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1 Introduction

This paper provides an evolutionary perspective on choice under uncertainty, based on the
notion that natural selection not only can influence physical traits, but can also shape choice
behavior. Using this approach, we develop a foundation for a non-expected-utility and
ambiguity-averse model of choice. Systematic violations of expected utility are common, but
at least when risk is objective, they appear to be at odds with evolutionary optimality. A
central contribution of this paper is to expand the scope of the evolutionary approach by
allowing individuals to simultaneously make multiple decisions, some of which are observable
and others which are hidden from the modeler. When chosen optimally, as evolution will
require, the presence of such hidden actions will generate preferences that appear to violate
expected utility from the perspective of the analyst. We show that the resulting class of evo-
lutionarily optimal preferences, which we call adaptive preferences, includes rank-dependent
expected utility in the context of risk, and variants of the smooth model, variational prefer-
ences, and multiple prior preferences in the contexts of both risk and ambiguity. Importantly,
while ambiguity-averse preferences are typically assumed to reduce to expected utility when
facing objective risk, our model excludes this benchmark version of many of the ambiguity
models it nests and instead links different uncertainty attitudes to violations of expected
utility. Thus, our evolutionary approach can help to address both the question of model
selection and the potential link between Allais and Ellsberg behavior.

The starting point of our analysis is an observation which dates back to a seminal paper by
Robson (1996): Evolutionary optimality generates a preference for idiosyncratic uncertainty
over common uncertainty, and ambiguity is closely associated with common uncertainty in
many instances. Hence, natural selection favors ambiguity aversion. The intuition for why
evolution can generate aversion to common uncertainty is actually quite simple. To illustrate,
suppose there are two actions between which all individuals must choose in every period. For
both actions, individual growth (meaning net expected number of offspring) will be either 2 or
4, each with probability 1

2
. The only difference is that one action bears common uncertainty,

where realized per-period growth is perfectly correlated across individuals, while the other
bears idiosyncratic uncertainty, where realized growth is independent across individuals. By
the law of large numbers, the per-period growth of a (large subpopulation with a common)
genotype who consistently chooses the idiosyncratic uncertainty will be approximately 1

2
(2+

4) = 3. In contrast, a genotype who chooses the common uncertainty will grow by either
2 or 4, each in approximately half of the periods. Heuristically, this leads to a long-run
average growth over two periods of 2 × 4 = 8, which is less than 3 × 3 = 9. This example
illustrates the detrimental effect of correlation on growth: The genotype who chooses the
idiosyncratic uncertainty will have a higher long-run growth rate, which implies it will almost
surely dominate in the long run (Lemma 1).1 We discuss and justify the close connection

1The existence and exact form of this aversion to common uncertainty depend on both the frequency of
reproduction (Robatto and Szentes (2017)) and timing of reproduction within the life cycle of organisms
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between ambiguity and correlated uncertainty in detail in Section 1.1.

The main innovation of our paper is the incorporation of adaptation via hidden actions.
The incorporation of hidden actions is motivated not only by economic settings—where
data sets often capture only a subset of the many decision being make by individuals—
but also by biological settings—where hidden actions might take the form of unobservable
aspects of physical adaptation of organisms. In an economic context, data sets could contain
information such as occupation choice, investments, or even vaccination decisions, while
omitting information about other complementary decisions such as housing choice, other
investments or insurance, or social distancing measures, respectively. In a biological context,
hidden actions could take the form of rapid and reversible physical adaptation, known as
phenotypic flexibility, which has recently gained increased attention in evolutionary biology.2

It is well known that hidden actions can lead to revealed preferences over observed choices
that violate expected utility, even if the individual’s actual joint preferences over all choices
satisfy expected utility.3 In particular, since different hidden actions may be optimal for dif-
ferent observable actions, individuals may be averse to probabilistic mixtures over observable
outcomes (see Sarver (2018)).

1.1 Ambiguity as Common Uncertainty

In many examples and applications of ambiguity, the unknown probabilities concern com-
mon factors that affect all individuals in the population. For example, in one of the earliest
applications of ambiguity to economics, Dow and Werlang (1992) and Epstein and Wang
(1994) examined the implications of ambiguity about asset returns. Returns to financial
assets are obviously common to all individuals who invest in them. Similarly, in applications
to macroeconomics, ambiguity typically concerns aggregate variables, such as factor produc-
tivity (Ilut and Schneider (2014), Bianchi, Ilut, and Schneider (2018)). Other examples of
uncertainty about aggregate variables that can affect individual outcomes and where proba-
bilities are poorly understood could include the timing of new technological breakthroughs,
natural disasters such as earthquakes or tsunamis, or climate change and its implications.

One reason common uncertainty in the examples mentioned so far may be subject to
greater ambiguity than idiosyncratic uncertainty is that idiosyncratic random variables can
be studied using cross-sectional data, whereas aggregate variables by definition cannot.
Greater abundance of data may lead to a better understanding. Nonetheless, there could be
common uncertainty for which the probabilities are well understood by individuals, and our
results would be equally relevant in those settings.

(Robson and Samuelson (2019)). We discuss these considerations further in Section 7.1.
2We discuss the potential relevance of our results for evolutionary biology in more detail in Section 7.2.
3Prior studies of the impact of physical commitments on risk preferences include Grossman and Laroque

(1990), Gabaix and Laibson (2001), and Chetty and Szeidl (2007, 2016). Unobservable commitments in
particular are explored in Kreps and Porteus (1979), Machina (1984), and Ergin and Sarver (2015).
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In addition to ambiguity taking the form of common uncertainty about aggregate vari-
ables, there is also a fundamental and systematic link between common uncertainty and any
instance of ambiguity involving model uncertainty—ambiguity about the true data generat-
ing process. Even if the risks faced by each individual are well understood and idiosyncratic
conditional on some common underlying model parameter, if that parameter is unknown
and ambiguous then all individuals share in the resulting common uncertainty.4 For a sim-
ple illustration, consider a medical treatment. If the efficacy (success rate) of the treatment
for a population with a given set of characteristics is known, then whether it is successful for
one individual is independent of whether it succeeds for another. However, if the treatment
has undergone limited testing, then its success rate may be unknown and would itself be a
source of common uncertainty for all individuals. In fact, most instances of ambiguity can
be cast as common uncertainty about idiosyncratic probabilities.

Of course, we should be careful to point out that the correlation mechanism at play in
this paper may not be the only driver of ambiguity aversion. We would not go so far as to
claim that every instance of ambiguity corresponds to common uncertainty; nor would we
suggest that every instance of common uncertainty involves ambiguous beliefs. Nonetheless,
the main thrust of the preceding discussion is that there are indeed many situations in
which ambiguity is tightly linked to common uncertainty, and our results speak specifically
to these instances of ambiguity. In other cases where ambiguity is not connected to common
uncertainty, we remain agnostic about whether ambiguity aversion is driven by heuristics
developed by genotypes from the case of common uncertainty or whether some other source
of ambiguity aversion is at play.

1.2 Outline

The remainder of the paper is structured as follows. Section 2 formally sets up our model.
Section 3 establishes that adaptive preferences are evolutionarily optimal.

Section 4 sets the stage by illustrating, via an example, how the model in Robson (1996),
which is a version of the smooth model of ambiguity aversion and a special case of our model
without hidden actions, predicts Ellsberg behavior. In Section 5, we explore an alternative
special case involving hidden actions but with no common uncertainty, and we show that
the evolutionarily optimal preferences in this case correspond to the optimal risk attitude
preferences studied by Sarver (2018). In particular, we show that our model nests rank-
dependent expected utility (RDU) and divergence preferences as special cases.

Section 6 analyzes the general case of our model when hidden actions and common uncer-
tainty are simultaneously at play. Our main result is a dual formulation of our representation
that greatly simplifies the comparison to existing models. We use this result to show that

4This interpretation is closely connected to the macroeconomic literature on robustness to model uncer-
tainty (Hansen and Sargent (2001, 2008)), and is discussed in the evolutionary context in Robson (1996).
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versions of several prominent representations, including variational preferences, multiple pri-
ors expected utility, and rank-dependent utility, can be embedded in our general model.
Importantly, these special cases provide a link between Ellsberg- and Allais-type behaviors,
as we illustrate with an example.

In Section 7, we discuss some of the simplifying assumptions that are commonly made
in economic applications of the evolutionary approach and the robustness of our results
to relaxing them. We also describe the biological evidence of phenotypic flexibility, which
provides an alternative interpretation and motivation for the hidden actions in our model.
This connection suggests that our model may have relevance not just in economic contexts,
but also in the framework of evolutionary biology. Finally, in the Supplementary Appendix,
we provide proofs for some supporting results that are omitted from the main paper.

2 Evolutionary Setting

The basic idea behind the evolutionary approach is that a large population of individuals is
initially made up of subpopulations with different genotypes, where a genotype specifies the
physical traits as well as the programmed behavior (choices) of an organism. These choices
lead to a possibly uncertain outcome, and this outcome together with the physical traits of
the organism determine its evolutionary fitness, that is, its number of offspring and its own
survival. The offspring inherit the parent’s genotype. In the next period the offspring and
the parent (if still alive) will face a choice of their own, and so on. In this way, the number
of individuals who share a particular genotype may shrink or grow over time, relative to the
whole population. A genotype is evolutionarily optimal among those initially present if the
relative size of its subpopulation does not vanish over time.5

2.1 Uncertainty

Common components of uncertainty are modeled via a state space Ω. The realization of
ω ∈ Ω is common to all individuals in the population. In addition, given ω, idiosyncratic
uncertainty is captured via a state space S, where each individual in the population receives

5For expositional clarity, we consistently interpret fitness as the number of offspring plus possible survival
of the organism, so that evolutionary selection happens over many generations. We note that our model
and results do not rely on the naturalistic interpretation of the evolutionary process. In particular, evolu-
tionary selection can be faster if it is not based on procreation, but rather on imitation or reallocation. For
example, the reallocation of resources based on fitness is the idea behind selection-based theories following
Friedman (1953) that are central in the evolutionary economics literature (see Nelson and Winter (1982)),
and versions of the replicator dynamics have been established based on reinforcement learning (Börgers and
Sarin (1997)) or imitation (Schlag (1998)) at the individual level. While correlation was not emphasized in
these studies, we suspect that similar non-biological interpretations can be developed for the setting with
correlated uncertainty studied here.
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an independent draw of the state s ∈ S. The entire payoff-relevant state space is then Ω×S.
We assume that Ω and S are Polish spaces, that is, complete and separable metrizable spaces.
We endow the spaces Ω and S with their Borel σ-algebras BΩ and BS, respectively, and we
endow the product of these spaces with the product σ-algebra BΩ ⊗ BS.

Given any measurable space (Y,Y), let △(Y ) denote the set of countably additive prob-
ability measures on Y , and let △s(Y ) denote the set of all simple probability measures on Y
(i.e., measures with finite support). The state is drawn each period according to a measure
µ ∈ △(Ω×S). The marginal distribution of µ on Ω assigns probability µ(E) to any measur-
able event E ∈ BΩ. As noted, there is a common draw of the ω dimension of the state for all
individuals in the population according to this marginal distribution. However, conditional
on ω, the s dimension of the state is drawn independently for each individual according to
the conditional probability distribution µ(s|ω) on S.6

2.2 Consumption and Fitness

Let Z denote a nonempty set of outcomes. Both the ω and s dimensions of the state space
are potentially relevant for the outcome of an action. Formally, let F denote the set of
simple acts, that is, the set of all measurable and finite-valued functions f : Ω×S → Z. An
evolutionary fitness function ψ : Z → R specifies the (net expected) individual reproductive
growth associated with each outcome.7 Given an act f ∈ F , the individual growth in state
(ω, s) is then ψ(f(ω, s)). For example, for a population of individuals, aggregate fitness of
zero indicates extinction, fitness of one indicates that the birth rate is equal to the death
rate and hence there is no change in the size of the population, and fitness of 1.5 indicates a
50% growth in the population. Aggregate fitness can obviously never be negative. Whether
or not individual fitness functions take negative values is not important for the evolutionary
optimality of adaptive preferences. However, in order to derive exact dual characterizations
of some special cases of our model, it will be technically useful to allow some outcomes
to generate negative individual fitness, which could be interpreted as an externality that
eliminates other individuals.

Individuals face the task of choosing acts in each period before learning the realization
of the state (ω, s). Each genotype determines preferences that are used for this choice. In
addition to the observable choice of act f , we assume that individuals might simultaneously
take hidden actions, that is, actions that are unobservable to the modeler. Incomplete data

6More precisely, since S may be an infinite set, the conditional probability distribution given ω assigns
probability µ(E|ω) to an event E ∈ BS . Note that since S is a Polish space, the existence of a regular
conditional probability distribution is ensured by Proposition 10.2.8 in Dudley (2002).

7Realized net individual growth, which includes survival and offspring, must be an integer, but since
reproduction and survival may be uncertain given the outcome z ∈ Z, expected individual growth may take
non-integer values. As the main results of Section 3 show, evolutionary fitness of a genotype with a large
population depends only on the expected reproductive growth ψ(z) its individuals attain from each outcome
z.
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of this sort is pervasive in economic analysis, as data sets often contain only a snapshot of
one dimension of the full spectrum of decisions being made by individuals. We model hidden
actions in a simple and tractable reduced form by allowing individuals to select a fitness
function ψ from some feasible set Ψ in each period.8 As we discuss in Section 7.2, our use
of multiple fitness functions can also be interpreted in terms of phenotypic flexibility in the
context of evolutionary biology.

We aim to uncover various preferences that can be nested within our evolutionary model,
thereby illustrating the structure imposed by our model on choice under uncertainty. At
the outset, we therefore impose only minimal technical restrictions on the set of fitness
functions: We assume Ψ is nonempty and that supψ∈Ψ ψ(z) is finite for every z ∈ Z. Of
course, additional structure and restrictions on the set Ψ may be appropriate depending on
the application, as the availability of various hidden actions and their impact on fitness will
naturally depend on the choice context, and such restrictions will serve to refine the exact
preferences under uncertainty generated by our model. In the context of idiosyncratic risk
in Section 5, we provide examples of easy to interpret sets Ψ that give rise to some estab-
lished functional forms from the literature on non-expected-utility. Utilizing our main result
(Theorem 2), those examples are extended to the general setup with common uncertainty
(ambiguity) in Section 6.

2.3 Growth Rates

In a given time period, the aggregate growth rate of a genotype will be determined by the
common preferences each individual in its subpopulation is programmed to use when choosing
(deterministically or possibly randomly) an act f and a fitness function ψ. We assume each
decision problem is faced repeatedly, leading to a stochastic sequence of aggregate growth
rates for each genotype. Our analysis of natural selection and evolutionary optimality will
center around the comparison of long-run growth rates of different genotypes (with different
programmed preferences), which we state in log terms.

Definition 1. Suppose the aggregate growth rate of a genotype is given by (λt)t∈N, where
λt is the random variable that describes the aggregate growth rate in period t of the entire
subpopulation of individuals with that genotype. We say that α is the (log) long-run growth
rate of the genotype if 1

T

∑T
t=1 ln(λt) → α almost surely as T → ∞.

For an arbitrary sequence (λt)t∈N of random variables, the long-run growth rate may not
exist, since the series above may not converge. However, we will see in the next section that
in our model, the long-run growth rate exists for any act f and fitness function ψ.

8This reduced form derives immediately from a more explicit model of hidden actions, where individuals
take a hidden action y ∈ Y and have a single fixed fitness function ψ̂(z, y) for outcome/action pairs. The
resulting set of fitness functions in our model would then be Ψ = {ψ̂(·, y) : y ∈ Y }.
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To establish that the long-run growth rate is the appropriate statistic for comparison in
our evolutionary model, the next lemma demonstrates how it relates to long-run dominance
of a particular genotype over others. First, note that throughout the paper, we follow the
standard convention of assuming that the number of agents of each genotype is (infinitely)
large, which we formally model by treating the set of individuals of each genotype i as a
continuum with measure N i(t) at time period t.9 Thus, if the sequence of aggregate growth
rates of genotype i is (λit)t∈N and the initial measure of this genotype is N i(0), then the
measure of its subpopulation at time T ∈ N is

N i(T ) = N i(0)
T∏
t=1

λit.

Lemma 1. Consider two genotypes i = A,B, where genotype i has a sequence of stochastic
aggregate growth rates (λit)t∈N yielding long-run growth rate αi, that is, 1

T

∑T
t=1 ln(λ

i
t)

a.s.−−→ αi.
If αA > αB, then regardless of the initial measures NA(0) > 0 and NB(0) > 0 of their
respective subpopulations at time t = 0, we have NA(t)/NB(t) → ∞ almost surely as t→ ∞.

Note that Lemma 1 does not imply that a higher long-run growth rate yields higher
expected population size as t grows large, as indeed it is possible to have the expected value
of NB(t) exceed that of NA(t) for all t. Nonetheless, the lemma implies that the event where
NB(t) exceeds NA(t) vanishes (has probability zero) in the limit as t→ ∞.

Evolutionary theory aims to explain which genotypes can be observed in the long run.
Lemma 1 clarifies why maximizing long-run growth, rather than the expected population size,
is evolutionarily optimal. If in the present moment organisms have already been evolving for
t periods, then the relative population sizes of different genotypes that we observe today are
a snapshot of the evolutionary process in period t. Assuming this process has been underway
for some time (t is large), the probability is very high that the dominant genotype observed
today is precisely the one with the highest long-run growth rate.

3 Evolutionarily Optimal Choice

We begin our analysis by deriving the long-run growth rates associated with (possibly ran-
dom) choices of action and fitness function. Since evolutionary optimality requires maximiz-
ing long-run growth, the optimal value function over random choice follows immediately.

Definition 2. A random choice π ∈ R(F ,Ψ) ≡ △s(F ×Ψ) is a simple probability measure
over the space of acts and feasible fitness functions.

9Using results from the theory of branching processes, it can be shown that our results involving continuum
populations are the correct limiting approximations for large but finite populations.
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The random choice π assigns probability π(f, ψ) to a pair (f, ψ). Therefore, for a given
state realization (ω, s), the random choice π achieves an expected fitness of

Eπ
[
ψ(f(ω, s))

]
=

∫
F×Ψ

ψ(f(ω, s)) dπ(f, ψ).

We adopt the convention that the domain of the natural logarithm includes nonpositive
numbers and its range is the extended reals by setting ln(x) = −∞ for all x ≤ 0.

Theorem 1 (Long-Run Growth). Suppose Ψ and µ are fixed, and consider a genotype with
an (infinitely) large subpopulation of individuals. The long-run growth rate of the genotype
from choosing the random choice π ∈ R(F ,Ψ) in every period is

Λ(π) =

∫
Ω

ln

(∫
S

Eπ
[
ψ(f(ω, s))

]
dµ(s|ω)

)
dµ(ω). (1)

The concavity of the logarithm implies that Λ is more adversely affected by common
uncertainty about ω than by idiosyncratic uncertainty about s. Also, since Λ expresses
the long-run average growth rate in log terms, Λ(π) = −∞ corresponds to extinction and
Λ(π) = 0 corresponds to constant population size. At the heart of the proof of Theorem 1
is the same logic that is behind the seminal result of Robson (1996), who considered the
special case of no adaptation (Ψ = {ψ}) and deterministic choice.

