
within the core leptosporangiate clade. One morphological char-
acter with two states (arborescent or not) was scored from the
literature (Fig. 2A) and added to the combined DNA sequence
dataset. This character was given its own partition and assigned
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Figure 1. Phylogenetic branch length estimates for core leptospo-
rangiate ferns. This tree was randomly selected from the pool of
trees obtained via Bayesian analysis of the combined (plastid atpA,
atpB, rbcL, and rps4) data set. Tree ferns and closely related lep-
tosporangiate lineages are indicated; more distantly related lin-
eages (Table S1) have been pruned.

the standard discrete model. A separate Bayesian analysis was
performed for each node (using the settings described above for
the phylogenetic analyses) with the node constrained and the an-
cestral state reconstruction requested.
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Results and Discussion

Phylogenetic analysis of our combined dataset yielded a well-
resolved and well-supported tree (Figs. 1 and 2A, S1; dataset
and topology are deposited in TreeBASE) that is congruent with
previously published phylogenetic hypotheses (Pryer et al. 2004;
Korall et al. 2006, 2007). The tree fern clade is strongly sup-
ported as monophyletic (posterior probability, PP = 1.00) and
is sister to the polypod ferns (PP = 0.99). Tree ferns and poly-
pods, together with the heterosporous ferns, compose a well-
supported (PP = 1.00) core leptosporangiate clade (Pryer et al.
2004).

Branches within the tree fern clade are notably shorter (i.e.,
have far fewer substitutions per site) than those of closely related
lineages (Fig. 1). The pattern is similar in all four single-gene
analyses (Fig. S2), indicating that the apparent rate difference is
plastid-genome wide. Although our analyses are restricted here to
the plastid genome, preliminary mitochondrial and nuclear data
(Pryer et al. 2001; Wikstrom and Pryer 2005) do suggest that this
relative rate pattern is actually consistent across all three genomic
compartments. Our likelihood ratio tests confirmed that the ob-
served branch length variation in the combined plastid tree was in
fact due to a significant difference in molecular evolutionary rate.
Tree ferns were found to evolve more slowly than both polypods
(P < 0.001) and heterosporous ferns (P = 0.002).

By reconstructing ancestral rates of molecular evolution,
we were better able to characterize the magnitude, position,
and tempo of the rate deceleration. Our penalized likelihood
(Sanderson 2002) analyses indicate that every branch in the tree
fern clade had a slower substitution rate than any branch in the
closely related polypod and heterosporous fern lineages (Fig. 2B,
Table S2). Furthermore, the average rate (calculated as a sim-
ple mean of means; Table S2) for tree ferns (0.000135 substitu-
tions per site per million years) was only about 15% of that for
polypod ferns (0.000895) and only about 19% of that for het-
erosporous ferns (0.000701). Evidently, these differences primar-
ily stem from a rather abrupt rate deceleration that occurred along
the branch leading to tree ferns (Fig. 2B). This slowdown does
continue well into the tree fern clade; however, it becomes more
gradual.

Our reconstructions of arborescence reveal what appears to
be one transition to a tree-like habit at the base of the tree fern
clade (Fig. 2A), which coincides with an abrupt rate deceleration
revealed by our penalized likelihood analyses (Fig. 2B). Although
effectively a single datapoint, it is important to note that this
particular transition did eventually result in the slowest rates of
molecular evolution found within the core leptosporangiate ferns
(Table S2). Within tree ferns, reversals to nonarborescence are
not always associated with increases in rate, but the retention of
a long generation time by some nonarborescent tree ferns may
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Figure 2. (A) Reconstruction of arborescence within the core leptosporangiate ferns. This 95% majority-rule consensus phylogeny
results from Bayesian analysis of the combined (plastid atpA, atpB, rbcL, and rps4) dataset; all resolved nodes are supported by a Bayesian
posterior probability > 0.95. Ancestral state reconstructions, based on Bayesian analyses, are presented as pie charts, with the posterior
probability of the ancestor being arborescent shown in brown and the posterior probability of being nonarborescent shown in green
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be a complicating factor (e.g., Plagiogyria is reported to have
a generation time of 15 years; Windisch and Pereira-Noronha
1983).

