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ARTICLE INFO ABSTRACT

As plastic waste accumulates in the ocean at alarming rates, the need for efficient and sustainable remediation
solutions is urgent. One solution is the development and mobilization of technologies that either 1) prevent
plastics from entering waterways or 2) collect marine and riverine plastic pollution. To date, however, few re-
ports have focused on these technologies, and information on various technological developments is scattered.
This leaves policymakers, innovators, and researchers without a central, comprehensive, and reliable source of
information on the status of available technology to target this global problem. The goal of this study was to
address this gap by creating a comprehensive inventory of technologies currently used or in development to
prevent the leakage of plastic pollution or collect existing plastic pollution. Our Plastic Pollution Prevention and
Collection Technology Inventory (https://nicholasinstitute.duke.edu/plastics-technology-inventory) can be used
as a roadmap for researchers and governments to 1) facilitate comparisons between the scope of solutions and
the breadth and severity of the plastic pollution problem and 2) assist in identifying strengths and weaknesses of
current technological approaches. We created this inventory from a systematic search and review of resources
that identified technologies. Technologies were organized by the type of technology and target plastics (i.e.,
macroplastics, microplastic, or both). We identified 52 technologies that fall into the two categories of pre-
vention or collection of plastic pollution. Of these, 59% focus specifically on collecting macroplastic waste
already in waterways. While these efforts to collect plastic pollution are laudable, their current capacity and
widespread implementation are limited in comparison to their potential and the vast extent of the plastic pol-
lution problem. Similarly, few technologies attempt to prevent plastic pollution leakage, and those that do are
limited in scope. A comprehensive approach is needed that combines technology, policymaking, and advocacy to
prevent further plastic pollution and the subsequent damage to aquatic ecosystems and human health.
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1. Introduction that 150 MMT of plastic were circulating in the marine environment as

of 2016 (World Economic Forum, 2016). Furthermore, experts estimate

Since its popularization in the 1950s, plastic use has skyrocketed
due to its benefits to societal health, safety, and energy (Andrady &
Neal, 2009). However, due to plastics’ longevity and resistance to de-
composition (Andrady, 2015), their widespread use has led to an epi-
demic of mismanaged waste. Over 7,800 million metric tons (MMT) of
plastic resin and fibers have been produced since 1950, with over half
of that plastic being produced from 2004 to 2017 (Geyer et al., 2017).
By 2015, annual plastic production had approached the combined
weight of the human population (Worm et al., 2017), and it is estimated
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that up to 10% of plastic debris produced will enter the sea (Thompson,
2006) and that plastics will outweigh fish in the ocean by 2050 (World
Economic Forum, 2016).

Plastics have deleterious effects on the environment by destroying
habitat (Sheavly & Register, 2007), entangling marine animals (Gall &
Thompson, 2015; Kiihn et al., 2015; Lusher et al., 2018), facilitating the
transport of invasive species across habitats (Kiessling et al., 2015), and
depositing in sediments, leading to potential impacts on the animals
that live and forage in the benthos (Brandon et al., 2019). When
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consumed by marine animals, plastic can have both physical and che-
mical impacts. In addition to entanglement, physical impacts include
blockages in the digestive tract when plastic is consumed by marine
animals (de Stephanis et al., 2013; Laist, 1987; Ryan et al., 2016),
which can lead to false satiation. A review of 340 original publications
found that at least 690 different species have been impacted by marine
debris (92% of which is plastic) (Gall & Thompson, 2015).