Proof. Recall that, conditional on ω, the s dimension of the state is independently distributed
for each individual in the population. Randomization in choice is also idiosyncratic. There-
fore, by the law of large numbers, conditional on the realized ωt at time t, the aggregate
growth rate of a large population of individuals with random choice π is approximately

λt(ωt) =

∫
S

Eπ
[
ψ(f(ωt, s))

]
dµ(s|ωt).

Since we consider infinite subpopulations in our model, we can treat this approximation as
exact.10 Taking the product over a sequence of realized common components ω1, . . . , ωT and
raising to the power 1/T gives the realized annualized growth rate over this sequence of
periods:

T∏
t=1

(∫
S

Eπ
[
ψ(f(ωt, s))

]
dµ(s|ωt)

)1/T

.

10Note that an approximate (limiting) version of Theorem 1 also holds for finite populations, provided
the initial population size is sufficiently large. Using the theory of branching processes (Athreya and Ney
(1972, Chapter 5)), it can be shown that the average growth rate of a finite population converges to Λ(π)
conditional on non-extinction. Moreover, it can be shown that when Λ(π) > 0, the probability of extinction
converges to zero as the initial population becomes large.
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Taking the logarithm of this expression and then the limit as T → ∞, we have

1

T

T∑
t=1

ln

(∫
S

Eπ
[
ψ(f(ωt, s))

]
dµ(s|ωt)

)
→

∫
Ω

ln

(∫
S

Eπ
[
ψ(f(ω, s))

]
dµ(s|ω)

)
dµ(ω) a.s.,

by the law of large numbers. ■

The long-run growth rate of the population is optimized if individuals choose π to maxi-
mize Equation (1). However, since only the random choice of act is observed while the choice
of fitness function corresponds to some unobservable action, it will be useful to decompose
π into its (observable) marginal distribution over acts and (unobservable) conditional distri-
bution over fitness functions given the act.

Definition 3. A (random) action ρ ∈ R(F) ≡ △s(F) is a simple probability measure over
acts, where ρ(f) denotes the probability assigned to f . A (random) adaptation plan is a
function τ ∈ R(Ψ|F) ≡ (△s(Ψ))F mapping from the space of acts to the set of simple prob-
ability measures over the feasible fitness functions, where τ(ψ|f) is the probability assigned
to fitness function ψ following the observable choice of act f .

The random choice π can equivalently be expressed as a pair ρ and τ . Formally, let τ ⊗ρ

denote the measure with marginal distribution ρ on F and conditional distribution τ(·|f)
on Ψ. Then, the expectation of ψ(f(ω, s)) with respect to this measure is

Eτ⊗ρ
[
ψ(f(ω, s))

]
=

∫
F

∫
Ψ

ψ(f(ω, s)) dτ(ψ|f) dρ(f).

Given a random action ρ and random adaptation plan τ , the corresponding joint choice of
both action and adaptation is given by π = τ ⊗ ρ. Therefore, the highest possible long-run
growth rate associated with an action ρ (and subsequent optimal choice of adaptation plan)
is

V (ρ) = sup
τ∈R(Ψ|F)

Λ(τ ⊗ ρ)

= sup
τ∈R(Ψ|F)

∫
Ω

ln

(∫
S

Eτ⊗ρ
[
ψ(f(ω, s))

]
dµ(s|ω)

)
dµ(ω).

(2)

Robson (1996) considered the special case with a single fitness function ψ, without random
choice, in which case the long-run growth rate associated with the deterministic choice of
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act f reduces to11

V (f) =

∫
Ω

ln

(∫
S

ψ(f(ω, s)) dµ(s|ω)
)
dµ(ω). (3)

By Lemma 1, the evolutionarily optimal genotype is the one that maximizes the long-run
growth rate; that is, it chooses among actions to maximize Equation (2). We refer to the
preferences over random actions represented by this function V as adaptive preferences. As
is usual in random choice contexts, we do not directly observe these preferences, only the
implied random choice rule. Formally, a decision problem A specifies a nonempty and finite
set of available acts. The resulting set of feasible action choices is

R(A) ≡ {ρ ∈ R(F) : supp(ρ) ⊂ A}.

Corollary 1 (Evolutionarily Optimal Choice). Suppose Ψ and µ are fixed. Then, for ev-
ery infinitely repeated decision problem A, the genotype that chooses a random action in
argmaxρ∈R(A) V (ρ) achieves a weakly higher long-run growth rate than all others.

The adaptive preferences represented by Equation (2) specify the optimal response to
correlated and uncorrelated uncertainty, but do not concern ambiguity per se. However,
as laid out in Section 1.1, in many examples and applications of ambiguity, the unknown
probability concerns a common factor that affects all individuals in the population. Thus,
the evolutionary mechanism described in Theorem 1 may capture one important source of
ambiguity aversion. In particular, the Robson (1996) representation in Equation (3) is a
special case of the issue-preference model studied by Nau (2006) and Ergin and Gul (2009),
and it is a special case of the smooth model of Klibanoff, Marinacci, and Mukerji (2005)
when restricted to acts f that depend only on s. We discuss this special case in detail in
Section 4.

4 Ambiguity Aversion

To set the stage, this section illustrates via an example the special case of our model pre-
viously analyzed by Robson (1996): a single fitness function (Ψ = {ψ}), which allows the
supremum over Ψ to be dropped from the representation in Equation (2).

Example 1 (Ellsberg). Consider an Ellsberg urn with one black ball and two balls that
could each be either red or yellow. Each individual independently draws one ball from the
urn, which we model using the state space S = {b, r, y} for independent risk. The individual
may be offered the following bets on colors of the ball drawn:

11The survey by Robson and Samuelson (2011) summarizes these results, as well as some recent develop-
ments in the literature on the evolution of preferences.
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b r y

B 1 0 0
R 0 1 0
BY 1 0 1
RY 0 1 1

In this table, B denotes the act that pays $1 if the ball drawn is black and $0 otherwise, BY
indicates the act that pays $1 if the ball is either black or yellow, and so on. The typical
preference pattern documented by Ellsberg (1961) is B ≻ R and BY ≺ RY , in violation of
Savage’s sure-thing principle.

To understand such preferences within the evolutionary model described above, note
that although the draw of the ball is independent across individuals, the composition of
the urn itself may be common for all individuals. In this case, we can model the possible
urn compositions using the set Ω = {ω1, ω2, ω3}, where ω1 = (b, r, r), ω2 = (b, r, y), and
ω3 = (b, y, y). Even if individuals form subjective probability assessments on the possible urn
compositions, this correlated uncertainty is treated differently than uncorrelated uncertainty.
For ease of illustration, suppose that µ assigns equal weight to each urn composition and
that there is a single fitness function ψ that takes values ψ(0) = 0 and ψ(1) = 1. When
acts only depend on s, the long run growth rate for deterministic choice in Equation (3)
is a special case of the smooth model (Klibanoff, Marinacci, and Mukerji (2005)) with a
concave transformation function, so these evolutionarily optimal preferences exhibit Ellsberg
behavior:

V (B) = ln

[
1

3

]
>

1

3
ln

[
2

3

]
+

1

3
ln

[
1

3

]
+

1

3
ln[0] = V (R),

and
V (BY ) =

1

3
ln

[
1

3

]
+

1

3
ln

[
2

3

]
+

1

3
ln[1] < ln

[
2

3

]
= V (RY ).

This example is also useful for illustrating the role of random choice within our model, and
why restricting to deterministic choice of acts is not without loss of generality. When choosing
between B and R (or between BY and RY ), it is easy to see that strict randomization in
choice is not optimal. However, for other decision problems, randomization can have a strict
benefit within our evolutionary model. Consider an act Y that bets on yellow, paying $1 if
the ball is yellow and $0 otherwise. Suppose the individual is asked to choose between R

and Y . Notice that V (R) = V (Y ) (both of which are strictly less than V (B)). However, if
the random action ρ sets ρ(R) = α and ρ(Y ) = 1− α, then it is easy to verify that V (ρ) is
maximized at α = 1/2, giving a value of V (ρ) = ln(1/3) = V (B). In this case, the individual
strictly prefers randomization to the deterministic choice of either Y or R. ▲

In Example 1, the crucial assumption for generating ambiguity aversion is that the com-
position of the urn is common across all individuals. In contrast, if a different urn is composed
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for each individual and if there is no correlation in how these urns are constructed, then cor-
relation aversion alone would not produce ambiguity aversion—a different mechanism would
be required to generate Ellsberg behavior. This example is therefore useful for illustrating
both the scope and the limitations of the evolutionary model: Adaptive preferences generate
ambiguity aversion anytime there is uncertainty about the model itself or some other factor
that is common to all individuals in the population, which we contend is the case in the vast
majority of examples and applications of ambiguity.12 As noted earlier, in cases involving
idiosyncratic ambiguity, we do not take a stand on whether ambiguity aversion is driven by
heuristics developed by the genotypes from the case of common uncertainty or if it arises
from some other source.13

In line with the interpretation of ambiguity as model uncertainty, we favor a statistical
interpretation of the smooth model used in this section, where each ω ∈ Ω is a candidate
for the true model (the law of nature governing the distribution of s ∈ S) and the marginal
distribution of µ on Ω is a prior over the candidate models.14 For simplicity, we treat µ
as constant over time. In that case, evolutionary optimality requires that individuals’ pref-
erences (eventually) assign the correct weights, so that µ becomes objective—it accurately
reflects the data generating process. However, our evolutionary approach can easily be ex-
tended to allow µt to change with time t. For a simple example, suppose there is an index set
K and a set of possible distributions µk ∈ △(Ω × S), where k ∈ K is redrawn periodically
after finitely many periods. Then, in each period t, it is again evolutionarily optimal for
individuals to maximize the growth rate in Equation (2), this time using their “best guess”
of the distribution µt given all information available at time t. This information evolves as
follows: One ω ∈ Ω is commonly drawn each period, so that in between draws of k the
marginal of µk on Ω is gradually revealed. At the same time, with a large number of indi-
viduals who each independently draw a state s ∈ S each period, the conditional µk(·|ω) on
S can be fully revealed in one period. In other words, in this situation ambiguity will only
linger in the case of common uncertainty, in line with the discussion in Section 1.1.

12Halevy and Feltkamp (2005) suggested another mechanism by which correlation can generate ambiguity
aversion: Risk aversion alone implies that an individual who makes repeated bets on an urn would rather
draw from a risky than an ambiguous urn. In our evolutionary context, instead, the maximization of long-run
growth generates an aversion to correlation in the contemporaneous draws of different individuals.

13If one is not convinced that the Ellsberg urn is a perfect fit for our model, the objects in the example
can be recast in terms of other examples discussed in the introduction. For instance, the acts B,R, Y could
represent different medical treatments for a condition and the idiosyncratic states b, r, y could represent the
events in which each treatment is successful for an individual, with B being a better understood treatment
than R and with the efficacy of the combined treatment RY being better understood than that of BY .

14See Klibanoff, Marinacci, and Mukerji (2005) or Marinacci (2015) for a discussion of this interpretation.
An alternative interpretation is that the marginal of µ on Ω is a preference parameter that captures subjective
plausibility of different first-order probabilistic beliefs µ(·|ω) on S.
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5 Non-Expected Utility

The adaptive model also accommodates violations of expected utility in the context of pure
(uncorrelated) risk. In this section, we consider two such special cases of our model: rank-
dependent utility in Section 5.1 and a class of divergence preferences involving pessimistic
distortions of an objective probability distribution in Section 5.2.

In contrast to Section 4, we now permit non-degenerate adaptation (non-singleton Ψ);
however, to focus solely on risk preferences for the moment, we will restrict attention in this
section to the special case of our model without common uncertainty (Ω = {ω}). Since a
central contribution of this paper is to illustrate the joint restrictions on ambiguity attitudes
and non-expected-utility preferences imposed by our evolutionary environment, Section 6 will
characterize a set of equivalent representations for the general model with both non-trivial
common uncertainty and non-trivial adaptation. The main result of this paper, Theorem 2
in Section 6, will enable us to embed the examples from this section within a model that
incorporates ambiguity aversion.

Since this section focuses on the special case without common uncertainty, we will sup-
press the Ω dimension from the state space and focus on acts defined on the state space S.
In this case, there is no strict benefit to randomization, so it is without loss of generality to
restrict attention to deterministic action choices f and adaptation choices ψ.15 Therefore,
Equation (2) becomes

V
(
f
)
= sup

ψ∈Ψ
ln

(∫
S

ψ(f(s)) dµ(s)

)
= ln

(
sup
ψ∈Ψ

∫
S

ψ(f(s)) dµ(s)

)
.

(4)

Note that in this case the logarithm can also be dropped by taking a monotone transforma-
tion, but we will retain it for consistency in expressing growth rates in log terms and for ease
of comparing the formulas in this section to later results.

In order to accommodate certain special cases, it will be technically convenient to permit
the fitness functions ψ to take the value −∞, so we henceforth assume that Ψ is a nonempty
set of functions ψ : Z → [−∞,∞).16 We have assumed throughout that the set Ψ is pointwise
bounded above. In anticipation of our results in Section 6, we will also focus attention on
sets that are closed, as formalized in the next assumption. We will see that the special cases

15Formally, after dropping the expectation over Ω from Equation (2), we have

V (ρ) = sup
τ∈R(Ψ|F)

ln

(∫
S

Eτ⊗ρ

[
ψ(f(s))

]
dµ(s)

)
.

Since the expression inside the logarithm is linear in both τ and ρ, it is maximized by a deterministic action
choice and adaptation plan.

16Recall that we take ln(x) = −∞ for all x ≤ 0.
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of rank-dependent utility and divergence preferences considered in the following subsections
will be characterized by sets Ψ that satisfy this assumption.

Assumption 1. Suppose Ψ is a nonempty set of functions ψ : Z → [−∞,∞) that is
pointwise bounded above (that is, supψ∈Ψ ψ(z) < ∞ for every z ∈ Z) and closed in the
topology of pointwise convergence (on the extended reals).

5.1 Rank-Dependent Utility

Although the connection is nontrivial, the following result shows that rank-dependent utility
with a pessimistic probability distortion function can be expressed as a special case of our
model.

Proposition 1 (Rank-Dependent Utility). Suppose Z ⊂ R. Fix µ ∈ △(S), and fix any
bounded nondecreasing function u : Z → R and any function φ : [0, 1] → [0, 1] that is
nondecreasing, concave, and onto. Then, there exists a set Ψ of functions ψ : Z → R
satisfying Assumption 1 such that for any simple act f : S → Z,17

sup
ψ∈Ψ

∫
S

ψ(f(s)) dµ(s) =

∫
Z

u(z) d(φ ◦ Ff,µ)(z)

where
Ff,µ(z) =

∫
S

1[f(s) ≤ z] dµ(s)

denotes the cumulative distribution function of f given µ. In particular, the value function
V in Equation (4) can be equivalently expressed as

V
(
f
)
= ln

(∫
Z

u(z) d(φ ◦ Ff,µ)(z)
)
.

Since we identify idiosyncratic uncertainty over S with pure risk, the distribution of
outcomes Ff,µ amounts to an unambiguous risky prospect. Thus, given the appropriate set
of fitness functions Ψ, adaptive preferences are equivalent to rank-dependent utility where
individuals overweight the probability assigned to worse outcomes.18 The following example
from Ben-Tal and Teboulle (2007) and Sarver (2018, supplementary material) illustrates
more concretely one instance of this duality.

17This dual formula is similar to several existing results in the literature. See, for example, Wakker (1994),
Chatterjee and Krishna (2011), or the Supplementary Material of Sarver (2018).

18In this paper, we focus on exploring the scope of adaptive preferences by identifying special cases that
can be nested. Sarver (2018) considers a similar representation to Equation (4). He shows that his model
does not overlap with other prominent non-expected-utility models (disappointment aversion, betweenness
preferences, cautious expected utility) except in the case of expected utility. These insights are easily
extended to our model and help delineate the boundary of the set of preferences that it nests.
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Example 2 (RDU Fitness Functions). Suppose Z ⊂ R, and fix some 0 ≤ α < 1 < β.
Consider a parametric class of fitness functions where for each γ ∈ R, we define ψγ : R → R
by

ψγ(z) =

{
γ + β(z − γ) if z < γ

γ + α(z − γ) if z ≥ γ,

The fitness function ψγ can be interpreted as a piecewise-linear gain-loss function with a
target consumption level γ. It is concave (since α < β), takes value γ at z = γ, and takes
values strictly below z for z ̸= γ. Figure 1a illustrates. ▲

zγ γ′

ψγ(z)

ψγ′(z)

α

β

(a) Gain-loss functions ψγ

x1

1

1−α
β−α

β

α

φ(x)

(b) Probability distortion function φ.

Figure 1: Illustration of Example 2 and Claim 1.

Claim 1. Define ψγ as in Example 2. Then, for any simple act f : S → R,

max
γ∈R

∫
S

ψγ(f(s)) dµ(s) =

∫
Z

z d(φ ◦ Ff,µ)(z)

where

φ(x) =

{
βx if x < 1−α

β−α

αx+ (1− α) if x ≥ 1−α
β−α .

Figure 1b illustrates the probability distortion function φ from Claim 1. Sarver (2018,
supplementary material) proves this result for the special case of α = 1− θ and β = 1+ θ for
θ ∈ [0, 1]. The general proof follows from similar arguments and we therefore omit it. For
intuition, if there is a γ ∈ R such that Ff,µ(γ) = 1−α

β−α , then the optimal fitness function for
the act f is ψγ.19 From this, it is easy to show that outcomes to the left of γ are weighted
by β times their probability and outcomes to the right are weighted by α, consistent with
the distortion function φ.

19Since f is a simple act and Ff,µ is therefore not continuous, there may be no such γ. In general, any γ
that satisfies Ff,µ(γ−) ≤ 1−α

β−α ≤ Ff,µ(γ) will be optimal, where Ff,µ(γ−) is the left limit of Ff,µ at γ.
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5.2 Divergence Preferences

Definition 4. Fix a convex and lower semicontinuous function ϕ : R+ → [0,∞] such that
ϕ(1) = 0 and there exists some α < 1 < β such that ϕ is finite on the interval [α, β], and let
p and q be probability measures on a given state space. The ϕ–divergence of p with respect
to q is given by

Dϕ(p ∥ q) =


∫
ϕ

(
dp

dq

)
dq if p≪ q,

∞ otherwise.
(5)

The notation p ≪ q indicates that p is absolutely continuous with respect to q, that is,
for any measurable set A, q(A) = 0 implies p(A) = 0. The term dp

dq
denotes the Radon–

Nikodym derivative (density) of p with respect to q, which exists if and only if p is absolutely
continuous with respect to q.20 It is immediate from the definition of the ϕ–divergence that
Dϕ(p ∥ q) ≥ 0, with equality if p = q. Moreover, if ϕ is strictly convex, then Dϕ(p ∥ q) = 0 if
and only if p = q. Relative entropy (or Kullback–Leibler divergence) is the special case of a
ϕ–divergence where ϕ(t) = t ln(t)− t+ 1. In this case, Equation (5) simplifies to

R(p ∥ q) =


∫

ln

(
dp

dq

)
dp if p≪ q,

∞ otherwise.
(6)

Ben-Tal and Teboulle (1987, 2007) provided an explicit dual characterization of varia-
tional preferences (Maccheroni, Marinacci, and Rustichini (2006)) with a divergence cost
function as the supremum of a set of expected utilities under the reference measure, where
the supremum is taken over a set of possible Bernoulli utility indices. The following proposi-
tion extends their result to permit a nondecreasing convex transformation k of the divergence
term.

