Home » Posts tagged 'JCM_math230_HW8_S13'
Tag Archives: JCM_math230_HW8_S13
Difference between max and min
Let \(U_1,U_2,U_3,U_4,U_5\) be independent, each with uiform distribution on \((0,1)\). Let \(R\) be the distance between the max and the min of the \(U_i\)’s. Find
- \(\mathbf{E} R\)
- the joint density of the max and the min of the \(U_i\)’s.
- the \(\mathbf{P}(R> .5)\)
[pitman p355, #14]
A Joint density example II
If \(X\) and \(Y\) have joint density function
\[f(x,y)=\frac{1}{x^2y^2} \quad; \quad x \geq 1, y\geq 1\]
- Compute the joint density fiction of \(U=XY\), \(V=X/Y\).
- What are the marginal densities of \(U\) and \(V\) ?
[Ross p295, # 54]
Closest Point
Consider a Poisson random scatter of points in a plane with mean intensity \(\lambda\) per unit area. Let \(R\) be the distance from zero to the closest point of the scatter.
- Find a formula for the c.d.f. and the density of \(R\) and sketch their graphs.
- Show that \(\sqrt{2 \lambda \pi} R\) has the Rayleigh distribution.
- Find the mean and mode of \(R\).
[pitman p 389, # 21]
Joint Density of Arrival Times
Let \(T_1 < T_2<\cdots\) be the arrival times in a Poisson arrival process with rate \(\lambda\). What is the joint distribution of \((T_1,T_2,T_5)\) ?
Point of increase
Suppose \(U_1,U_2, …\) are independent uniform \( (0,1) \) random variables. Let \(N\) be the first point of increase. That is to say the first \(n \geq 2\) such that \(U_n > U_{n-1}\). Show that for \(u \in (0,1)\):
- \[\mathbf{P}(U_1 \leq u \ { and } \ N=n)= \frac{u^{n-1}}{(n-1)!}-\frac{u^{n}}{n!} \quad;\quad n \geq 2\]
- \( \mathbf{E}(N)=e \)
Some useful observations:
- \[\mathbf{P}(U_1 \leq u \ { and } \ N=n) = \mathbf{P}(U_1 \leq u \ { and } \ N \geq n) -\mathbf{P}(U_1 \leq u \ { and } \ N \geq n+1)\]
- The following events are equal
\[ \{U_1 \leq u \quad{ and } \quad N \geq n\} = \{U_{n-1}\leq U_{n-2} \leq \cdots \leq U_2\leq U_{1} \leq u \}\] - \[ \mathbf{P}\{U_2 \leq U_1 \leq u \}= \int_0^u \int_0^{u_1} du_2 du_1 \]
An example of min and change of variable
Suppose \(R_1\) and \(R_2\) are two independent random variables with the same density function
\[f(x)=x\exp(-{\textstyle \frac12 }x^2)\]
for \(x\geq 0\). Find
- the density of \(Y=\min(R_1,R_2)\);
- the density of \(Y^2\)
[Pitman p. 336 #21]
Box-Muller I
Let \(U_1\) and \(U_2\) be independent random variables distributed uniformly on \( (0,1) \).
define \((Z_1,Z_2)\) by
\[Z_1=\sqrt{ -2 \log(U_1) }\cos( 2 \pi U_2) \]
\[Z_2=\sqrt{ -2 \log(U_1) }\sin( 2 \pi U_2) \]
- Find the joint density of \((Z_1, Z_2)\).
- Are \(Z_1\) and \(Z_2\) independent ? why ?
- What is the marginal density of \(Z_1\) and \(Z_2\) ? Do you recognize it ?
- Reflect on the implications of the previous answer for generating an often needed class of random variable on a computer.
Hint: To eliminate \(U_1\) write the formula for \(Z_1^2 + Z_2^2\).