The chemical impacts of ingested microplastics and macroplastics
are also a growing concern (Brennecke et al., 2016; Karbalaei et al.,
2018, 2019, 2020; Luo et al., 2020; Teuten et al., 2009; Turner, 2018).
Plastics may serve as efficient delivery systems of toxic pollutants, like
plastic additives from the manufacturing process (e.g., heavy metals,
plasticizers) or chemicals that have adsorbed to plastic from the sur-
rounding environment (e.g., heavy metals) (Gallo et al., 2018; Turner,
2016, 2018). For example, some microplastics have been shown to
contain additives that are known reproductive toxins, carcinogens, and
mutagens (Wright & Kelly, 2017). These chemicals may bioaccumulate
up the food chain through ingestion at multiple trophic levels, and the
implications for food webs are not yet fully understood (Carbery et al.,
2018; Farrell & Nelson, 2013; Lusher et al., 2018). Plastic additive
leaching has been shown in studies on barnacles, anemones, and Ja-
panese medaka, along with an avian physiologically-based model
(Diana et al., 2020; Li et al., 2016a; Turner, 2018; Zhu et al., 2020).
This is a potential human health hazard, because humans consume an
estimated 39,000 to 52,000 microplastic particles per year from food
and beverages alone (Cox et al., 2019). As plastics enter the human food
chain, they carry additives from the manufacturing process, chemicals
adsorbed to the plastics, and pathogens or parasites that may be on the
plastics (Barboza et al., 2018; Vethaak & Leslie, 2016; Wu, 2017).
However, despite this, most countries continue to classify plastics as
harmless solid waste (Lechner & Ramler, 2015; Rochman et al., 2013).

In light of the growing concern about the negative impacts of
plastics on environmental and human health, some governments are
increasingly responding to this problem at the local, national, and in-
ternational levels (Adam et al., 2020; Karasik et al., 2020; Schnurr
et al.,, 2018; Xanthos & Walker, 2017). Between the years 2000 and
2019, at least 28 international policies were established to reduce
plastic pollution, three of which are binding to member states: the
Antarctic Treaty, London Convention and Protocol amendments, and
the International Convention for the Prevention of Pollution from Ships
(MARPOL) Annex V (Karasik et al., 2020). The United Nations En-
vironment Assembly (UNEA) has enacted multiple resolutions that aim
to reduce marine plastic pollution (e.g., Resolutions 1/6, 2/11, 3/7, 4/
6, 4/7, 4/9) (Carlini & Kleine, 2018; Karasik et al., 2020; Resolution 1/
6 Marine Plastic Debris and Microplastics, 2016; Resolution 2/11
Marine Plastic Litter and Microplastics, 2016; Resolution 3/7 Marine
Litter and Microplastics, 2018; Resolution 4/6 Marine Plastic Litter and
Microplastics, 2019; Resolution 4/7 Environmentally Sound
Management of Waste, 2019; ten Brink et al., 2018; Resolution 4/9
Addressing Single-use Plastic Products Pollution). Similarly, the Group
of Seven Summit acknowledged in 2015 that marine pollution is a
global challenge affecting marine and coastal ecosystems and human
health and ultimately passed an Ocean Plastics Charter in 2018 that
committed to taking specific actions to reduce plastics in the marine
environment (Niaounakis, 2017). Similarly, the Group of Twenty
agreed to an Action Plan on Marine Litter in 2017 (G20 Action Plan on
Marine Litter, 2017).

In addition to these international efforts, regional groups of gov-
ernments (in various geographic locations) have started to respond to
the marine plastic pollution issue. As of 2019, at least 39 regional policy
documents have been adopted, primarily in Europe (Karasik et al.,
2020). Regional policies facilitated by the United Nations Environment
Programme (UNEP) and the Regional Seas Programme make up over
half of these policies and the remaining policies were adopted by the
European Union (EU), Antarctic Treaty signatories, Nordic countries,
and East African member states (Karasik et al., 2020). Regional
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governments including the EU, Baltic Marine Environment Protection
Commission (Helsinki Commission), Nordic Council of Ministers, Con-
vention for the Protection of the Marine Environment of the North-East
Atlantic, and Secretariat of the Pacific Regional Environment Pro-
gramme have agreed to phase out plastic microbeads through state-
ments of support and regional action plans (UNEP, 2018).