Proposition 2 (Divergence Duality). Fix any µ ∈ △(S), any ϕ–divergence Dϕ(· ∥ ·), and
any function u : Z → R. Also, fix any nondecreasing, convex, and lower semicontinuous
function k : R+ → [0,∞] such that k(0) = 0 and k is finite on some interval [0, ε).21 Then,
there exists a set Ψ satisfying Assumption 1 such that, for any simple act f : S → Z,

sup
ψ∈Ψ

∫
S

ψ(f(s)) dµ(s) = inf
η∈△(S)

[ ∫
S

u(f(s)) dη(s) + k(Dϕ(η ∥µ))
]
.

The next corollary illustrates the flexibility of the transformation k in Proposition 2 by
highlighting two special cases. The first is where k(x) = θx for some scalar θ > 0. The
second is where we fix a scalar κ > 0 and take k(x) = 0 if x ≤ κ, and k(x) = +∞ if x > κ.

20Formally, dp
dq is the integrable function that satisfies p(A) =

∫
A

dp
dq dq for any measurable set A.

21We adopt the convention that k(∞) = ∞. Thus, for any function k as in the statement of the proposition,
if Dϕ(r ∥ p) = ∞ then k(Dϕ(r ∥ p)) = ∞.
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Corollary 2. Fix any µ ∈ △(S), any ϕ–divergence Dϕ(· ∥ ·), and any function u : Z → R.
Given a set Ψ, define V by Equation (4).

1. Fix any scalar θ > 0. There exists a set Ψ such that

V (f) = ln

(
inf

η∈△(S)

∫
S

u(f(s)) dη(s) + θDϕ(η ∥µ)
)
.

2. Fix a scalar κ > 0, and define D(µ, κ) = {η ∈ △(S) : Dϕ(η ∥µ) ≤ κ}. There exists a
set Ψ such that

V (f) = ln

(
inf

η∈D(µ,κ)

∫
S

u(f(s)) dη(s)

)
.

Divergence preferences have typically been considered in the context of ambiguity rather
than risk. For example, the formula inside the logarithm in part 1 of Corollary 2 was analyzed
by Maccheroni, Marinacci, and Rustichini (2006) as a special case of their model of variational
preferences. The formula inside the logarithm in part 2 of the corollary is a multiple prior
representation (Gilboa and Schmeidler (1989)). However, while these types of functional
forms have received the most attention in the ambiguity literature, they also have a natural
interpretation in the context of objective risk.22 The pessimistic distortion of the (objective
and idiosyncratic) probability measure µ to some other measure η in these formulas allows
over-weighting of bad outcomes, similar to the interpretation of rank-dependent utility in the
previous section. In fact, this similarity between the two models is not merely conceptual:
Although the classes of divergence and RDU preferences are distinct, we provide an example
in Appendix B showing there is actually some overlap between the two classes of preferences.

In the proof of Proposition 2, we provide an explicit formula for the set of fitness functions
Ψ using the Fenchel conjugate from convex analysis (see Proposition 3 in Appendix A.3).
The following example is based on these explicit formulas.

Example 3 (Divergence Fitness Functions). Suppose Z ⊂ R, and consider the following
parametric class of fitness functions involving two parameters, where the first (γ ∈ R) is a
target level of consumption and the second (α ≥ 0) determines the sensitivity to gains and
losses: Define ψγ,α : R → [−∞,∞) by

ψγ,α(z) = γ + α− α exp

(
γ − z

α

)
− c(α)

if α > 0. For α = 0, let ψγ,α(z) = γ for z ≥ γ and ψγ,α(z) = −∞ for z < γ. The components
of ψγ,α(z) have a simple interpretation: γ + α − α exp

(
γ−z
α

)
is a gain-loss function that is

strictly concave, takes the value γ at z = γ, and takes values strictly below z for z ̸= γ.
22Moreover, this class of divergence preferences is propabilistically sophisticated by Proposition 2. Mac-

cheroni, Marinacci, and Rustichini (2006) previously observed this for the case where k is linear.
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z

α→ ∞

γ

γ α = 0

α = 0.8

α = 2

α = 6

Figure 2: Illustration of gain-loss function γ + α− α exp
(
γ−z
α

)
in Example 3.

The parameter α determines the sensitivity to gains and losses, with larger α leading to
decreased sensitivity. See Figure 2 for an illustration. Finally, c : R+ → [0,∞] is a function
that determines the “cost” of increasing α (decreasing sensitivity to gains and losses). Assume
that c is nondecreasing and convex, with c(0) = 0. ▲

Claim 2. Define ψγ,α as in Example 3. Then, for any simple act f : S → R,

max
γ∈R

max
α≥0

∫
S

ψγ,α(f(s)) dµ(s) = inf
η∈△(S)

[∫
S

f(s) dη(s) + k(R(η ∥µ))
]
,

where R(η ∥µ) is the relative entropy defined in Equation (6) and special cases of the func-
tions c and k are related as follows, where κ, θ > 0:

1. If c(α) = κα, then k(x) = 0 for x ≤ κ and k(x) = ∞ otherwise.

2. If c(α) = 0 for α ≤ θ and c(α) = ∞ otherwise, then k(x) = θx.

Claim 2 relates the class of fitness functions in Example 3 to divergence preferences and,
moreover, illustrates two instances of the duality between the cost function c in the fitness
functions and the transformation k that is applied to the divergence.23

6 Ambiguity Aversion and Non-Expected Utility

We observed in Sections 4 and 5 that our model of adaptive preferences nests as special
cases rank-dependent utility and divergence preferences in the context of risk and a version
of the smooth model in the context of ambiguity. In this section, we expand our analysis to

23More generally, the function c is the Fenchel conjugate of k (by Proposition 3 in the appendix).
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special cases of our representation that simultaneously incorporate both ambiguity aversion
and non-expected utility for risk.24 One motivation for simultaneously considering both
is the empirically observed correlation between ambiguity aversion and violations of the
independence axiom (Dean and Ortoleva (2019)). Another motivation for this generality is
that within our model of adaptive preferences, there are some attitudes toward ambiguity
that are incompatible with a single fitness function ψ, but can be accommodated with
non-trivial adaptation, in which case violations of expected utility are implied. Section 6.4
provides an example of such a pattern based on the experimental findings of Abdellaoui et al.
(2011).

An impediment to the analysis of special cases of our general representation in Equa-
tion (2) is that it has a logarithm between the two layers of integration. For example, our
results for rank-dependent utility and divergence preferences in the previous section assumed
that there was no common uncertainty, and it is not immediately obvious how those results
might be extended to the general case of both common and idiosyncratic uncertainty. The
main result of this section, Theorem 2, is a duality result that recasts our representation in
a form that facilitates the analysis of these and other special cases. We then study several
special cases in detail in Sections 6.1 and 6.2, and we briefly discuss comparative statics that
link risk and uncertainty aversion across some of those special cases in Section 6.3.

Our results will involve the relative entropy of one probability measure with respect to
another, as defined in Equation (6). In what follows, for any probability measure p ∈ △(Ω),
let

M(p) = {q ∈ △(Ω) : q ≪ p and R(p ∥ q) <∞}.

In particular, since R(p ∥ q) < ∞ requires that p ≪ q, if q ∈ M(p) then the measures p and
q are mutually absolutely continuous, that is, both p ≪ q and q ≪ p.25 When necessary to
avoid confusion, we will denote the marginal distribution of µ on Ω by µΩ.

Theorem 2. Suppose Ψ satisfies Assumption 1, and fix µ ∈ △(Ω × S). For any random
action plan ρ ∈ R(F), the function V defined by Equation (2) can be equivalently expressed
as

V (ρ) = inf
q∈M(µΩ)

[
ln

(
Eρ

[
sup
ψ∈Ψ

∫
Ω

∫
S

ψ(f(ω, s)) dµ(s|ω) dq(ω)
])

+R(µΩ ∥ q)
]
. (7)

For intuition, we highlight the key steps in the proof: First, using duality techniques
related to those employed in the literature on large deviations in statistics (cf. Dupuis and

24There are relatively few models in the axiomatic decision theory literature that combine ambiguity
aversion and non-expected utility for risk; see, for example, Segal (1987), Dean and Ortoleva (2017) and
Izhakian (2017).

25Note that it is possible to have R(p ∥ q) = ∞ even if p≪ q, so M(p) may be a strict subset of the set of
all measures that are mutually absolutely continuous with respect to p.
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Ellis (1997)), we show that Equation (2) can be equivalently expressed as

V (ρ) = sup
τ∈R(Ψ|F)

inf
q∈M(µΩ)

[
ln

(∫
Ω

∫
S

Eτ⊗ρ
[
ψ(f(ω, s))

]
dµ(s|ω) dq(ω)

)
+R(µΩ ∥ q)

]
.

This expression is not yet amenable to analysis, as we would like to reverse the order of the
supremum and infimum in order to further simplify it and connect with existing functional
forms. The next step in the proof is to do just that by leveraging a particular version of the
von Neumann–Sion minimax theorem (von Neumann (1928), Sion (1958)) that is due to Tuy
(2004). Then, after we switch the order of the supremum and infimum, the supremum over τ
applies to the expression inside the logarithm, which is linear in τ . Therefore, optimization
over adaptation plans τ can be reduced to the deterministic selection of a fitness function ψ
following every act f that realizes under ρ, giving Equation (7). This final observation will
greatly simplify the analysis of the model since it eliminates randomization over ψ from the
formula for long-run growth rates.

Despite the resemblance, the functional in Equation (7) with a single fitness function Ψ =

{ψ} is not a variational representation (Maccheroni, Marinacci, and Rustichini (2006)). The
distinction is the logarithm around the integral in the first term. In fact, in the case of a single
fitness function, taking the exponential transformation of the representation in Equation (7)
establishes it as a special case of the confidence preferences studied by Chateauneuf and
Faro (2009), where confidence in a prior q is measured by exp(R(µΩ ∥ q)). More generally,
this no-adaptation case is also nested by the general representation for uncertainty-averse
preferences proposed by Cerreia-Vioglio et al. (2011).

Turning to the specifics of our functional form, relative entropy has appeared in a number
of representations for ambiguity-averse preferences, perhaps most notably in the multiplier
preferences introduced by Hansen and Sargent (2001) and studied axiomatically by Strzalecki
(2011),26 and also within a version of confidence preferences in Chateauneuf and Faro (2012).
However, in these models, the entropy term used is R(q ∥µΩ) rather than R(µΩ ∥ q). While
relative entropy is often interpreted as a “distance” between the two distributions involved, it
is not a distance function in the metric sense, because it is not symmetric. To interpret the
subtle difference in the context of the representation in Equation (7), suppose the decision-
maker takes as the reference measure µΩ the empirical frequencies in a large sample of
independently realized states ω ∈ Ω, but worries that the data is actually generated by
the measure q on Ω. Of course, the larger the sample, the closer to zero the probability
that it would be generated by q ̸= µΩ. The theory of large deviations establishes that the
rate at which this probability vanishes increases in R(µΩ ∥ q) (see, e.g., Cover and Thomas
(2006, Section 11.4)). The representation suggests, therefore, that the decision-maker is less
confident in a measure q the faster it becomes implausible with growing sample size.

26Hansen and Sargent (2001) interpret their representation in terms of a concern about robustness to
model misspecification. Our approach provides a related perspective on concern for robustness in contexts
where uncertainty about ω can be interpreted as model uncertainty.
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In order to describe the special cases of the next two subsections, it will be convenient to
define a measure µ ⊗ q on Ω × S with marginal q on Ω and conditional distribution µ(·|ω)
on S. That is, for any event E in the product σ-algebra BΩ ⊗ BS, let

µ⊗ q(E) =

∫
Ω

∫
S

1[(ω, s) ∈ E] dµ(s|ω) dq(ω).

With this definition in hand, Equation (7) can be written as

V (ρ) = inf
q∈M(µΩ)

[
ln

(
Eρ

[
sup
ψ∈Ψ

∫
Ω×S

ψ(f(ω, s)) d(µ⊗ q)(ω, s)

])
+R(µΩ ∥ q)

]
. (8)

6.1 Nesting Rank-Dependent Utility

Proposition 1 linked our adaptive model to RDU preferences in the special case of no common
uncertainty (Ω = {ω}), in which case the state space was effectively S. The next corollary
follows directly from that result by taking the state space to be S ′ = Ω×S and the measure
to be µ′ = µ ⊗ q ∈ △(Ω × S). Note that this application is only possible because we first
apply Theorem 2 to remove the logarithm from between the two layers of integration.

Corollary 3. Suppose Z ⊂ R. Fix µ ∈ △(Ω × S), and fix any bounded nondecreasing
function u : Z → R and any function φ : [0, 1] → [0, 1] that is nondecreasing, concave, and
onto. Then, there exists a set Ψ of functions ψ : Z → R satisfying Assumption 1 such that
the function V defined by Equation (2) can be equivalently expressed as

V (ρ) = inf
q∈M(µΩ)

[
ln

(
Eρ

[ ∫
Z

u(z) d(φ ◦ Ff,µ⊗q)(z)
])

+R(µΩ ∥ q)
]
,

where
Ff,µ⊗q(z) =

∫
Ω×S

1[f(ω, s) ≤ z] d(µ⊗ q)(ω, s)

is the cumulative distribution function of f given µ⊗ q.

This representation illustrates the simplicity of analyzing the combination of ambiguity
aversion, non-expected-utility risk preferences, and random choice when working with the
dual formula in Equation (8) and its special cases. In this application, the RDU represen-
tation inside the logarithm generates aversion to any kind of uncertainty, while ambiguity
aversion (roughly speaking, the additional aversion to uncertainty from Ω) is captured by the
outer part of the representation—the confidence preferences within which the RDU repre-
sentation is embedded. The outer part is fixed across genotypes, even if those differ in terms
of Ψ and hence in terms of their attitudes towards risk.27 Random choice of acts is also easy

27There is some empirical evidence that risk aversion and additional aversion to ambiguity indeed have
little correlation in the population (Chapman et al. (2019)).
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to analyze in this representation, since the expectation with respect to ρ appears inside the
confidence preferences (reflecting the hedging benefits of randomization) but outside of the
RDU formula.

6.2 Nesting Divergence Preferences

Proposition 2 linked our adaptive model to a general class of divergence preferences in the
special case of no common uncertainty (Ω = {ω}), in which case the state space was effec-
tively S. In parallel our analysis of rank-dependent utility in the previous section, the next
corollary follows directly from Proposition 2 by taking the state space to be S ′ = Ω×S and
the measure to be µ′ = µ⊗ q ∈ △(Ω× S). Again, this application is only possible because
of Theorem 2.

Corollary 4. Fix any µ ∈ △(Ω× S), any ϕ–divergence Dϕ(· ∥ ·), and any function u : Z →
R. Also, fix any nondecreasing, convex, and lower semicontinuous function k : R+ → [0,∞]

such that k(0) = 0 and k is finite on some interval [0, ε). Then, there exists a set Ψ satisfying
Assumption 1 such that the function V in Equation (2) can be equivalently expressed as

V (ρ) = inf
q∈M(µΩ)

[
ln

(
Eρ

[
inf

η∈△(Ω×S)

∫
Ω×S

u(f(ω, s)) dη(ω, s)+k(Dϕ(η ∥µ⊗ q))

])
+R(µΩ ∥ q)

]
.

The representation in Corollary 4 can be further specialized by considering specific func-
tional forms for k, just as in Corollary 2 from Section 5.2. This value function embeds a
general divergence representation inside confidence preferences. To see how it captures am-
biguity aversion, note that the measure η ultimately used to evaluate an act may be more
pessimistic than µ ⊗ q on Ω × S, which in turn may be more pessimistic than µ only on
Ω. Hence, compared to µ, there is more “opportunity” for η to be pessimistic about Ω than
about S.

6.3 Comparative Statics

We briefly mention comparative statics that compare the behavior of individuals with dif-
ferent sets of fitness functions Ψ:28 Suppose that all conceivable genotypes perform equally
well when facing deterministic outcomes (no uncertainty). In terms of the model of adaptive
preferences, this means that the upper envelope of Ψ is the same for all those genotypes.
In this case, one can show that individual A with adaptive preferences for ΨA is more risk
averse than an individual B with ΨB if and only if individual A is also more uncertainty
averse than B. For example, in the representations of Corollaries 3 and 4 the upper envelope

28We have taken the set Ψ as given throughout. To compare individuals with different Ψ, it is important
to understand how Ψ is determined. One possibility is that different choice situations involve different sets
of hidden actions. Another possibility is that Ψ itself is subject to constrained evolutionary optimization.
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of Ψ is u, and hence holding fixed u, individuals with either of these two types of preferences
who can be ranked in terms of risk aversion will be ranked the same way in terms of overall
uncertainty aversion.

6.4 Source Preferences

Adaptive preferences imply that any ambiguity attitude that cannot be captured by the
smooth model of ambiguity aversion in Equation (3) must go hand in hand with violations
of expected utility. We illustrate this connection via the example of source preferences.

Abdellaoui et al. (2011) compare behavior under known (risky) and unknown (ambiguous)
sources of uncertainty. In their experiment, the known uncertainty comes from betting on
the color of a ball drawn from an urn with eight balls of eight different colors. The unknown
uncertainty comes from betting on the color of a ball drawn from an urn with eight balls
with the same colors, but unknown composition in the sense that some colors might appear
several times and others might be absent. Based on symmetry it is clear that each color
should be considered equally likely even for the unknown urn (just as the two colors are
usually revealed to be considered equally likely in the ambiguous two color Ellsberg urn),
but nonetheless an ambiguity adverse decision maker would prefer to bet on the known urn.

Abdellaoui et al. (2011) interpret their data through the lens of source functions wK
and wU , which are probability weighting functions for the known and unknown sources,
respectively. That is, fixing outcomes x > y, the gamble that yields x with probability p

and y otherwise is evaluated as if the probability assigned to x is w(p) instead of p. For a
representative subject,29 they find that for p > 0.5 the source function wU is systematically
lower than wK , while for small p there is no significant difference. To be more specific,
consider the function α(p) := wK(w

−1
U (p)). While the experiment determines preferences

via certainty equivalents, transitivity of preferences implies that the representative subject
is indifferent between the gamble with unknown probability p and the one with known
probability α(p), which we therefore call the risk equivalent of p, given x and y. Their
findings then imply that α(0) = 0, α(1) = 1 and α(p) is continuous and strictly increasing,
but is not convex everywhere, is close to the identity function for small p, and lies below for
large p.