The link we discover in ferns between the origin of arbores-
cence and a deceleration of rate implies that a generation time
effect may be a more widespread phenomenon in plants than pre-
viously recognized. Our results also strengthen the notion that the
relationship between generation time and molecular evolutionary
rate is consistent (whereby a decrease in generation time results in
an increase in rate and an increase in generation time results in a
decrease in rate). Using five large datasets, Smith and Donoghue
(2008) demonstrated that life-history traits and molecular rates
in angiosperms were correlated, but only one of their datasets
focused on a transition from an herbaceous to a woody condition
(i.e., from a short generation time to a long generation time, as
recovered here).

Unfortunately, there is no strong rationale for why a gen-
eration time effect should even exist in plants (Bousquet et al.
1992; Whittle and Johnston 2003; Soria-Hernanz et al. 2008).
Because animals have determinate germ lines, with a fixed num-
ber of replications per generation, a species with a long generation
time will undergo fewer germ line replications (and will be prone
to fewer replication-induced mutations) per unit time than will a
species with a short generation time. In plants, however, a germ
line is not sequestered early in development. Instead, germ cells
arise directly from somatic tissue, and mutations arising from both
somatic and germ cell replications can be passed on to the next
generation. Because somatic cell division is indeterminate and oc-
curs continuously throughout the plant life cycle, short-lived and
long-lived species could have the same overall number of “germ
line” replications per unit time. Therefore, some process other
than germ line replication rate must be invoked for the generation
time effect we observe.

Based on our findings, we propose that the search for an
underlying cause for this effect should focus on life-history at-

tributes that are common to all vascular plants. It may be that both
tree ferns and arborescent angiosperms share a lower frequency of
somatic cell replication (Soria-Hernanz et al. 2008), and therefore
have a lower replication-induced mutation rate. Alternatively, the
mechanism may be related to the cyclical alternation between
haploid gametophyte and diploid sporophyte phases, occurring
once per generation in all land plants. If these two life-history
phases are not equally susceptible to factors influencing mutation
rates, then plants with different ratios of gametophyte:sporophyte
longevity will accumulate different numbers of substitutions per
unit time. Arborescent vascular plants usually have exception-
ally long sporophytic phases, but possess gametophytic phases
that are comparable in length to their nonarborescent counter-
parts. If gametophytes are somehow more prone to mutation than
are sporophytes, then arborescent taxa should experience slower
rates of molecular evolution. Discriminating among these and
other possible explanations will require detailed studies of phys-
iology, development, and population biology, but will ultimately
provide fundamental insight into the evolutionary processes re-
sponsible for the molecular rate heterogeneity we observe in
plants.
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(see Table S2 for exact figures). Character state codings for extant taxa are indicated at the terminals. Results for tree ferns and
closely related leptosporangiate lineages are shown; more distantly related lineages (Table S1) have been pruned. Ca, Calochlaena; Ci,
Cibotium; Cu, Culcita; Cy, Cyathea; Al, Alsophila; Di, Dicksonia; Hy, Hymenophyllopsis; Lo quadripinnata, Lophosoria quadripinnata; Lo
cunninghamii, Loxoma cunninghamii; Lo pearcei, Loxsomopsis pearcei; Me, Metaxya; Pl, Plagiogyria; Sp, Sphaeropteris; Th, Thyrsopteris.
(B) Changes in molecular substitution rate across the core leptosporangiate fern phylogeny. Each node from the phylogenetic tree shown
in Figure 2A is plotted here according to its estimated rate (y-axis; Table S2) and the number of internodes separating it from the
schizaeoid/core leptosporangiate split (x-axis). The divergence between schizaeoids and core leptosporangiates appears at internode
"0"; more distantly related lineages have been pruned. Each connecting branch is colored based on the growth form reconstructed for
the node it subtends (Fig. 2A): brown branches have a posterior probability > 0.5 of being arborescent; green branches have a posterior
probability > 0.5 of being nonarborescent. Pie charts bound the transition from a nonarborescent to an arborescent growth form (Fig. 2A).
Note that the slope in this figure is largely sampling dependent, with the sparser sampling outside of tree ferns resulting in steeper
slopes than the denser sampling within tree ferns; absolute rate changes are more informative.
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