In addition to these international and regional efforts, national and
subnational government responses have increased over the last decade,
focusing primarily on bans, levies/taxes/fees, and voluntary efforts
(e.g., “reduce and reuse campaigns”) in order to address plastic bags
and, to a lesser extent, single-use plastics more broadly (Lam et al.,
2018; Schnurr et al., 2018; Xanthos & Walker, 2017). At the national
level, governments worldwide are increasingly adopting policies to
target single-use plastic bags and other macroplastics, primarily
through the adoption of regulatory bans (Karasik et al., 2020; Schnurr
et al., 2018; Xanthos & Walker, 2017). A number of national single-use
plastic bag bans, taxes, or levies have been adopted in countries in sub-
Saharan Africa (Jambeck et al., 2018; Karasik et al., 2020). Twelve of
the 16 countries in West Africa have instituted single-use plastic re-
duction policies, which include 11 bans and one market-based ap-
proach in Ghana (the Environmental Excise Tax Act 863) (Adam et al.,
2020). Nationwide bans on the use of microbeads in cosmetic products
have been adopted in the United States, Canada, United Kingdom, New
Zealand, Finland, France, Iceland, Ireland, Italy, Luxemburg, Norway,
and Sweden (Dauvergne, 2018a). Local legislation to reduce plastic
pollution has also increased worldwide (Karasik et al., 2020; Schnurr
et al., 2018; Xanthos & Walker, 2017). In cities in the United States, for
example, plastic bag bans have become the most common form of local
ordinance used to address plastic pollution (Wagner, 2017).

Despite these policy efforts, the rate of plastic pollution continues to
grow (Dauvergne, 2018b; Jambeck et al., 2015). With governance
fragmented across a number of national and local jurisdictions, business
and political interests have often taken precedence over the capacity of
marine systems, and international institutions have struggled to fill the
gaps (Dauvergne, 2018b). These governance challenges are further
complicated by the durability and dispersal of plastics, the scientific
uncertainty in the amount of pollution making its way into the oceans,
and the difficulty in determining who is responsible for that pollution
(Dauvergne, 2018b). Meanwhile, the growing plastics industry has ex-
erted considerable influence, dispersing plastic through opaque trading
structures and sending waste to jurisdictions with poor waste man-
agement practices (Dauvergne, 2018b).

Existing international governance mechanisms, such as Annex V of
MARPOL and the 2011 Honolulu Strategy, have proved insufficient to
address the plastic marine litter crisis (Dauvergne, 2018b; Gold et al.,
2013). Current international rules, state policies, nonstate rules, and
consumer behaviors are not strong or comprehensive enough to protect
the environment at a global level (DeSombre, 2018). This is primarily
due to the fact that governance is fragmented across national and local
jurisdictions, allowing for regulatory gaps in global environmental
governance that make it easy to evade responsibility and deflect the
costs of plastic pollution (Dauvergne, 2018b).

While governments have an important role to play, these efforts are
more effective when coupled with private industry action and techno-
logical innovation, especially given the global nature of the problem
and the extent of stakeholders involved. Indeed, Gold and colleagues
(2013) called for investment in emerging technologies to increase the
efficiency of marine litter clean-up efforts. To that end, both for-profit
and non-governmental organizations (NGOs) are trying to reduce the
negative impacts of plastic pollution by developing new technologies
designed to remediate plastic pollution in the environment. For ex-
ample, new technologies and strategies to remediate plastic pollution
have been compiled by Ubuntoo, a for-profit company that shares in-
novative solutions developed by private entities, NGOs, governments,
and academics in a web-based database (“About Us,” n.d.). Ad-
ditionally, the for-profit entities of Systems, Applications, and Products
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Fig. 1. Sources of marine pollution throughout the plastic lifecycle. Plastic pollution prevention and collection technologies can capture plastic leakage from any

stage of the plastic lifecycle.

in Data Processing (SAP), Modis, Cermaq, and Wilhelmsen supported
the United Nations (UN) Reboot the Ocean Challenge, in which in-
novators worldwide submitted technological solutions to reduce marine
plastic pollution in the “End Waste Entering the Ocean” session
(“Reboot the Ocean,” n.d.).