Here, we will not attempt to calibrate our model of adaptive preferences to match their
data.30 Our modest aim in this section is merely to demonstrate via the following two claims
that (i) it cannot match the qualitative pattern of α(p) just described if Ψ is a singleton (no
adaptation), but that (ii) it can match this pattern if Ψ has two or more elements. To that
end, let αΨ(p) be the risk equivalent implied by our model for a particular Ψ.

29They use a parametric family of functions to approximate individual source functions, and report the
median parameter values.

30In particular, some individuals in their data are ambiguity loving for small p, while our model always
implies ambiguity aversion.
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p1

1

α{ψ1}(p)

α{ψ2}(p)

α{ψ1,ψ2}(p)

Figure 3: α{ψ1,ψ2} for ψ1(x) = 1.2, ψ1(y) = 0.7, ψ2(x) = 2, ψ2(y) = 0.3

Claim 3. For any strictly increasing fitness function ψ, the risk equivalent α{ψ}(p) is contin-
uous, strictly increasing and strictly convex in p, and satisfies α{ψ}(0) = 0 and α{ψ}(1) = 1.
Furthermore, if ψ2(x) > ψ1(x) > ψ1(y) > ψ2(y), then α{ψ1}(p) > α{ψ2}(p) for all p ∈ (0, 1).

Claim 4. If ψ2(x) > ψ1(x) > ψ1(y) > ψ2(y), then there are p∗ < p∗ ∈ (0, 1) such that
α{ψ1,ψ2}(p) = α{ψ1}(p) for all p ≤ p∗, α{ψ1,ψ2}(p) = α{ψ2}(p) for all p ≥ p∗, and α{ψ1,ψ2}(p) is
convex for all p ≥ p∗.

Figure 3 illustrates via an example how our model generates the pattern in Claim 4. Ob-
viously, the fact that Ψ contains two elements that do not dominate each other immediately
implies that preferences over gambles with known probabilities (risk) must violate expected
utility. To continue the example in Figure 3, suppose Ψ = {ψ1, ψ2} where ψ1(z) = 0.5

√
z + 2

and ψ2(z) =
√
z + 0.1. Then it is easy to verify that for x = 4 and y = 0 the two fitness

functions generate the values in the figure (rounded to the first decimal) and that for risky
gambles the common ratio violation of expected utility proposed in Allais (1953) ensues:
Getting w = 3 for sure is better than getting x = 4 with probability p = 0.8 and y = 0

otherwise, but getting x = 4 with probability p = 0.2 and y = 0 otherwise is better than
getting w = 3 with probability p = 0.25 and y = 0 otherwise.

7 Realism of the Evolutionary Model

Section 7.1 discusses two assumptions that are implicit in our formulation of the evolution-
ary model and that are commonly made in economic contexts. Section 7.2 concludes by
discussing the interpretation of adaptive preferences in the context of phenotypic flexibility.
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7.1 Simplifying Assumptions

Corollary 1 shows that the long-run growth rate is optimized by choosing the action plan
ρ ∈ R(A) that maximizes V , assuming the decision problem A is faced by the genotype
repeatedly in every period. In fact, this assumption is unnecessarily strong and is made solely
for ease of exposition. As can be seen in the proof of Theorem 1, aggregate fitness in each
period affects the population size multiplicatively, which provides a degree of separability for
choice problems that appear at different times. For example, if the genotype faces an infinite
sequence of decision problems (At)t∈N, then attaining the highest possible long-run growth
rate requires that individuals maximize adaptive preferences from any decision problem A

that repeats with fixed frequency within this sequence.31

Another assumption in our model is that time is divided into discrete time periods.
Robatto and Szentes (2017) made the surprising observation that correlation aversion dis-
appears in the continuous-time limit of this basic model. Further extending this line of
research, Robson and Samuelson (2019) allowed fertility and mortality rates to vary with
age in order to separate the assumption of continuous time from the assumption that new
organisms can reproduce immediately after birth, and they found that correlation aversion
can be recovered even in continuous time. Investigating the implications of different timing
and age structures in our context of hidden actions and updating could be an interesting
avenue for future research. In this paper, we stick to discrete time with age-independent
fertility and mortality rates as is common in evolutionary models in economics.

7.2 Phenotypic Flexibility in Evolutionary Biology

While our approach is inspired by evolutionary biology, we hope that our insights might in
turn also be useful in biological contexts where phenotypic flexibility plays a role, as we now
explain in more detail. Evolutionary success appears to be greatly enhanced by the ability of
organisms of a particular genotype to adapt their phenotype to the environment. Adopting
the terminology proposed by Piersma and Drent (2003), we use phenotypic flexibility to
refer to the rapid and apparently purposeful variation in phenotype expressed by individual
reproductively mature organisms throughout their life. This is in contrast to developmental
plasticity, environmentally induced variations that occur only during development.32

While developmental plasticity has long been a focus of evolutionary biologists, the role
of phenotypic flexibility in the evolutionary process has only recently attracted significant
attention. According to Piersma and Drent (2003):

31The assumption that all individuals of the genotype face the same decision problem at the same time is
also implicit in our model, and this assumption can be relaxed as well. If, instead, there is a distribution of
decision problems within the population, then this uncertainty can be encoded into the state spaces in our
model.

32Piersma and Drent (2003) use phenotypic plasticity as an umbrella term that includes both phenotypic
flexibility and developmental plasticity.
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When environmental conditions change rapidly [...] individuals that can show contin-
uous but reversible transformations in behaviour, physiology and morphology might
incur a selective advantage. There are now several studies documenting substantial but
reversible phenotypic changes within adult organisms.

Striking examples among vertebrates include various species of amphibious fish that adjust
to life on land with reversible and rapid (sometimes within minutes) changes to their muscle
tissue, breathing organs, and skin properties (Wright and Turko (2016) provide a survey),
or marine iguanas on the Galapagos islands that can shrink their overall body length by up
to 20% (6.8 cm) in what appears to be a reversible, rapid, and strategic response to food
scarcity during an El Niño weather pattern (Wikelski and Thom (2000)). A familiar example
that can be viewed as phenotypic flexibility in humans and other mammals is the adjustment
of the makeup of muscle tissue in response to changes in functional demands (Flück (2006)),
for instance, from a more or less active lifestyle.

Of course, the evolutionary benefit of phenotypic flexibility is that different phenotypes
may perform better in different situations, and hence have different fitness functions ψ. For
instance, each possible phenotype might be tailored to a specific range of outcomes, such
as the amount of available food for the iguanas in the example above (see Figure 1a for a
collection of fitness functions with this feature). Or one phenotype might be a specialist
with high fitness for a small range of outcomes, while the other is a generalist, with lower
peak fitness that is more robust to the outcome (see Figure 2 of Example 3 for a collection of
fitness functions that capture this trade-off once the cost c from the example is incorporated).

Biologists in the studies above directly observe variations in individual phenotypes over
time. In economic applications, in contrast, phenotypes, such as the determinants of risk
and ambiguity preferences in our model, are notoriously hard to observe. Economists instead
rely on preferences that are revealed from observable choice data. Respecting this limitation,
our model predictions concern only observable choices between outcome-relevant actions (f),
treating the phenotype and resulting fitness function (ψ) as unobservable. As a consequence,
our model does not distinguish between the case where adaptation is due to a biological
change (phenotypic flexibility) or a strategic but hidden choice of action, and it is equally
relevant and applicable under either interpretation of the set of fitness functions Ψ.
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A Proofs

A.1 Proof of Lemma 1

Note that

ln(N i(T )) = ln(N i(0)) +
T∑
t=1

ln(λit),

and therefore

ln

(
NA(T )

NB(T )

)
= ln

(
NA(0)

NB(0)

)
+

T∑
t=1

ln(λAt )−
T∑
t=1

ln(λBt ).

Since αA and αB are the long-run growth rates of these two genotypes, we have

1

T

[ T∑
t=1

ln(λAt )−
T∑
t=1

ln(λBt )
]
→ αA − αB a.s.

Since αA − αB > 0, this implies

ln

(
NA(T )

NB(T )

)
→ ∞ a.s.

Therefore, NA(T )/NB(T ) → ∞ almost surely as T → ∞. This completes the proof.

A.2 Proof of Proposition 1

Since u is bounded, there exist a, b ∈ R such that u(Z) ⊂ [a, b]. The following two lemmas provide
key steps in our construction.

Lemma 2. Suppose φ : [0, 1] → [0, 1] is nondecreasing, concave, and onto. Define a function
W : △([a, b]) → R by

W (η) =

∫ b

a
x d(φ ◦ Fη)(x),

where Fη(x) = η([a, x]) is the cumulative distribution function for the measure η. Then, there exists
a set Φ of nondecreasing and concave continuous functions ϕ : [a, b] → R such that

W (η) = sup
ϕ∈Φ

∫
Z
ϕ(z) dη(z).

Proof. It can be shown that W is convex using similar arguments to those in Section S.2.1 of
the Supplementary Material of Sarver (2018) (alternatively, see Wakker (1994) or Chatterjee and
Krishna (2011)). It is also not difficult to show that W is continuous in the topology of weak
convergence. Finally, since φ is concave, the function W respects second-order stochastic dominance
by Theorem 2 in Yaari (1987).33 In light of these conditions, we can apply Proposition 1 from Sarver
(2018) to obtain a set Φ with the claimed properties. ■

33This was also proved by Chew, Karni, and Safra (1987) in the special case where φ is Lipschitz continuous.
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Lemma 3. Fix a set Ψ of functions ψ : Z → [−∞,∞) that is pointwise bounded above. Then, for
any µ ∈ △(S) and any simple act f : S → Z,

sup
ψ∈Ψ

∫
S
ψ(f(s)) dµ(s) = sup

ψ∈cl(Ψ)

∫
S
ψ(f(s)) dµ(s),

where the closure is taken with respect to the product topology (i.e., the topology of pointwise con-
vergence) on [−∞,∞]Z .

Proof. Fix any µ ∈ △(S) and any simple act f : S → Z. Since f is a simple act, there exists a finite
partition E ⊂ BS such that f is measurable with respect to E . For each E ∈ E , let zE = f(s) for
some s ∈ E. Since f is E-measurable, the value zE does not depend on the exact choice of s ∈ E.
Define a function G : [−∞,∞)Z → R by

G(ψ) =

∫
S
ψ(f(s)) dµ(s) =

∑
E∈E

ψ(zE)µ(E),

and let γ = supψ∈ΨG(ψ). Note that γ is finite since the functions in Ψ are pointwise bounded
above. Now, fix any ψ ∈ cl(Ψ). By the definition of the closure, there exists a net (ψα)α∈D
in Ψ that converges to ψ.34 Note that since ψα ∈ Ψ for each α, we must have G(ψα) ≤ γ. Since
convergence is preserved under scalar multiples and finite sums, ψα → ψ implies that G(ψα) → G(ψ)

and hence G(ψ) ≤ γ. Since this is true for all ψ ∈ cl(Ψ), we have

sup
ψ∈cl(Ψ)

∫
S
ψ(f(s)) dµ(s) = sup

ψ∈cl(Ψ)
G(ψ) = γ,

as desired. ■

Proof of Proposition 1. Take Φ as in Lemma 2 for the function φ, and let Ψ = {ϕ ◦ u : ϕ ∈ Φ}. Fix
any µ ∈ △(S) and any simple act f : S → Z, and let η be the distribution of utility values induced
by µ, f , and u. Formally,

η = µ ◦ f−1 ◦ u−1 ∈ △([a, b]).

Then, we have

sup
ψ∈Ψ

∫
S
ψ(f(s)) dµ(s) = sup

ϕ∈Φ

∫
S
ϕ(u(f(s))) dµ(s)

= sup
ϕ∈Φ

∫ b

a
ϕ(x) dη(x) (change of variables)

=

∫ b

a
x d(φ ◦ Fη)(x) (Lemma 2)

=

∫
Z
u(z) d(φ ◦ Ff,µ)(z).

34It is well known that the product topology on an uncountable product space cannot be completely
described by sequential convergence, as such spaces are not metrizable. Hence, we must use nets.
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The last equality is essentially another application of the change of variables formula, but there are
a few subtleties. One needs to show that if νu is the probability measure over utility values with
cumulative distribution function φ◦Fη and if νz is the probability measure over outcomes in Z with
cumulative distribution function φ ◦ Ff,µ, then νu = νz ◦ u−1. This is not true for arbitrary u, but
it can be shown to hold whenever u is nondecreasing.

Note that since W (η) = x when η({x}) = 1, we must have ϕ(x) ≤ x for all x ∈ [a, b] and ϕ ∈ Φ.
Now, for any ψ ∈ Ψ there exists ϕ ∈ Φ such that ψ = ϕ ◦u. Thus, ψ(z) = ϕ(u(z)) ≤ b for all z ∈ Z,
so the set Ψ is bounded above. Moreover, taking the closure of Ψ does not alter the values in the
equality above by Lemma 3, so we can assume that Ψ is closed without loss of generality. ■

A.3 Proof of Proposition 2

Some basic definitions and results from functional analysis will be used frequently in this proof. If
X is a Banach space, we use X∗ to denote the space of all continuous linear functionals on X (the
norm dual of X). For x ∈ X and x∗ ∈ X∗, we use ⟨x∗, x⟩ to denote the duality pairing x∗(x).

Given a function F : X → (−∞,∞], the effective domain of F is the set

dom(F ) = {x ∈ X : F (x) <∞}.

The function F is proper if dom(F ) ̸= ∅, that is, if it is not identically equal to ∞. The (Fenchel)
conjugate of F is the function F ∗ : X∗ → [−∞,∞] defined by

F ∗(x∗) = sup
x∈X

[
⟨x∗, x⟩ − F (x)

]
. (9)

Note that if F is proper, then F ∗(x∗) > −∞ for all x∗ ∈ X∗. Finally, given a set C ⊂ X, we define
δC by δC(x) = 0 if x ∈ C and δC(x) = ∞ if x /∈ C. This is the indicator function commonly used
in functional analysis. Note that

(δC)
∗(x∗) = sup

x∈C
⟨x∗, x⟩.

In this proof, we will work with the L1 and L∞ spaces of functions. That is, given a probability
space (Ω,BΩ, p), the space L1(Ω,BΩ, p) is the set of all (equivalence classes of) integrable functions,
and the space L∞(Ω,BΩ, p) is the set of all (equivalence classes of) essentially bounded functions.35

When the reference probability space is understood, we will sometimes denote these spaces simply
as L1 and L∞, respectively. It is a standard result that these are Banach spaces (when endowed
with the L1 and L∞ norms, respectively) and that (L1)∗ = L∞, with the duality pairing

⟨X,Y ⟩ =
∫
Ω
X(ω)Y (ω) dp(ω)

for Y ∈ L1, X ∈ L∞.

35Note that in this proof we use Ω to denote an arbitrary probability space, not necessarily the space of
common states as in the main text.
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Proposition 3. Fix any probability space (Ω,BΩ, p). Let Dϕ(· ∥ ·) be a ϕ–divergence, and fix any
nondecreasing, convex, and lower semicontinuous function k : R → (−∞,∞] such that k(0) = 0

and k is finite on some interval (−ε, ε). Then, for any random variable X ∈ L∞(Ω,BΩ, p),

inf
q∈△(Ω)

[ ∫
Ω
X(ω) dq(ω) + k(Dϕ(q ∥ p))

]
= max

γ∈R
max
α≥0

∫
Ω
ψγ,α(X(ω)) dp(ω),

where ψγ,α : R → [−∞,∞) is defined for γ ∈ R and α ≥ 0 by36

ψγ,α(x) = γ − (αϕ)∗(γ − x)− k∗(α)

=


γ − αϕ∗

(γ−x
α

)
− k∗(α) if α > 0

γ + sup(dom(ϕ)) · (x− γ)− k∗(0) if α = 0 and x < γ

γ + inf(dom(ϕ)) · (x− γ)− k∗(0) if α = 0 and x ≥ γ.

Note that in Proposition 2, we took k to be a function from R+ to [0,∞]; however, we can
treat k as a nondecreasing, convex, and lower semicontinuous function from R into [0,∞] by taking
k(x) = 0 for x < 0. Similarly, our definition of a divergence requires ϕ to be a continuous convex
function mapping from R+ to R+, but we can treat ϕ as lower semicontinuous convex function
defined on all of R by taking ϕ(y) = ∞ for y < 0, and hence

ϕ∗(x) = sup
y∈R+

[
xy − ϕ(y)

]
.

Proposition 2 then follows as a special case of Proposition 3 where the state space is Ω̂ = S, the
probability measure is p = µ ∈ △(S), and X : S → R is defined by

X(s) = u(f(s)).

Note that since f is a simple act and u is real-valued, X is bounded. Thus, by Proposition 3,

inf
η∈△(S)

[ ∫
S
u(f(s)) dη(s) + k(Dϕ(η ∥µ))

]
= max

γ∈R
max
α≥0

∫
S
ψγ,α(u(f(s))) dµ(s).

Take Ψ to be the closure of the set

{ψγ,α ◦ u : γ ∈ R, α ≥ 0},

where the closure is taken with respect to the topology of pointwise convergence on the extended
reals. Then, Ψ satisfies Assumption 1 and the arguments above together with Lemma 3 (which
allows us to take the closure) establish that the equality in the statement of the proposition holds.

Therefore, all that remains is to prove Proposition 3. Our proof will be based on the following

36Recall that we require the function ϕ in the definition of a divergence to be finite on some interval [α, β]
where α < 1 < β, and hence sup(dom(ϕ)) > 1 and inf(dom(ϕ)) < 1, so ψγ,α for α = 0 is a piecewise linear
and concave gain-loss function. In particular, if ϕ is finite-valued on all of R+, then sup(dom(ϕ)) = ∞ and
inf(dom(ϕ)) = 0.
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three lemmas. The first two lemmas closely parallel the proof strategy used by Ben-Tal and Teboulle
(2007, Theorem 4.2) who provide a similar result for the case when k(x) = x, that is, when there is
no transformation of the divergence term.

Lemma 4. Fix any probability space (Ω,BΩ, p). Let H : L1 → (−∞,∞] be a convex and lower
semicontinuous function, and suppose there exist α < 1 < β such that Y ∈ L1 and α ≤ Y (ω) ≤ β

for all ω ∈ Ω implies H(Y ) <∞. Then, for any X ∈ L∞,

inf
Y ∈L1:∫

Y (ω) dp(ω)=1

[ ∫
Ω
X(ω)Y (ω) dp(ω) +H(Y )

]
= max

γ∈R

[
γ −H∗(γ −X)

]

Proof. The proof of this result replicates the first steps in the proof of Theorem 4.2 in Ben-Tal and
Teboulle (2007), but we include it for completeness. Denote by v the value of the left side of the
equation in the statement of the lemma:

v ≡ inf
Y ∈L1:∫

Y (ω) dp(ω)=1

[ ∫
Ω
X(ω)Y (ω) dp(ω) +H(Y )

]
.