These innovative techniques to reduce the amount of global plastic
pollution focus on different life cycle stages of plastic, including pro-
duction, consumption, and waste management, which can involve
landfilling, recycling, or repurposing (e.g., waste-to-energy) (Nielsen
et al., 2020; Prata et al., 2019). Approximately 80% of marine plastic
pollution arrives in the ocean from land-based sources (Li et al., 2016b;
Ritchie and Roser, 2018) and it is common for plastic to leak out of
waste management channels into the environment as mismanaged
waste throughout the production, consumption, and waste management
stages of the plastic life cycle (Fig. 1) (Nielsen et al., 2020; Prata et al.,
2019). For example, plastic can be lost to the surrounding environment
and transported to the oceans via waterways, winds, and tides due to
littering and improper waste management in open or uncontrolled
landfills (Law, 2017; Ritchie & Roser, 2018). Microplastics can enter the
environment through wastewater, storms, and catastrophic events,
which can carry materials of all kinds, including plastics, into the

oceans (Law, 2017). Technologies addressing these issues are geared
toward either 1) directly preventing plastic leakage into waterways or
2) collecting existing plastic pollution. During the recycling phase, in-
novative recycling solutions, such as plastic-to-fuel and bioremediation,
are being explored (Mohanraj et al., 2017; Sheth et al., 2019; Tournier
et al., 2020; Yoshida et al., 2016).

These technologies serve as promising complements that can work
in tandem with policy efforts to combat marine plastic pollution
(Cordier & Uehara, 2019; Gold et al., 2013; Worm et al., 2017). The
UNEA Resolution 2/11 notes that member states should “cooperate
regionally and internationally on clean-up actions of such hotspots
where appropriate and develop environmentally sound systems and
methods for such removal and sound disposal of marine litter”
(Resolution 2/11 Marine Plastic Litter and Microplastics, 2016; ten
Brink et al., 2018). This study seeks to identify these technologies
through creation of the Plastic Pollution Prevention and Collection
Technology Inventory (https://nicholasinstitute.duke.edu/plastics-
technology-inventory), which can serve as a tool for stakeholders who
are undergoing cleanup efforts of marine plastic hotspots, as suggested
by the UNEA in Resolution 2/11 (Resolution 2/11 Marine Plastic Litter
and Microplastics, 2016). The Inventory focuses on technologies that 1)
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Fig. 2. Overview of methods used to assemble the Plastic Pollution Prevention and Collection Technology Inventory.

prevent plastic leakage into riverine and marine environments or 2)
collect existing pollution that leaked during other plastic lifecycle
stages including production, consumption, and waste management. We
focused on these technologies because they are specific to plastic pol-
lution already in waterways and the marine environment, or they focus
on plastic pollution in systems that immediately feed into those en-
vironments, such as sewage systems and wastewater. To our knowl-
edge, these technologies have not been systematically reviewed.

The Inventory created from this review can serve as a streamlined
tool that researchers, industry, NGOs, and governments can use to learn
about the options available for plastic pollution remediation. A white
paper published by the Benioff Ocean Initiative surveyed the broad
types of technologies used to reduce river plastic pollution (The Benioff
Ocean Initiative, 2019); we hope that this study builds upon their work
by encompassing marine ecosystems and including a searchable in-
ventory of specific technologies that allows for faster learning. More-
over, the Inventory enables comparisons between the scope of solutions
and the breadth and severity of the plastic pollution problem, and it
identifies the strengths and weaknesses of current technological ap-
proaches and implementation. We hope that innovators and policy-
makers will use the Inventory to determine how best to target future
innovation efforts and incorporate technological solutions to comple-
ment existing policy efforts.

2. Methods

For this review, we conducted a systematic search of internet re-
sources, scholarly literature, and patents to identify technologies that
either reduce the amount of plastic pollution entering the ocean and
rivers or extract existing plastic pollution from waterways. We also
included technologies that aim to prevent plastic pollution from en-
tering waters upstream of oceans and rivers (e.g., industrial or re-
sidential wastewater). Because most information regarding plastic

pollution prevention and collection technologies is located in internet
resources, we focused on this literature, including news media, press
releases, and other non-peer reviewed literature. We then supple-
mented that search by analyzing scholarly literature, reviewing United
States Patent and Trademark Office patent databases, and carrying out
expert consultations with Ubuntoo and the UN Reboot the Ocean
Challenge (Fig. 2).