The Lagrangian dual of this convex minimization problem is given by

w ≡ sup
γ∈R

inf
Y ∈L1

[ ∫
Ω
X(ω)Y (ω) dp(ω) +H(Y ) + γ

(
1−

∫
Ω
Y (ω) dp(ω)

)]
= sup

γ∈R

[
γ + inf

Y ∈L1

(
H(Y ) +

∫
Ω
(X(ω)− γ)Y (ω) dp(ω)

)]
= sup

γ∈R

[
γ − sup

Y ∈L1

(∫
Ω
(γ −X(ω))Y (ω) dp(ω)−H(Y )

)]
= sup

γ∈R

[
γ −H∗(γ −X)

]
.

It remains only to show that v = w, that is, there is no duality gap. The convex duality result in
Corollary 4.8 of Borwein and Lewis (1992) shows that there is no duality gap and there is attainment
of a solution in the dual problem if the following constraint qualification condition is satisfied:37

(CQ) There exist α < β such that α ≤ Y (ω) ≤ β implies H(Y ) < ∞, and there exists some
Y ∈ L1 with α < Y (ω) < β that satisfies the constraint

∫
Ω Y (ω) dp(ω) = 1.

Given the assumptions in the statement of the lemma, this condition is satisfied by taking Y

identically equal to 1. This completes the proof. ■

37Borwein and Lewis (1992) define the quasi relative interior of a set C to be the set of all points x ∈ C
such that the closure of the cone generated by C − x is a subspace. In the context of our minimization
problem, their constraint qualification condition requires that there is a function Y in the quasi relative
interior of the set dom(H) ≡ {Y ∈ L1 : H(Y ) < ∞} that satisfies the constraint

∫
Ω
Y (ω) dp(ω) = 1. It can

be shown that if {Y ∈ L1 : α ≤ Y ≤ β} ⊂ dom(H) then any Y ∈ L1 with α < Y (ω) < β is in the quasi
relative interior of dom(H) (see Example 3.11(i) in Borwein and Lewis (1992)).
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Lemma 5. Fix any probability space (Ω,BΩ, p), and fix any proper convex and lower semicontinuous
function ϕ : R → (−∞,∞]. Define a functional J : L1 → (−∞,∞] by

J(Y ) =

∫
Ω
ϕ(Y (ω)) dp(ω).

Then, J is a proper convex and lower semicontinuous functional, and the Fenchel conjugate J∗ :

L∞ → (−∞,∞] of J is given by

J∗(X) =

∫
Ω
ϕ∗(X(ω)) dp(ω).

Proof. See the corollary to Theorem 2 in Rockafellar (1968). ■

Fix any proper convex and lower semicontinuous function ϕ : R → (−∞,∞] that is finite on an
open interval containing 1. Then, defining J as in Lemma 5 and setting H = J in Lemma 4, we
obtain the following dual formula:

inf
Y ∈L1:∫

Y (ω) dp(ω)=1

[ ∫
Ω
X(ω)Y (ω) dp(ω) + J(Y )

]
= max

γ∈R

∫
Ω

[
γ − ϕ∗(γ −X(ω))

]
dp(ω).

This is precisely Theorem 4.2 in Ben-Tal and Teboulle (2007). To extend their result to H = k ◦ J ,
we need the following lemma.

Lemma 6. Fix any probability space (Ω,BΩ, p), and fix any convex and lower semicontinuous func-
tion ϕ : R+ → [0,∞] such that ϕ(1) = 0 and there exists some α < 1 < β such that ϕ is finite
on the interval [α, β]. Also, fix any nondecreasing, convex, and lower semicontinuous function
k : R → (−∞,∞] such that k is finite on some interval (−ε, ε). Define J : L1 → (−∞,∞] by

J(Y ) =

∫
Ω
ϕ(Y (ω)) dp(ω),

and define H : L1 → (∞,∞] by H = k ◦ J . Then, for any X ∈ L∞,

H∗(X) = min
α≥0

[
(αJ)∗(X) + k∗(α)

]
, (10)

where
(αJ)∗(X) =

∫
Ω
(αϕ)∗(X(ω)) dp(ω)

and where (αϕ)∗(x) = αϕ∗( xα) for α > 0 and

(0ϕ)∗(x) =

{
inf(dom(ϕ)) · x if x ≤ 0

sup(dom(ϕ)) · x if x > 0.

Proof. To obtain the formula for the conjugate of the composition of two functions, we appeal to
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Theorem 2 of Hiriart-Urruty (2006):38 Since k and J are both lower semicontinuous and convex,
k is nondecreasing, and there exists a function Y ∈ L1 such that J(Y ) ∈ int(dom(k)) (namely,
Y identically equal to 1), his theorem implies that the Fenchel conjugate of k ◦ J is given by
Equation (10), when one sets (0J) = δdom(J). For α > 0, we therefore have

(αJ)∗(X) =

∫
Ω
(αϕ)∗(X(ω)) dp(ω) =

∫
Ω
αϕ∗

(
X(ω)

α

)
dp(ω),

where the first equality follows from Lemma 5 and the second equality follows directly from the
definition of the conjugate.

It remains only to establish the formula for (0J)∗. By the definition of the conjugate,

(0J)∗(X) = sup
Y ∈L1

[
⟨X,Y ⟩ − δdom(J)(Y )

]
= sup

Y ∈dom(J)

∫
Ω
X(ω)Y (ω) dp(ω).

Now, fix any X ∈ L∞ and let E = {ω ∈ Ω : X(ω) > 0}. Note that a necessary (but not sufficient)
condition for Y ∈ dom(J) is that 0 ≤ inf(dom(ϕ)) ≤ Y ≤ sup(dom(ϕ)) ≤ ∞ almost surely.
Therefore,

sup
Y ∈dom(J)

∫
Ω
X(ω)Y (ω) dp(ω) ≤

∫
Ω
X(ω)Ŷ (ω) dp(ω), (11)

where Ŷ : Ω → [0,∞] is defined by

Ŷ (ω) =

{
inf(dom(ϕ)) if ω /∈ E

sup(dom(ϕ)) if ω ∈ E.

Note that the integral on the right is well-defined since X is bounded and 0 ≤ inf(dom(ϕ)) ≤ 1, but
possibly infinite since we could have sup(dom(ϕ)) = ∞. The proof is completed by showing that the
supremum attains this bound, so that Equation (11) holds equality (with both sides possibly being
+∞). Since it may be that Ŷ /∈ dom(J) (e.g., if ϕ(y) = ∞ for y = inf(dom(ϕ)) or y = sup(dom(ϕ))),
we will approximate Ŷ using a sequence: Let (Yn)n∈N be a sequence in dom(J) defined by

Yn(ω) =

{
y
n

if ω /∈ E

yn if ω ∈ E,

where (y
n
)n∈N is a monotonically decreasing sequence in dom(ϕ) with y

n
→ inf(dom(ϕ)), and

(yn)n∈N is a monotonically increasing sequence in dom(ϕ) with yn → sup(dom(ϕ)) (with the
standard convention that yn diverges to +∞ in the case of sup(dom(ϕ)) = ∞). Notice that by
construction, the function Zn defined by Zn(ω) = X(ω)Yn(ω) is bounded, and Zn ↑ Z where
Z(ω) = X(ω)Ŷ (ω). Therefore, by the monotone convergence theorem (e.g., Theorem 4.3.2 in

38Hiriart-Urruty (2006) provides a concise treatment of this problem, but earlier, more general results
about conjugates of compositions of convex functions exist, e.g., Kutateladze (1979, Theorem 3.7.1) or
Combari, Laghdir, and Thibault (1996, Theorem 3.4(ii)).
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Dudley (2002)), we have ∫
Ω
X(ω)Yn(ω) dp(ω) →

∫
Ω
X(ω)Ŷ (ω) dp(ω),

as desired. ■

Proof of Proposition 3. Note that Dϕ(q ∥ p) = ∞ whenever q is not absolutely continuous with
respect to p. Thus, we can restrict attention to q ≪ p, and we can therefore express the divergence
using Radon–Nikodym derivatives Y = dq

dp ∈ L1(Ω,BΩ, p):

inf
q∈△(Ω)

[ ∫
Ω
X(ω) dq(ω) + k(Dϕ(q ∥ p))

]
= inf

q≪p

[ ∫
Ω
X(ω)

dq

dp
(ω) dp(ω) + k

(∫
Ω
ϕ

(
dq

dp
(ω)

)
dp(ω)

)]
= inf

Y ∈L1:∫
Y (ω) dp(ω)=1

[ ∫
Ω
X(ω)Y (ω) dp(ω) + k

(∫
Ω
ϕ(Y (ω)) dp(ω)

)]
.

Note that for Y ∈ L1 to be a Radon-Nikodym derivative, we must have
∫
Ω Y (ω) dp(ω) = 1 and

Y ≥ 0 a.s. The first constraint is stated explicitly in the equation above, and since ϕ(y) = ∞ for
y < 0, the second constraint becomes superfluous.

As before, define J : L1 → (−∞,∞] by

J(Y ) =

∫
Ω
ϕ(Y (ω)) dp(ω),

and define H : L1 → (∞,∞] by H = k ◦ J . Note that J is convex and lower semicontinuous by
Lemma 5, and therefore H is convex and lower semicontinuous given our assumptions on k. We
also assumed that there is an interval (−ε, ε) on which k is finite. Since ϕ : R+ → [0,∞] is convex
and finite on some interval [α, β] for α < 1 < β, it is necessarily continuous on (α, β). Therefore,
since ϕ(1) = 0, there exists some α′ < 1 < β′ such that α′ ≤ y ≤ β′ implies 0 ≤ ϕ(y) < ε. Thus,
α ≤ Y (ω) ≤ β for all ω ∈ Ω implies 0 ≤ J(Y ) < ε and hence H(Y ) <∞. Therefore,

inf
Y ∈L1:∫

Y (ω) dp(ω)=1

[ ∫
Ω
X(ω)Y (ω) dp(ω) + k

(∫
Ω
ϕ(Y (ω)) dp(ω)

)]
= max

γ∈R

[
γ −H∗(γ −X)

]
= max

γ∈R
max
α≥0

[
γ − (αJ)∗(γ −X)− k∗(α)

]
,

where the first equality follows from Lemma 4 and the second equality follows from Lemma 6. Then,
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using the formula for (αJ)∗ from Lemma 6, we have that for any X ∈ L∞, γ ∈ R, and α ≥ 0,

γ − (αJ)∗(γ −X)− k∗(α) = γ −
∫
Ω
(αϕ)∗(γ −X(ω)) dp(ω)− k∗(α)

=

∫
Ω

[
γ − (αϕ)∗(γ −X(ω))− k∗(α)

]
dp(ω),

where

γ − (αϕ)∗(γ − x)− k∗(α) =


γ − αϕ∗

(γ−x
α

)
− k∗(α) if α > 0

γ − sup(dom(ϕ)) · (γ − x)− k∗(0) if α = 0 and γ − x > 0

γ − inf(dom(ϕ)) · (γ − x)− k∗(0) if α = 0 and γ − x ≤ 0,

where is precisely the formula for ψγ,α(x) from the statement of the proposition. This completes
the proof. ■

A.4 Proof of Claim 2

Define ϕ by ϕ(y) = y ln(y)−y+1 for y > 0 and ϕ(0) = 1, so that the ϕ–divergence is precisely relative
entropy: Dϕ(η ∥µ) = R(η ∥µ). It is standard that the Fenchel conjugate of ϕ (see Equation (9)) is
ϕ∗ : R → R defined by

ϕ∗(x) = ex − 1.

Therefore, Proposition 3 gives the equality stated in Claim 2 for precisely the class of parameterized
fitness functions defined in Example 3 when c(α) = k∗(α). Note also that:

1. If k(x) = 0 for x ≤ κ and k(x) = ∞ otherwise, then k∗(α) = κα for all α ≥ 0.

2. If k(x) = θx for all x ≥ 0 (and k(x) = 0 otherwise), then k∗(α) = 0 if 0 ≤ α ≤ θ and
k∗(α) = ∞ if α > θ.

A.5 Proof of Theorem 2

The following proposition will be central to our first step in the proof of Theorem 2. Given some
p ∈ △(Ω), recall that M(p) = {q ∈ △(Ω) : q ≪ p and R(p ∥ q) < ∞}. In particular, since
R(p ∥ q) < ∞ requires that p ≪ q, the measures q and p are mutually absolutely continuous
whenever q ∈M(p).

Proposition 4. Fix any measurable space (Ω,BΩ). Suppose X : Ω → [−∞,∞) is measurable and
bounded above, and let p ∈ △(Ω). Then,∫

Ω
ln(X(ω)) dp(ω) = inf

q∈M(p)

[
ln

(∫
Ω
X(ω) dq(ω)

)
+R(p ∥ q)

]
. (12)
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In addition, if X is bounded away from zero, that is, if X(ω) ≥ ε > 0 for all ω ∈ Ω, then the
infimum in Equation (12) is uniquely attained by the measure q0 with Radon–Nikodym derivative

dq0
dp

(ω) =
1

X(ω)

∫
Ω

1

X(ω̂)
dp(ω̂)

.

Proposition 4 restricts to q ∈ M(p), thereby ensuring that we do not encounter terms of the
form −∞+∞. That is, while the first term inside the infimum in Equation (12) could take the value
−∞, the second term R(p ∥ q) will necessarily be finite. Proposition 4 is based on dual formulas for
relative entropy that are related to those commonly invoked in the theory of large deviations (e.g.,
Dupuis and Ellis (1997)), although the result itself is distinct from any known results of which we
are aware. The complete proof of the proposition is relegated to Section S2 of the Supplementary
Appendix.

Using Proposition 4, the following lemma provides the first step in our proof of Theorem 2.

Lemma 7. Suppose Ψ is a nonempty set of functions ψ : Z → [−∞,∞) that is pointwise bounded
above, and fix µ ∈ △(Ω × S). For any random action ρ ∈ △s(F), the function V defined by
Equation (2) can be equivalently expressed as

V (ρ) = sup
τ∈R(Ψ|F)

inf
q∈M(µΩ)

[
ln

(∫
Ω

∫
S
Eτ⊗ρ

[
ψ(f(ω, s))

]
dµ(s|ω) dq(ω)

)
+R(µΩ ∥ q)

]
.

Proof. For a given ρ ∈ (△s(F)) and τ ∈ R(Ψ|F), define X : Ω → [−∞,∞) by

X(ω) =

∫
S
Eτ⊗ρ

[
ψ(f(ω, s))

]
dµ(s|ω).

To verify that X is bounded above, recall that ρ ∈ △s(F) has finite support and each f ∈ supp(ρ)

is a simple act. This implies that only finitely many realizations of z occur with positive proba-
bility. Since the set Ψ is pointwise bounded above, this implies that there exists κ ∈ R such that
ψ(f(ω, s)) ≤ κ for all ω ∈ Ω, s ∈ S, ψ ∈ Ψ and f ∈ supp(ρ). Therefore, X(ω) ≤ κ for all ω.
Applying Proposition 4 to this function, we obtain∫

Ω
ln

(∫
S
Eτ⊗ρ

[
ψ(f(ω, s))

]
dµ(s|ω)

)
dµ(ω)

=

∫
Ω
ln(X(ω)) dµΩ(ω)

= inf
q∈M(µΩ)

[
ln

(∫
Ω
X(ω) dq(ω)

)
+R(µΩ ∥ q)

]
= inf

q∈M(µΩ)

[
ln

(∫
Ω

∫
S
Eτ⊗ρ

[
ψ(f(ω, s))

]
dµ(s|ω) dq(ω)

)
+R(µΩ ∥ q)

]
.
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Thus, when V is defined by Equation (2), we have

V (ρ) = sup
τ∈R(Ψ|F)

∫
Ω
ln

(∫
S
Eτ⊗ρ

[
ψ(f(ω, s))

]
dµ(s|ω)

)
dµ(ω)

= sup
τ∈R(Ψ|F)

inf
q∈M(µΩ)

[
ln

(∫
Ω

∫
S
Eτ⊗ρ

[
ψ(f(ω, s))

]
dµ(s|ω) dq(ω)

)
+R(µΩ ∥ q)

]
.

This completes the proof. ■

The next proposition will be central to the second step in the proof of Theorem 2.

Proposition 5. Fix a measure µ ∈ △(Ω × S), and suppose Ξ is a nonempty set of functions
ξ : Ω× S → [−∞,∞) with the following properties:

1. Closedness: When the set of extend reals [−∞,∞] is endowed with its usual topology and
[−∞,∞]Ω×S is endowed with the product topology (i.e., the topology of pointwise convergence),
Ξ is a closed subset of this space.

2. Finite measurability: There exists a finite partition E ⊂ BΩ ⊗ BS of Ω × S such that every
ξ ∈ Ξ is measurable with respect to E.

3. Pointwise boundedness: supξ∈Ξ ξ(ω, s) <∞ for every (ω, s) ∈ Ω× S.

Then,

sup
ξ∈co(Ξ)

inf
q∈M(µΩ)

[
ln

(∫
Ω

∫
S
ξ(ω, s) dµ(s|ω) dq(ω)

)
+R(µΩ ∥ q)

]
= inf

q∈M(µΩ)

[
ln

(
sup
ξ∈Ξ

∫
Ω

∫
S
ξ(ω, s) dµ(s|ω) dq(ω)

)
+R(µΩ ∥ q)

]
.

Proposition 5 is based on an application of an extension of the von Neumann–Sion Minimax
Theorem due to Tuy (2004). Despite the reliance on these established tools and techniques, the
complete proof of this proposition is quite involved and is therefore relegated to Section S3 of the
Supplementary Appendix.

Proceeding with the proof of Theorem 2, fix any ρ ∈ △s(F), and let B = supp(ρ). Since ρ is a
simple lottery over acts, B is a finite set of acts. We will define Ξ to be the set of individual expected
fitness functions that are attainable given the fixed random choice of act under the random action ρ
together with some deterministic adaptation plan. That is, we are focusing for now on adaptations
plans τ that place probability one on some fitness function ψf ∈ Ψ following each f ∈ B.

Formally, deterministic adaptation plans are denoted by (ψf )f∈B ∈ ΨB, or (ψf ) for short.39

Define a mapping J : ΨB → [−∞,∞]Ω×S by

J
[
(ψf̂ )f̂∈B

]
(ω, s) =

∫
B
ψf (f(ω, s)) dρ(f) (13)

39Note that since (ψf ) is an element of ΨB rather than ΨF , the value of ψf is unspecified for f ∈ F \B.
However, since acts f /∈ B are chosen with probability zero, expected individual fitness is fully determined
by the values of ψf for f ∈ B.
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for (ω, s) ∈ Ω× S. Define Ξ to be the range of J , that is,

Ξ =
{
J [(ψf )] ∈ [−∞,∞]Ω×S : (ψf ) ∈ ΨB

}
. (14)

In other words, Ξ is the set of all functions ξ that take the form

ξ(ω, s) =

∫
B
ψf (f(ω, s)) dρ(f)

for some deterministic adaptation plan (ψf )f∈B. The next two lemmas show that taking the convex
hull of Ξ generates precisely the set of individual expected fitness functions that can be attained
through random adaptation plans and that the set Ξ is closed. Indeed, the use of deterministic
action plans above was precisely in order to ensure that Ξ is closed. The proofs of these two lemmas
are based on standard arguments and are relegated to Sections S4 and S5 of the Supplementary
Appendix.

Lemma 8. Define Ξ as in Equation (14). For any random adaptation plan τ ∈ R(Ψ|F), define
ξτ : Ω× S → [−∞,∞) by

ξτ (ω, s) = Eτ⊗ρ
[
ψ(f(ω, s))

]
=

∫
F

∫
Ψ
ψ(f(ω, s)) dτ(ψ|f) dρ(f).

Then,
co(Ξ) =

{
ξτ : τ ∈ R(Ψ|F)

}
.

Lemma 9. The set Ξ defined in Equation (14) is a closed subset of [−∞,∞]Ω×S.

We now verify that the set Ξ defined in Equation (14) satisfies the three conditions from Propo-
sition 5:

• Lemma 9 already showed that this set is closed, which establishes first condition.

• We now show that Ξ satisfies the second condition (finite measurability) from Proposition 5.
Since each f ∈ F is a simple act, and since the set of acts B in the support of ρ is finite,
there exists a finite partition E ⊂ BΩ ⊗BS of Ω× S such that every act f ∈ B is measurable
with respect to E . We claim that every function in Ξ is measurable with respect to E . To see
this, fix any ξ ∈ Ξ. Then, there exists (ψf ) ∈ ΨB such that

ξ(ω, s) =

∫
B
ψf (f(ω, s)) dρ(f).

Fix any E ∈ E and (ω, s), (ω′, s′) ∈ E. By construction of the partition E , we must have
f(ω, s) = f(ω′, s′) for any f ∈ B = supp(ρ). Therefore,

ξ(ω, s) =

∫
B
ψf (f(ω, s)) dρ(f) =

∫
B
ψf (f(ω

′, s′)) dρ(f) = ξ(ω′, s′),

as claimed. Thus, the second condition of Proposition 5 is satisfied.
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• To verify the third condition (pointwise boundedness) in Proposition 5, note that since B is
a finite set of simple acts, there is a finite set Ẑ ⊂ Z such that f(ω, s) ∈ Ẑ for all f ∈ B and
(ω, s) ∈ Ω × S. Recall that the set Ψ is pointwise bounded above, so supψ∈Ψ ψ(z) < ∞ for
all z ∈ Z. Therefore, and any (ω, s) ∈ Ω× S,

sup
ξ∈Ξ

ξ(ω, s) = sup
(ψf )∈ΨB

∫
B
ψf (f(ω, s)) dρ(f)

≤
∫
B
sup
ψ∈Ψ

ψ(f(ω, s)) dρ(f) ≤ max
z∈Ẑ

sup
ψ∈Ψ

ψ(z) <∞,

where the last inequality follows from the finiteness of Ẑ. Thus, Ξ satisfies condition 3.

We are now ready to apply Lemma 7 and Proposition 5. Define V as in Equation (2). Then,
we have

V (ρ) = sup
τ∈R(Ψ|F)

inf
q∈M(µΩ)

[
ln

(∫
Ω

∫
S
Eτ⊗ρ

[
ψ(f(ω, s))

]
dµ(s|ω) dq(ω)

)
+R(µΩ ∥ q)

]
= sup

ξ∈co(Ξ)
inf

q∈M(µΩ)

[
ln

(∫
Ω

∫
S
ξ(ω, s) dµ(s|ω) dq(ω)

)
+R(µΩ ∥ q)

]
= inf

q∈M(µΩ)

[
ln

(
sup
ξ∈Ξ

∫
Ω

∫
S
ξ(ω, s) dµ(s|ω) dq(ω)

)
+R(µΩ ∥ q)

]
= inf

q∈M(µΩ)

[
ln

(
sup
ξ∈Ξ

∫
Ω×S

ξ(ω, s) d(µ⊗ q)(ω, s)

)
+R(µΩ ∥ q)

]
,

where the first equality follows from Lemma 7, the second from Lemma 8, the third from Proposi-
tion 5, and the fourth from the definition of the measure µ⊗ q. Simple manipulations of the term
inside the logarithm yield

sup
ξ∈Ξ

∫
Ω×S

ξ(ω, s) d(µ⊗ q)(ω, s)

= sup
(ψf )∈ΨB

∫
Ω×S

∫
B
ψf (f(ω, s)) dρ(f) d(µ⊗ q)(ω, s)

= sup
(ψf )∈ΨB

∫
B

∫
Ω×S

ψf (f(ω, s)) d(µ⊗ q)(ω, s) dρ(f)

=

∫
B
sup
ψ∈Ψ

∫
Ω×S

ψ(f(ω, s)) d(µ⊗ q)(ω, s) dρ(f)

= Eρ
[
sup
ψ∈Ψ

∫
Ω×S

ψ(f(ω, s)) d(µ⊗ q)(ω, s)

]
,

and hence

V (ρ) = inf
q∈M(µΩ)

[
ln

(
Eρ

[
sup
ψ∈Ψ

∫
Ω×S

ψ(f(ω, s)) d(µ⊗ q)(ω, s)

])
+R(µΩ ∥ q)

]
.

Since this is true for any ρ ∈ (△s(F)), the proof is complete.
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A.6 Proof of Claims 3 and 4

Proof of Claim 3. Given ψ, let a := ψ(x) and b = ψ(y). Then α{ψ}(p) satisfies

ln(α{ψ}(p)a+ (1− α{ψ}(p))b) = p ln a+ (1− p)ln(b)

⇐⇒

α{ψ}(p) =
apb1−p − b

a− b

Continuous differentiability of α{ψ}(p) is then immediate, and with a > b it is straight forward to
check that the first and second derivatives of α{ψ}(p) are positive, establishing increasingness and
convexity. Direct evaluation yields α{ψ}(0) = 0 and α{ψ}(1) = 1.

Consider now ψ1 and ψ2 with ψ2(x) > ψ1(x) > ψ1(y) > ψ2(y) as in the claim. To establish that
α{ψ1}(p) > α{ψ2}(p) for all p ∈ (0, 1), it suffices to verify that for any strictly increasing ψ with a

and b as defined above and for all p ∈ (0, 1)

∂α{ψ}(p)

∂a
< 0 and

∂α{ψ}(p)

∂b
> 0.

Indeed, with some simple algebra,

∂α{ψ}(p)

∂a
< 0

⇐⇒
a1−pbp < (1− p)a+ pb

⇐⇒
(1− p) ln a+ p ln b < ln((1− p)a+ pb)

which is true by the convexity of the logarithm. That ∂α{ψ}(p)

∂b > 0 follows analogously.

■

Proof of Claim 4. For Ψ = {ψ1, ψ2} with ψ2(x) > ψ1(x) > ψ1(y) > ψ2(y) as in the claim, let αΨ(p)

be the risk equivalent of p from optimally choosing ψ ∈ Ψ. It is clear that αΨ(p) must be continuous,
strictly increasing and that αΨ(0) = 0 and αΨ(1) = 1.

To further analyze αΨ(p), consider the hypothetical where ψi with i ∈ {1, 2} is the fitness
function used to evaluate the gamble xpy when p is generated from the unknown urn, and ψj with
j ∈ {1, 2} is the one used to evaluate the gamble xαy when α is generated from the known urn.
Replicating the derivation in the proof of Claim 3 yields that the risk equivalent of p under those
fitness functions is

αi,j(p) =
ψi(x)

pψi(y)
1−p − ψj(y)

ψj(x)− ψj(y)

which is increasing, convex and continuous.

Since ψ1(y) > ψ2(y), there is pU ∈ (0, 1) such that p lnψi(x) + (1 − p) lnψi(y) is maximized
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for i = 1 if and only if p ≤ pU . Further, since αΨ(p) is continuous, strictly increasing and satisfies
αΨ(0) = 0, there is pK ∈ (0, 1) such that ln(αψj (p)ψj(x)+(1−αψj (p))ψj(y)) is maximized for j = 1

if and only if p ≤ pK . Thus p∗ := min{pU , pK} is the largest p ∈ (0, 1) such that αΨ(p) = α1,1(p) =

α{ψ1}(p). Analogously, since ψ2(x) > ψ1(x), p∗ := max{pU , pK} is the smallest p ∈ (0, 1) such that
αΨ(p) = α2,2(p) = α{ψ2}(p).

To find the value of αΨ(p) for p ∈ (p∗, p
∗), it remains to establish the order of pK and pU . By

Claim 3, α{ψ1}(p) > α{ψ2}(p) for all p ∈ (0, 1). First, since αΨ(p) is continuous, it must bet that
pK ̸= pU . Second, note that

α1,2(0) =
ψ1(y)− ψ2(y)

ψ2(x)− ψ2(y)
> 0

α1,2(1) =
ψ1(x)− ψ2(y)

ψ2(x)− ψ2(y)
< 1

α2,1(0) =
ψ2(y)− ψ1(y)

ψ1(x)− ψ1(y)
< 0

α2,1(1) =
ψ2(x)− ψ1(y)

ψ1(x)− ψ1(y)
> 1

To show that pU < pK , suppose to the contrary that pK < pU . Then

αΨ(p) =


α{ψ1}(p) if p ≤ pK

α2,1(p) if p ∈ (pK , pU )

α{ψ2}(p) if p ≥ pU

and pK is the intersection of α{ψ1}(p) with α2,1(p), while pU is the intersection of α{ψ2}(p) with
α2,1(p). But since α2,1(0) < α{ψ}(0) and α2,1(1) > α{ψ}(1) for ψ ∈ {ψ1, ψ2}, and since α2,1(p) is
continuous and increasing, it must intersect the smaller function α{ψ2}(p) before the larger function
α{ψ1}(p), and hence pU < pK , a contradiction to the assumption that pK < pU .

Thus indeed pU < pK and

αΨ(p) =


α{ψ1}(p) if p ≤ pU

α1,2(p) if p ∈ (pU , pK)

α{ψ2}(p) if p ≥ pK

Finally, since α1,2(p) intersects α{ψ1}(p) and α{ψ2}(p) from above, the only non-convexity arises
in pU . This established the claim for p∗ = pU and p∗ = pK . ■

B Overlap Between Divergence and RDU Preferences

As we noted in Section 5.2, while the class of divergence preferences is generally distinct from the
class of rank-dependent utility preferences, there is some overlap, as the following claim demon-
strates.
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Claim 5. Define ψγ as in Example 2 for some 0 ≤ α < 1 < β, and define φ as in Claim 1. Fix
any k satisfying the assumptions of Proposition 2. Then, for any simple act f : S → R,

inf
η∈△(S)

[ ∫
S
f(s) dη(s) + k(Dϕ(η ∥µ))

]
= max

γ∈R

∫
S
ψγ(f(s)) dµ(s) =

∫
Z
z d(φ ◦ Ff,µ)(z),

where ϕ : R+ → [0,∞] is defined by ϕ(t) = 0 for t ∈ [α, β] and ϕ(t) = ∞ otherwise.

Note that the divergence Dϕ(η ∥µ) defined in Claim 5 takes only the values 0 and +∞, so
the equality in the claim holds for any admissible function k (since we must have k(0) = 0 and
k(∞) = ∞).

Proof. Define ϕ by ϕ(y) = 0 if y ∈ [α, β] and ϕ(y) = ∞ otherwise. If is standard that the Fenchel
conjugate of ϕ (see Equation (9)) is ϕ∗ : R → R defined by

ϕ∗(x) =

{
αx if x ≤ 0

βx if x > 0

Notice also that for this function, we have (α̂ϕ)∗(x) = ϕ∗(x) for all α̂ ≥ 0, so the formula for ψγ,α̂
in Proposition 3 reduces to

ψγ,α̂(x) = γ − ϕ∗(γ − x)− k∗(α̂)

=

{
γ + β(x− γ)− k∗(α̂) if x < γ

γ + α(x− γ)− k∗(α̂) if x ≥ γ

for all α̂ ≥ 0. Since minα̂≥0 k
∗(α̂) = 0 (e.g., k∗(0) = 0 if we take k(x) = 0 for x ≤ 0), maximization

over α̂ eliminates this term, and this family of fitness functions reduces to the parametric class ψγ
from Example 2. ■
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For Online Publication

Supplementary Appendix

In this supplement, we provide proofs of Propositions 4 and 5 and Lemmas 8 and 9 from
Appendix A.5 of the main paper. We restate the results below for ease of reference.

S1 Restatement of Results

As in the main text, let △(Ω) denote the set of all countably additive probability measures on the
space Ω. Given some p ∈ △(Ω), recall that M(p) = {q ∈ △(Ω) : q ≪ p and R(p ∥ q) < ∞}. In
particular, since R(p ∥ q) < ∞ requires that p ≪ q, the measures q and p are mutually absolutely
continuous whenever q ∈M(p).

Proposition 4. Fix any measurable space (Ω,BΩ). Suppose X : Ω → [−∞,∞) is measurable and
bounded above, and let p ∈ △(Ω). Then,∫

Ω
ln(X(ω)) dp(ω) = inf

q∈M(p)

[
ln

(∫
Ω
X(ω) dq(ω)

)
+R(p ∥ q)

]
. (S1)

In addition, if X is bounded away from zero, that is, if X(ω) ≥ ε > 0 for all ω ∈ Ω, then the
infimum in Equation (S1) is uniquely attained by the measure q0 with Radon–Nikodym derivative

dq0
dp

(ω) =
1

X(ω)

∫
Ω

1

X(ω̂)
dp(ω̂)

. (S2)

Proposition 4 restricts to q ∈ M(p), thereby ensuring that we do not encounter terms of the
form −∞ + ∞. That is, while the first term inside the infimum in Equation (S1) could take the
value −∞, the second term R(p ∥ q) will necessarily be finite.

Proposition 5. Fix a measure µ ∈ △(Ω × S), and suppose Ξ is a nonempty set of functions
ξ : Ω× S → [−∞,∞) with the following properties:

1. Closedness: When the set of extend reals [−∞,∞] is endowed with its usual topology and
[−∞,∞]Ω×S is endowed with the product topology (i.e., the topology of pointwise convergence),
Ξ is a closed subset of this space.

2. Finite measurability: There exists a finite partition E ⊂ BΩ ⊗ BS of Ω × S such that every
ξ ∈ Ξ is measurable with respect to E.

3. Pointwise boundedness: supξ∈Ξ ξ(ω, s) <∞ for every (ω, s) ∈ Ω× S.
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Then,

sup
ξ∈co(Ξ)

inf
q∈M(µΩ)

[
ln

(∫
Ω

∫
S
ξ(ω, s) dµ(s|ω) dq(ω)

)
+R(µΩ ∥ q)

]
= inf

q∈M(µΩ)

[
ln

(
sup
ξ∈Ξ

∫
Ω

∫
S
ξ(ω, s) dµ(s|ω) dq(ω)

)
+R(µΩ ∥ q)

]
.

(S3)

Lemma 8. Define Ξ as in Equation (14). For any random adaptation plan τ ∈ R(Ψ|F), define
ξτ : Ω× S → [−∞,∞) by

ξτ (ω, s) = Eτ⊗ρ
[
ψ(f(ω, s))

]
=

∫
F

∫
Ψ
ψ(f(ω, s)) dτ(ψ|f) dρ(f).

Then,
co(Ξ) =

{
ξτ : τ ∈ R(Ψ|F)

}
.

Lemma 9. The set Ξ defined in Equation (14) is a closed subset of [−∞,∞]Ω×S.

S2 Proof of Proposition 4

The proof proceeds in three steps. We first prove Equation (S1) for random variables X that are
bounded above and satisfy X(ω) ≥ ε > 0 for all ω ∈ Ω. We then extend the result to all bounded
X ≥ 0. Finally, we extend to any X that is bounded above.40

Step 1: Suppose that X that is bounded above and satisfies X(ω) ≥ ε > 0 for all ω ∈ Ω. Then,
ln(X) is a bounded function, and it is therefore integrable. Fix any measures p, q ∈ △(Ω) with
p≪ q and define a measure p0 by its Radon–Nikodym derivative

dp0
dq

(ω) =
X(ω)∫

Ω
X(ω̂) dq(ω̂)

. (S4)

Since X is strictly positive, p0 and q are mutually absolutely continuous. In particular, since p≪ q,

40The first two steps in our proof employ similar techniques to the proofs of Propositions 1.4.2 and 4.5.1
in Dupuis and Ellis (1997), although the details are quite different.
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this implies p≪ p0. Thus, dp
dp0

exists and dp
dq = dp

dp0
· dp0dq . Note that∫

Ω
ln(X) dp−R(p ∥ q)

=

∫
Ω
ln(X) dp−

∫
Ω
ln

(
dp

dq

)
dp

=

∫
Ω
ln(X) dp−

∫
Ω
ln

(
dp

dp0

)
dp−

∫
Ω
ln

(
dp0
dq

)
dp

=

∫
Ω
ln(X) dp−

∫
Ω
ln

(
dp

dp0

)
dp−

∫
Ω
ln(X) dp+ ln

(∫
Ω
X dq

)
= −R(p ∥ p0) + ln

(∫
Ω
X dq

)
.

By Lemma 1.4.1 in Dupuis and Ellis (1997), R(p ∥ p0) ≥ 0, with equality if and only if p = p0.
Therefore, ∫

Ω
ln(X) dp ≤ ln

(∫
Ω
X dq

)
+R(p ∥ q),

with equality if and only if p = p0. It is not difficult to show that Equations (S2) and (S4) are dual
in the sense that p = p0 if and only if q = q0. Therefore, given p, if we set q = q0 then the above
holds with equality. Moreover, since X is bounded and 1/X ≤ 1/ε,

R(p ∥ q0) =
∫
Ω
ln

(
dp

dq0

)
dp =

∫
Ω
ln(X) dp+ ln

(∫
Ω

1

X
dp

)
<∞,

which implies q0 ∈M(p). Hence the infimum in Equation (S1) is attained at q0.

Step 2: Consider now any bounded X ≥ 0. Define a sequence of random variables (Xn)n∈N by
Xn(ω) = max{X(ω), 1/n}. By step 1, we know that Equation (S1) holds for each Xn and for any
p. Using this, together with the fact that Xn ≥ X for all n, we have∫

Ω
ln(Xn) dp = inf

q∈M(p)

[
ln

(∫
Ω
Xn dq

)
+R(p ∥ q)

]
≥ inf

q∈M(p)

[
ln

(∫
Ω
X dq

)
+R(p ∥ q)

]
.

Since
∫
ln(X1)dp < ∞ and ln(Xn) ↓ ln(X), the monotone convergence theorem for extended real-

valued functions (e.g., Theorem 4.3.2 of Dudley (2002)) implies∫
Ω
ln(X) dp = lim

n→∞

∫
Ω
ln(Xn) dp

≥ inf
q∈M(p)

[
ln

(∫
Ω
X dq

)
+R(p ∥ q)

]
.

Note that these terms could take the value −∞.

To prove the opposite inequality, note that for any n and any q ∈M(p), Equation (S1) applied
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to the function Xn implies ∫
Ω
ln(Xn) dp ≤ ln

(∫
Ω
Xn dq

)
+R(p ∥ q).

Since both sides of this inequality are finite for all n, we can again take the limit as n → ∞ and
apply the monotone convergence theorem to obtain∫

Ω
ln(X) dp ≤ ln

(∫
Ω
X dq

)
+R(p ∥ q).

Since this is true for all q ∈M(p), we have∫
Ω
ln(X) dp ≤ inf

q∈M(p)

[
ln

(∫
Ω
X dq

)
+R(p ∥ q)

]
.

Thus, Equation (S1) holds for any bounded X ≥ 0.

Step 3: Finally, consider any X that is bounded above. Let X+(ω) = max{X(ω), 0}. Since
we have adopted the standard convention that ln(x) = −∞ for any x ≤ 0, we have ln(X+(ω)) =

ln(X(ω)) for all ω. Therefore, since Equation (S1) holds for X+ by step 2,∫
Ω
ln(X) dp =

∫
Ω
ln(X+) dp

= inf
q∈M(p)

[
ln

(∫
Ω
X+ dq

)
+R(p ∥ q)

]
≥ inf

q∈M(p)

[
ln

(∫
Ω
X dq

)
+R(p ∥ q)

]
.

To establish the opposite inequality, we consider two cases. Let A = {ω ∈ Ω : X(ω) ≤ 0}. The first
case is when p(A) > 0. Then,

∫
Ω ln(X)dp = −∞, so the above must hold with equality. The second

case is when p(A) = 0. Then, q(A) = 0 for all q ∈ M(p), since any q ∈ M(p) must be absolutely
continuous with respect to p. Therefore,

∫
ΩX dq =

∫
ΩX

+dq for all q ∈M(p) and hence

inf
q∈M(p)

[
ln

(∫
Ω
X dq

)
+R(p ∥ q)

]
= inf

q∈M(p)

[
ln

(∫
Ω
X+ dq

)
+R(p ∥ q)

]
.

Thus, the equality is established for both cases, which completes the proof.

S3 Proof of Proposition 5

Our proof will rely on a version of the von Neumann–Sion Minimax Theorem. von Neumann (1928)
proved that when F : C × D → R is a bilinear function and C and D are finite-dimensional
simplexes,

sup
x∈C

inf
y∈D

F (x, y) = inf
y∈D

sup
x∈C

F (x, y).
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Perhaps the most important and well-known extension of von Neumann’s result is due to Sion
(1958), who showed that the same conclusion can be derived under the weaker assumptions that C
andD are convex subsets of topological vector spaces, one of these sets is compact, F is quasiconcave
and upper semicontinuous in x, and F is quasiconvex and lower semicontinuous in y. Sion’s result
is not quite strong enough for our purposes, since in our application it may be that neither C nor
D is compact and since F may not be lower semicontinuous in y. We will therefore rely on the
following generalization of the von Neumann–Sion Theorem, which is due to Tuy (2004).

Theorem S1 (von Neumann–Sion–Tuy Minimax Theorem). Let C be a closed and convex subset
of a topological vector space, and let D be a convex subset of a topological vector space. Suppose
F : C ×D → R satisfies the following conditions:

1. For every y ∈ D, the function x 7→ F (x, y) is quasiconcave and upper semicontinuous on C.

2. For every x ∈ C and y, y′ ∈ D, the function λ 7→ F (x, λy + (1 − λ)y′) is quasiconvex and
lower semicontinuous on [0, 1].

3. There exists some η < infy∈D supx∈C F (x, y) and a nonempty finite set L ⊂ D such that the
set CLη = {x ∈ C : miny∈L F (x, y) ≥ η} is compact.

Then,
sup
x∈C

inf
y∈D

F (x, y) = inf
y∈D

sup
x∈C

F (x, y).

This result is a special case of Theorem 2 in Tuy (2004). His result requires that F be what
he calls α-connected. This condition is implied by our assumptions that C is closed and convex,
D is convex, F is quasiconcave and upper semicontinuous in x, and λ 7→ F (x, λy + (1 − λ)y′) is
quasiconvex in λ for all x, y, y′. His result also requires the lower semicontinuity property that
we assumed in condition 2.41 The final assumption needed for his result is condition 3.42 For
completeness and ease of reference, we include a complete proof of Theorem S1 in Section S6.

Note that the theorem of Sion (1958) follows as a corollary to this result: If F is quasiconvex
and lower semicontinuous in y then condition 2 is implied, and if D is compact then condition 3 is
implied (given that F is upper semicontinuous in x).

We now proceed with the proof of Proposition 5. Fix any measure µ ∈ △(Ω × S), and fix any
convex set Ξ satisfying the properties described in the statement of the proposition. We proceed in
several steps. Using the second property of Ξ from the statement of the proposition, we know that

41Note that the assumption of lower semicontinuity in y in every line segment (that is, lower semicontinuity
of the mapping λ 7→ F (x, λy + (1 − λ)y′) for all x, y, y′) in condition 2 is in general weaker than assuming
lower semicontinuity in y. However, the assumption of quasiconvexity in y in every line segment (that
is, quasiconvexity of the mapping λ 7→ F (x, λy + (1 − λ)y′) for all x, y, y′) in condition 2 is equivalent to
quasiconvexity in y. Also, note that we have switched the roles of C and D compared to Tuy (2004).

42Strictly speaking, Theorem 2 in Tuy (2004) assumes that CL
η is compact for η = supx∈C infy∈D F (x, y)

and shows that η < infy∈D supx∈C F (x, y) leads to a contradiction. As is evident from his proof, our
condition 3 is sufficient to obtain the same result.
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there exists a finite partition E of Ω×S such that every ξ ∈ Ξ is measurable with respect to E . We
can enumerate the elements of this partition as

E = {Ei : i ∈ N},

where N is a finite index set. For each i ∈ N , fix an arbitrary element (ωi, si) ∈ Ei. Since each
ξ ∈ Ξ is measurable with respect E , we know that ξ(ω, s) = ξ(ωi, si) for all i ∈ N and (ω, s) ∈ Ei.
Consider the mapping

ξ 7→ θξ = (ξ(ωi, si))i∈N

from Ξ into [−∞,∞]N . It is easy to see that this mapping is a homeomorphism from Ξ to the set

Θ = {θξ : ξ ∈ Ξ} ⊂ [−∞,∞]N .

In other words, the set of functions Ξ is topologically equivalent to the set of vectors Θ.

As in the main paper, for any q ∈M(µΩ), define the measure µ⊗ q on Ω× S to have marginal
q on Ω and conditional distribution µ(·|ω) on S. That is, for any event E in the product σ-algebra
BΩ ⊗ BS , let

µ⊗ q(E) =

∫
Ω

∫
S
1[(ω, s) ∈ E] dµ(s|ω) dq(ω).

Define a function H : [−∞,∞)N ×M(µΩ) → R+ by

H(θ, q) = max

{
0,
∑
i∈N

θi · µ⊗ q(Ei)

}
exp(R(µΩ ∥ q)).

Lemma S1. The set Θ and function H satisfy the following conditions:

1. When [−∞,∞]N is endowed with the product topology (i.e., the topology of pointwise conver-
gence), Θ is compact.

2. There exists κ ∈ R such that θi ≤ κ for all θ ∈ Θ and i ∈ N .

3. Equation (S3) from the statement of the proposition is equivalent to the following:

sup
θ∈co(Θ)

inf
q∈M(µΩ)

H(θ, q) = inf
q∈M(µΩ)

sup
θ∈Θ

H(θ, q). (S5)

Proof. Since Ξ is a closed subset of [−∞,∞]Ω×S by the first property in the statement of the
proposition and since Ξ and Θ are homeomorphic, Θ is closed. In addition, since [−∞,∞]N is a
compact space when endowed with the product topology,43 this implies that Θ is compact. Since Ξ

is pointwise bounded above by the third property in the statement of the proposition, we have

sup
θ∈Θ

θi = sup
ξ∈Ξ

ξ(ωi, si) <∞

43It is easy to see that the set of extended reals [−∞,∞] is compact in its usual topology (see Example 2.75
in Aliprantis and Border (2006)), and hence [−∞,∞]N endowed with the product topology is compact by
the Tychonoff Product Theorem (Theorem 2.61 in Aliprantis and Border (2006)).
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for all i ∈ N . In particular, since N is finite, there exists κ ∈ R such that θi ≤ κ for all θ ∈ Θ and
i ∈ N . To establish the third condition, note that44

ln

[
sup

θ∈co(Θ)
inf

q∈M(µΩ)
H(θ, q)

]
= sup

θ∈co(Θ)
inf

q∈M(µΩ)

[
ln

(∑
i∈N

θi · µ⊗ q(Ei)

)
+R(µΩ ∥ q)

]
= sup

ξ∈co(Ξ)
inf

q∈M(µΩ)

[
ln

(∑
i∈N

ξ(ωi, si) · µ⊗ q(Ei)

)
+R(µΩ ∥ q)

]
= sup

ξ∈co(Ξ)
inf

q∈M(µΩ)

[
ln

(∫
Ω×S

ξ(ω, s) d(µ⊗ q)(ω, s)

)
+R(µΩ ∥ q)

]
.

Similarly,

ln

[
inf

q∈M(µΩ)
sup
θ∈Θ

H(θ, q)

]
= inf

q∈M(µΩ)

[
ln

(
sup
θ∈Θ

∑
i∈N

θi · µ⊗ q(Ei)

)
+R(µΩ ∥ q)

]
= inf

q∈M(µΩ)

[
ln

(
sup
ξ∈Ξ

∫
Ω×S

ξ(ω, s) d(µ⊗ q)(ω, s)

)
+R(µΩ ∥ q)

]
.

Thus, Equation (S3) is equivalent to Equation (S5). ■

Next, we show that we can remove any indices i ∈ N that correspond to probability zero events.
By definition, q and µΩ must be mutually absolutely continuous for any q ∈ M(µΩ), and hence
µ⊗ q and µ are also mutually absolutely continuous. Thus, for any i ∈ N and q ∈M(µΩ),

µ⊗ q(Ei) = 0 ⇐⇒ µ(Ei) = 0.

We can therefore remove any events Ei ∈ E that occur with zero probability under µ, since such
events must also occur with zero probability under µ⊗ q for any q ∈M(µΩ). That is, consider the
index set M ⊂ N given by

M = {i ∈ N : µ(Ei) > 0}.

Define the projection function PM : [−∞,∞]N → [∞,∞]M by PM (θ) = (θi)i∈M , and set

Θ′ = PM (Θ) = {θ′ = PM (θ) : θ ∈ Θ}.

Define a function F : [−∞,∞)M ×M(µΩ) → R+ by

F (θ, q) = max

{
0,

∑
i∈M

θi · µ⊗ q(Ei)

}
exp(R(µΩ ∥ q)).

44To deal with vectors θ and functions ξ that can take the value −∞, we adopt the notational convention
throughout that ln(x) = −∞ for any x ∈ [−∞, 0]. Hence ln(max{0, x}) = ln(x) for all x ∈ [−∞,∞).
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Lemma S2. The set Θ′ and function F satisfy the following conditions:

1. When [−∞,∞]M is endowed with the product topology, Θ′ is compact (hence closed).

2. There exists κ ∈ R such that θi ≤ κ for all θ ∈ Θ′ and i ∈M .

3. Equation (S5) is equivalent to the following:

sup
θ∈co(Θ′)

inf
q∈M(µΩ)

F (θ, q) = inf
q∈M(µΩ)

sup
θ∈Θ′

F (θ, q). (S6)

Proof. The projection function PM is continuous when [−∞,∞]N and [−∞,∞]M are endowed with
their product topologies. Therefore, the set Θ′ is compact, as it is the image of the compact set Θ

under the continuous function PM . Since [−∞,∞]M is a Hausdorff space, compact subsets of of this
space are closed (Lemma 2.32 in Aliprantis and Border (2006)). Hence, Θ′ is closed. The second
condition follows directly from the second condition in Lemma S1. To establish the third condition,
recall from above that µ and µ ⊗ q are mutually absolutely continuous for any q ∈ M(µΩ). This
implies that for any θ ∈ [−∞,∞)N , if we take θ′ = PM (θ) ∈ [−∞,∞)M , then H(θ, q) = F (θ′, q)

for all q ∈M(µΩ). Therefore, Equations (S5) and (S6) are equivalent. ■

We now show that we can remove any θ ∈ Θ′ such that θi = −∞ for some i ∈ M , thereby
reducing this set to a subset of the Euclidean space RM . Formally, let

Θ′′ = {θ ∈ Θ′ : θi > −∞, ∀i ∈M}.

Note that it is possible to have Θ′′ = ∅.

Lemma S3. The set Θ′′ and function F satisfy the following conditions:

1. When RM is endowed with the Euclidean topology, Θ′′ is closed.

2. There exists κ ∈ R such that θi ≤ κ for all θ ∈ Θ′′ and i ∈M .

3. Equation (S6) holds either if Θ′′ = ∅, or if Θ′′ ̸= ∅ and

sup
θ∈co(Θ′′)

inf
q∈M(µΩ)

F (θ, q) = inf
q∈M(µΩ)

sup
θ∈Θ′′

F (θ, q). (S7)

4. Fix any q ∈ M(µΩ). When restricted to RM (endowed with the Euclidean topology), the
mapping θ 7→ F (θ, q) is continuous, nondecreasing, quasiconcave, and quasiconvex.

Proof. Since Θ′ is a closed subset of [−∞,∞]M (endowed with the product topology of the extended
reals), it is easy to verify that Θ′′ is a closed subset of RM (endowed with the Euclidean topology).
Note, however, that Θ′′ need not be compact. Next, the second condition follows directly from
the second condition in Lemma S2. To establish the third condition, note that if θ ∈ co(Θ′) has
θi = −∞ for some i ∈M , then for any q ∈M(µΩ),∑

i∈M
θi · µ⊗ q(Ei) = −∞,
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and hence F (θ, q) = 0. Thus, if Θ′′ = ∅, then F (θ, q) = 0 for all θ ∈ co(Θ′) and q ∈ M(µΩ), so
Equation (S6) holds trivially. In the alternative case of Θ′′ ̸= ∅, it is immediate that Equations (S6)
and (S7) are equivalent.

To verify the fourth condition, fix any q ∈M(µΩ). Note that the mapping

θ 7→
∑
i∈M

θi · µ⊗ q(Ei)

is continuous, nondecreasing, and linear. Therefore, the mapping θ 7→ F (θ, q) is continuous, nonde-
creasing, quasiconcave, and quasiconvex (though it is obviously no longer linear). ■

To apply the minimax theorem, we need the set over which the supremum is being taking to be
closed an convex. That is, we will want to show that we can replace co(Θ′′) with cl(co(Θ′′)) on the
left side of Equation (S7) and replace Θ′′ with cl(co(Θ′′)) on the right side without affecting either
of these values. The next two lemmas show that this is possible for the set Θ′′ and function F in
question.

Lemma S4. Suppose Y ⊂ RM is closed, and suppose there exists κ ∈ R such that yi ≤ κ for all
y ∈ Y and i ∈ M . Then, for any y ∈ cl(co(Y )) there exists y′ ∈ co(Y ) such that y′ ≥ y (that is,
y′i ≥ yi for all i ∈M).

Proof. Suppose y ∈ cl(co(Y )). There there exists a sequence (yn) in co(Y ) such that yn → y.
Let m be the cardinality of the set M . By Caratheodory’s Convexity Theorem (Theorem 5.32 in
Aliprantis and Border (2006)), every element of co(Y ) can be written as a convex combination of
at most m+ 1 vectors from Y . Therefore, each yn can be written as

yn =
m+1∑
j=1

αjny
j
n,

where yjn ∈ Y for all n ∈ N and j ∈ {1, . . . ,m + 1}, and αn = (α1
n, . . . , α

m+1
n ) ∈ [0, 1]m+1 satisfies

α1
n + · · ·+ αm+1

n = 1 for all n ∈ N. Since [0, 1]m+1 is compact, (αn) has a convergent subsequence.
With slight abuse of notation, denote this subsequence again by (αn). That is, we can assume
without loss of generality that αn → α for some α = (α1, . . . , αm+1) ∈ [0, 1]m+1.

We claim that the sequence (yjn) in Y is bounded for all j such that αj > 0. For suppose to
the contrary that (yjn) is unbounded. Then, since Y is bounded above by κ, this would imply there
there exists some subsequence (yjnk) and some dimension i ∈ M such that yji,nk → −∞. However,

since αj > 0 and yj
′

i,nk
≤ κ for all j′, this implies yi,nk → −∞, contradicting the fact that this

subsequence converges to yi ∈ R. Thus, (yjn) must be bounded.

Therefore, by passing to subsequences if necessary, it is without loss of generality to assume that
(yjn) converges for all j for which αj > 0. Denote the limits of these sequences by yj , respectively,
and let

y′ =
∑

j∈{1,...,m+1}:
αj>0

αjyj .
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Since Y is closed, each of these yj is in Y , and hence y′ ∈ co(Y ). Now, for every n ∈ N and i ∈M ,

yi,n =
∑

j∈{1,...,m+1}:
αj>0

αjny
j
i,n +

∑
j∈{1,...,m+1}:

αj=0

αjny
j
i,n ≤

∑
j∈{1,...,m+1}:

αj>0

αjny
j
i,n +

∑
j∈{1,...,m+1}:

αj=0

αjnκ,

since yji,n ≤ κ. Taking limits, the left side of this inequality converges to yi and the right side
converges to y′i. Thus, y ≤ y′, as claimed. ■

Lemma S5. If Θ′′ ̸= ∅, Equation (S7) is equivalent to the following:

sup
θ∈cl(co(Θ′′))

inf
q∈M(µΩ)

F (θ, q) = inf
q∈M(µΩ)

sup
θ∈cl(co(Θ′′))

F (θ, q). (S8)

Proof. The function F in nondecreasing in θ by Lemma S3. Therefore, for any θ, θ′ ∈ RM and
q ∈M(µΩ), θ′ ≥ θ implies F (θ′, q) ≥ F (θ, q). Therefore,

θ′ ≥ θ =⇒ inf
q∈M(µΩ)

F (θ′, q) ≥ inf
q∈M(µΩ)

F (θ, q).

Also, since Θ′′ is closed and bounded above by Lemma S3, Lemma S4 implies for any θ ∈ cl(co(Θ′′))

there exists θ′ ∈ co(Θ′′) such that θ′ ≥ θ. Therefore,

sup
θ∈co(Θ′′)

inf
q∈M(µΩ)

F (θ, q) = sup
θ∈cl(co(Θ′′))

inf
q∈M(µΩ)

F (θ, q).

This establishes that the left sides of Equations (S7) and (S8) are the same.

To see that the right sides of these equations are also the same, first fix any θ ∈ co(Θ′′). Thus,
θ =

∑m
j=1 α

jθj for some m ∈ N and θj ∈ Θ′′, j ∈ {1, . . . ,m}. Since for any q ∈M(µΩ), the mapping
θ 7→ F (θ, q) is quasiconvex by Lemma S3, this implies that F (θ) ≤ F (θj) for some j. Therefore,

sup
θ∈Θ′′

F (θ, q) = sup
θ∈co(Θ′′)

F (θ, q)

for every q ∈M(µΩ). By the same arguments used above, it is also true that

sup
θ∈co(Θ′′)

F (θ, q) = sup
θ∈cl(co(Θ′′))

F (θ, q).

Combining these observations, we see that the right sides of Equations (S7) and (S8) are the
same. ■

We are almost ready to apply the minimax theorem to prove that Equation (S8) holds whenever
Θ′′ ̸= ∅. First, the following lemma will be used to establish some of the necessary properties of the
mapping q 7→ F (θ, q).

Lemma S6. Suppose X : Ω → R is measurable and bounded, and fix any p ∈ △(Ω). Then, for any
q, q′ ∈M(p), the mapping

λ 7→ max

{
0,

∫
Ω
X d(λq + (1− λ)q′)

}
exp(R

(
p
∥∥λq + (1− λ)q′

)
)
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is quasiconvex and lower semicontinuous on the interval [0, 1].

Proof. Our proof will make use of the Donsker–Varadhan variational formula (see, for example,
Lemma 1.4.3 in Dupuis and Ellis (1997)), which states that for any p, r ∈ △(Ω),

R(p ∥ r) = sup
Y ∈Bb(Ω)

[∫
Ω
Y dp− ln

(∫
Ω
exp(Y ) dr

)]
,

where Bb(Ω) denotes the space of all bounded Borel measurable real functions on Ω. Therefore,

exp(R(p ∥ r)) = sup
Y ∈Bb(Ω)

exp
(∫

Ω Y dp
)∫

Ω exp(Y ) dr
,

and hence

max

{
0,

∫
Ω
X dr

}
exp(R(p ∥ r)) = max

{
0, sup

Y ∈Bb(Ω)

exp
(∫

Ω Y dp
) ∫

ΩX dr∫
Ω exp(Y ) dr

}
.

We will show for any X,Y ∈ Bb(Ω), p ∈ △(Ω), and q, q′ ∈M(p), the function h : [0, 1] → R defined
by

h(λ) =

exp

(∫
Ω
Y dp

)∫
Ω
X d(λq + (1− λ)q′)∫

Ω
exp(Y ) d(λq + (1− λ)q′)

is quasiconvex and lower semicontinuous. This will establish the claim in the statement of the
lemma, since the supremum of a set of quasiconvex and lower semicontinuous functions retains
these properties.

Continuity of the function h in λ is immediate. To see that h is quasiconvex, fix any γ ∈ R and
fix any λ1, λ2 ∈ [0, 1] such that h(λ1) ≤ γ and h(λ2) ≤ γ. Suppose without loss of generality that
λ1 ≤ λ2. We need to show that h(λ) ≤ γ for any λ ∈ (λ1, λ2). Note that h(λi) ≤ γ is equivalent to

exp

(∫
Ω
Y dp

)∫
Ω
X d(λiq + (1− λi)q

′) ≤ γ

∫
Ω
exp(Y ) d(λiq + (1− λi)q

′).

Any λ ∈ (λ1, λ2) can be written as αλ1 + (1−α)λ2 for α = (λ2 − λ)/(λ2 − λ1). Therefore, we have

exp

(∫
Ω
Y dp

)∫
Ω
X d(λq + (1− λ)q′)

= α exp

(∫
Ω
Y dp

)∫
Ω
X d(λ1q + (1− λ1)q

′) + (1− α) exp

(∫
Ω
Y dp

)∫
Ω
X d(λ2q + (1− λ2)q

′)

≤ αγ

∫
Ω
exp(Y ) d(λ1q + (1− λ1)q

′) + (1− α)γ

∫
Ω
exp(Y ) d(λ2q + (1− λ2)q

′)

= γ

∫
Ω
exp(Y ) d(λq + (1− λ)q′),

which implies h(λ) ≤ γ. This establishes that h is quasiconvex, which completes the proof. ■
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The following lemma applies Theorem S1 to prove that Equation (S8) holds whenever Θ′′ ̸= ∅.
In light of Lemmas S1, S2, S3, and S5, this will establish Equation (S3) and complete the proof of
Proposition 5.

Lemma S7. If Θ′′ ̸= ∅, then Equation (S8) is satisfied.

Proof. We only need to establish that the assumptions of Theorem S1 are satisfied for the sets
C = cl(co(Θ′′)), D =M(µΩ), and for the function F defined above.

Note that C is a closed and convex subset of RM by definition. It is also straightforward to
show that the set D is convex. To see that condition 1 is satisfied, recall that for any q ∈ D, the
mapping θ 7→ F (θ, q) is continuous and quasiconcave on C by Lemma S3.

Next, fix any θ ∈ C and define X : Ω → R by45

X(ω) =

∫
S

∑
i∈M

θi · 1[(ω, s) ∈ Ei] dµ(s|ω).

Then, for any q ∈M(µΩ),

max

{
0,

∫
Ω
X dq

}
exp(R(µΩ ∥ q))

= max

{
0,

∫
Ω×S

∑
i∈M

θi · 1[(ω, s) ∈ Ei] d(µ⊗ q)(ω, s)

}
exp(R(µΩ ∥ q))

= max

{
0,

∑
i∈M

θi · µ⊗ q(Ei)

}
exp(R(µΩ ∥ q))

= F (θ, q).

Therefore, Lemma S6 applied to this random variable X and to p = µΩ implies that for any
q, q′ ∈ D, the mapping λ 7→ F (θ, λq + (1− λ)q′) is quasiconvex and lower semicontinuous on [0, 1].
Thus, condition 2 in Theorem S1 are satisfied.

Finally, we show that either condition 3 holds for L = {µΩ} and some η > 0, or Equation (S8)
holds trivially with both sides of the equality equal to zero. Thus, there are two cases to consider.
The first case is when

inf
q∈D

sup
θ∈C

F (θ, q) > 0.

In this case, fix any η > 0 that is strictly less than this value and take L = {µΩ}. The set

CµΩη ≡ {θ ∈ C : F (θ, µΩ) ≥ η}

is closed since C is closed and F is continuous in θ. Given this, and since C is a subset of the
finite-dimensional Euclidean space RM , the set CµΩη is compact if and only if it is bounded. By

45Note that the sets {s ∈ S : (ω, s) ∈ Ei} are measurable for each ω ∈ Ω and i ∈ M by Lemma 4.46 in
Aliprantis and Border (2006), and hence the function being integrated is indeed measurable.
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Lemma S3, there exists κ ∈ R such that θi ≤ κ for all θ ∈ C and i ∈M . Let

β ≡ min
i∈M

µ(Ei) > 0.

Then, for any θ ∈ C and i ∈M ,∑
i′∈M

µ(Ei′)θi′ ≤ µ(Ei)θi + (1− µ(Ei))κ ≤ βθi + (1− β)κ.

Thus, since R(µΩ ∥µΩ) = 0 and since η > 0, for any θ ∈ CµΩη and i ∈M , we have

0 < η ≤ F (θ, µΩ) =
∑
i′∈M

µ(Ei′)θi′ ≤ βθi + (1− β)κ

=⇒ θi > −(1− β)κ

β
.

Therefore, the set CµΩη is bounded above by κ and bounded below by −(1 − β)κ/β. This implies
that CµΩη is bounded, hence compact. Thus, all of the assumptions of Theorem S1 are satisfied, so
we can conclude that Equation (S8) holds.

The second case is when
inf
q∈D

sup
θ∈C

F (θ, q) = 0.

In this case, since F ≥ 0 and since

sup
θ∈C

inf
q∈D

F (θ, q) ≤ inf
q∈D

sup
θ∈C

F (θ, q),

Equation (S8) must hold with both sides equal to zero. Thus, in either case, the equation is satisfied.
This completes the proof. ■

S4 Proof of Lemma 8

Fix any ξ ∈ co(Ξ). By the definition of Ξ and the definition of the convex hull, there exists n ∈ N
and (ψ1

f ), . . . , (ψ
n
f ) ∈ ΨB and α1, . . . , αn ≥ 0 with α1 + · · ·+ αn = 1 such that

ξ(ω, s) =

n∑
i=1

αi

∫
B
ψif (f(ω, s)) dρ(f)

=

∫
B

n∑
i=1

αiψ
i
f (f(ω, s)) dρ(f)

=

∫
F

∫
Ψ
ψ(f(ω, s)) dτ(ψ|f) dρ(f),
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where we define τ ∈ R(Ψ|F) for each f ∈ B by46

τ(ψ|f) =
n∑
i=1

αi1[ψ = ψif ].

Thus, ξ = ξτ .

Conversely, suppose ξ = ξτ for some τ ∈ R(Ψ|F). Since τ(·|f) has finite support for all f , and
since B is finite, the product measure on ΨB generated by these measures also has finite support.
That is, there exists a product measure ν on ΨB with finite support, defined by

ν
(
(ψf )f∈B

)
=

∏
f∈B

τ(ψf |f).

We can enumerate the elements of the support of this measure as

supp(ν) =
{
(ψ1

f ), . . . , (ψ
n
f )
}
.

Thus,

ξτ (ω, s) =

∫
F

∫
Ψ
ψ(f(ω, s)) dτ(ψ|f) dρ(f)

=

∫
B

∫
ΨB

ψf (f(ω, s)) dν
(
(ψf̂ )f̂∈B

)
dρ(f)

=
n∑
i=1

ν
(
(ψi

f̂
)f̂∈B

)∫
B
ψif (f(ω, s)) dρ(f),

and hence ξτ ∈ co(Ξ).

S5 Proof of Lemma 9

The set [−∞,∞] is a compact Hausdorff space when endowed with its usual topology.47 By the
Tychonoff Product Theorem (Theorem 2.61 in Aliprantis and Border (2006)), the set [−∞,∞]Z

endowed with the product topology (also know as the topology of pointwise convergence) is compact.
Since Ψ ⊂ [−∞,∞]Z is closed, it is also compact. Applying the Tychonoff Product Theorem again,
the set ΨB is compact in the product topology.

We next show that the mapping J : ΨB → [−∞,∞]Ω×S defined in Equation (13) is continuous
when [−∞,∞]Ω×S is endowed with the product topology. To see this, fix any net (ψαf )α∈D in ΨB

that converges to some (ψf ) ∈ ΨB. We will show that J [(ψαf )] converges to J [(ψf )].48 First, by the

46We can define τ(·|f) arbitrarily for f ∈ F \B.
47The topology on [−∞,∞] is generated by sets of the form (a, b), [−∞, c) and (c,∞] for a, b, c ∈ R. It

is easy to see that under this topology, [−∞,∞] is Hausdorff (meaning that for any two distinct points x, y
there exist neighborhoods U of x and V of y such that U ∩ V = ∅) and compact. Indeed, [−∞,∞] is often
referred to as the two-point compactification of R (see Example 2.75 in Aliprantis and Border (2006)).

48It is well known that the product topology on an uncountable product space cannot be completely
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definition of the product topology, convergence of the net (ψαf ) implies that ψαf (z) → ψf (z) for all
f and z. In particular, ψαf (f(ω, s)) → ψf (f(ω, s)) for all f ∈ B and (ω, s) ∈ Ω×S. Therefore, since
convergence is preserved under scalar multiples and finite sums,∑

f∈B
ψαf (f(ω, s))ρ(f) →

∑
f∈B

ψf (f(ω, s))ρ(f)

for all ω and s. Thus, J [(ψαf )] → J [(ψf )] in the topology of pointwise convergence on [−∞,∞]Ω×S .

Therefore, the set Ξ = J [ΨB] is compact, since it is the image of the compact set ΨB under the
continuous function J . Moreover, since [−∞,∞]Ω×S is a Hausdorff space, compact subsets of this
space are closed (Lemma 2.32 in Aliprantis and Border (2006)). Thus, Ξ is closed.

S6 Proof of Theorem S1

This proof directly replicates the arguments in Tuy (2004) and is included only for ease of reference.
Throughout the proof, define δ and γ as follows:

δ ≡ sup
x∈C

inf
y∈D

F (x, y) and γ ≡ inf
y∈D

sup
x∈C

F (x, y).

Also, for any α ∈ R and y ∈ D define

Cα(y) = {x ∈ C : F (x, y) ≥ α}.

Lemma S8. Suppose C is a closed and convex subset of a topological vector space, and suppose D
is a convex subset of a topological vector space. If F : C ×D → R satisfies conditions 1 and 2 in
Theorem S1 and if γ > −∞, then for any α < γ and any y, y′ ∈ D,

Cα(y) ∩ Cα(y′) ̸= ∅.

Proof. Fix any α < γ, and denote Cα(y) simply by C(y) for ease of notation. Note that α < γ

implies that supx∈C F (x, y) > α for all y ∈ D. Thus, C(y) is nonempty for all y ∈ D. In addition,
since C is closed and convex and since x 7→ F (x, y) is quasiconcave and upper semicontinuous for
every y by condition 1, C(y) is closed and convex for every y. Finally, for any x ∈ C and y, y′ ∈ D,
the quasiconvexity of the mapping λ 7→ F (x, λy + (1 − λ)y′) assumed in condition 2 implies that,
for every λ ∈ [0, 1],

F (x, λy + (1− λ)y′) ≤ max{F (x, y), F (x, y′)}

and therefore
C(λy + (1− λ)y′) ⊂ C(y) ∪ C(y′). (S9)

described by sequential convergence, as such spaces are not metrizable. Although B is finite, Z could be
uncountable. Hence we must use nets to establish the continuity of J .
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Suppose, contrary to the claim in the lemma, that there exists y, y′ ∈ D such that

C(y) ∩ C(y′) = ∅.

We will show that this leads to a contradiction. For any λ ∈ [0, 1], let yλ = λy+ (1− λ)y′. For any
λ ∈ [0, 1], note that we cannot have both C(yλ)∩C(y) ̸= ∅ and C(yλ)∩C(y′) ̸= ∅. For if this were
true, then we would have C(yλ) = Ey ∪ Ey′ where Ey = C(yλ) ∩ C(y) and Ey′ = C(yλ) ∩ C(y′)
are two nonempty, closed, and disjoint sets, which is impossible since C(yλ) is convex and hence
connected. Therefore, for every λ ∈ [0, 1], one and only one of the following alternatives holds:

C(yλ) ⊂ C(y) or C(yλ) ⊂ C(y′).

Denote by My and My′ the set of all λ ∈ [0, 1] such that C(yλ) ⊂ C(y) and C(yλ) ⊂ C(y′),
respectively. Then, 0 ∈ My, 1 ∈ My′ , and My ∪ My′ = [0, 1] by the preceding arguments. In
additional, by Equation (S9),

C(yλ) ⊂ C(yλ1) ∪ C(yλ2) ∀λ ∈ [λ1, λ2],

and hence λ ∈My implies [0, λ] ⊂My and λ ∈My′ implies [λ, 1] ⊂My′ . Let λ∗ = supMy = infMy′ ,
where the second equality holds because My ∩My′ = ∅ and My ∪My′ = [0, 1].

Suppose without loss of generality that λ∗ ∈ My (the argument is analogous for λ∗ ∈ My′).
We cannot have λ∗ = 1 since this would imply C(y) ⊂ C(y′). Therefore, 0 ≤ λ∗ < 1. Since
α < γ ≤ supx∈C F (x, yλ∗), there is some x̄ ∈ C such that F (x̄, yλ∗) > α. Since the mapping
λ 7→ F (x̄, yλ) is lower semicontinuous by condition 2, there exists ε > 0 such that F (x̄, yλ∗+ε) > α,
and hence x̄ ∈ C(yλ∗+ε). But since x̄ ∈ C(yλ∗) ⊂ C(y), this implies C(yλ∗+ε) ⊂ C(y), that is,
λ∗+ε ∈My, contradicting the definition of λ∗. Thus, C(y)∩C(y′) = ∅ leads to a contradiction. ■

Lemma S9. Suppose C is a closed and convex subset of a topological vector space, and suppose D
is a convex subset of a topological vector space. If F : C ×D → R satisfies conditions 1 and 2 in
Theorem S1 and if γ > −∞, then for any α < γ and any finite set L ⊂ D,⋂

y∈L
Cα(y) ̸= ∅. (S10)

Proof. We prove by induction. We know from Lemma S8 that Equation (S10) holds if |L| = 2. We
now show that if this equation holds for all C,D,L as in the statement of the lemma when |L| = k

then it also holds for all such C,D,L when |L| = k + 1.

Let L = {y1, . . . , yk, yk+1} ⊂ D. Let C ′ = Cα(y
k+1), and let

γ′ ≡ inf
y∈D

sup
x∈C′

F (x, y).

Note that C ′ is nonempty since α < γ, and it is closed and convex since the mapping x 7→ F (x, y)

is quasiconcave and upper semicontinuous for every y by condition 1. Also, since

Cα′(y) ∩ C ′ ⊃ Cα′(y) ∩ Cα′(yk+1) ̸= ∅
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for every y ∈ D and α′ ∈ (α, γ) by Lemma S8, we have

sup
x∈C′

F (x, y) ≥ α′

for all y ∈ D. Hence γ′ ≥ α′. Since this is true for all α′ ∈ (α, γ), it must be that γ′ = γ. Now,
applying the induction hypothesis to the sets C ′ and D and to L′ = {y1, . . . , yk}, we have⋂

y∈L′

C ′
α(y) ̸= ∅,

where C ′
α(y) = {x ∈ C ′ : F (x, y) ≥ α}. But this implies⋂

y∈L
Cα(y) ̸= ∅.

This completes the proof. ■

Using these lemmas, we now complete the proof of Theorem S1. First, it is immediate that
δ ≤ γ. Also, this implies that δ = γ if either δ = ∞ or γ = −∞, so it remains only to consider the
case of δ <∞ and γ > −∞. For any α ∈ R and L ⊂ D, let

CLα ≡ {x ∈ C : F (x, y) ≥ α ∀y ∈ L} =
⋂
y∈L

Cα(y).

By condition 3, there exists some η < γ and some finite set L ⊂ D such that the set CLη is compact.
Fix this set L and fix any α ∈ (η, γ). For any y ∈ D, define

CLα (y) = {x ∈ CLα : F (x, y) ≥ α} =
⋂

y′∈L∪{y}

Cα(y
′).

Note that CLα (y) is closed for all y ∈ D since x 7→ F (x, y) is quasiconcave by condition 1. By
Lemma S9, CLα is nonempty and, moreover, the sets CLα (y) for y ∈ D have the finite intersection
property. Since the sets CLα (y) for y ∈ D are all contained in the compact set CLη , this implies that⋂

y∈D
CLα (y) =

⋂
y∈D

Cα(y) ̸= ∅.

Therefore, taking any element x̄ from this set, we have F (x̄, y) ≥ α for all y ∈ D and hence
infy∈D F (x̄, y) ≥ α. Therefore δ ≥ α. Since this is true for α ∈ (η, γ), we must have δ ≥ γ, which
completes the proof.
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