2.1. Review of internet resources and assembly of the Inventory

We first conducted a systematic search to identify announcements in
press releases, key events, or other media that discussed technologies to
either prevent plastic leakage into waterways or remove existing plastic
pollution from riverine and marine environments. To perform this
search, we developed a series of Boolean search strings by reviewing
news articles and press releases on plastic remediation technology.
Search terms were either synonyms or types of plastic pollution (e.g.,
"marine debris," "shopping bag," "Styrofoam") paired using “AND” with
synonyms for technology (e.g., "invention"). Where search terms led to
predominantly irrelevant results, we added the terms “collect” and
“remove” with the Boolean connecter “AND.” We performed a Google
search using the resulting search terms (Table 1). After conducting pilot
searches on several terms, we determined that after approximately 100
news articles, the searches returned results that were either irrelevant
or duplicative of prior results. Therefore, we focused the review on the
first 100 news articles for each of the 40 search terms (n = 3,910 ar-
ticles total). We considered news articles published prior to October 1,
2019 for this study.

From these search results, we included all discrete technologies in
the Inventory that were designed to either prevent the leakage of plastic
pollution into waterways or collect existing plastic pollution. We ex-
cluded technologies that did not fall into these two categories — such as
plastic-to-fuel, bioremediation, or new materials to replace plastic — due
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Table 1
Boolean strings of search terms used to identify plastic pollution remediation
technology.

Search terms

“cigarette waste” AND “invent*”
“marine debris” AND “tech”
“marine debris” AND “invent
“marine litter” AND “invent*”
“microplastic” AND “invent*”
“microfiber” AND “invent*”

“nurdle*” AND “invent*”

“nylon” AND “invent*”

“marine plastic” AND “invent*”

“ocean plastic” AND “invent*”
“polyethylene” AND “invent*”
“polymethyl methacrylate” AND “invent*”
“polypropylene” AND “invent*”
“polystyrene” AND “invent*”

“polyvinyl chloride” AND “invent*”
“shopping bag” AND “invent*”

“Styrofoam” AND “invent*”

“synthetic disposable” AND “invent*”

“tire” AND “invent*”

“tyre” AND “invent*”

“marine waste” AND “collect” AND “tech”
“marine debris” AND “collect” AND “tech”
“marine litter” AND “collect” AND “tech”
“marine waste” AND “collect” AND “invent*”
“marine debris” AND “collect” AND “invent*”
“marine litter” AND “collect” AND “invent*”
“marine waste” AND “cleanup” AND “invent*”
“marine debris” AND “cleanup” AND “invent*”

*9

: 5

“marine litter” AND “cleanup” AND “invent*
“marine waste” AND “remove” AND “invent*”
“marine debris” AND “remove” AND “invent*”
“marine litter” AND “remove” AND “invent*”
“plastic” AND “remove” AND “waterway”
“plastic” AND “collect” AND “waterway”
“plastic” AND “remove” AND “ocean”
“plastic” AND “collect” AND “ocean”

“litter” AND “trap” —cat®

“trash“ AND “marine” AND “technology”
“ocean” AND “booms”

“river” AND “booms”

2The search of “litter” AND “trap” yielded mostly results about cat litter,
therefore “-cat” was added in order to remove results that were irrelevant to the
search.

to our focus on prevention and collection technology.

When determining whether two sources described discrete tech-
nologies, we first assessed whether the two technologies appeared si-
milar in purpose, mechanism, and construction. Even for those tech-
nologies that appeared similar, we considered inventions discrete if
they were differently branded or if they were manufactured, sold, or
marketed by different entities. When inventions were not branded, but
were labeled with descriptive names, we grouped together inventions
that appeared identical. This included, for example, generic river
booms that are often described in a merely descriptive way and are
frequently cited in localized collection efforts.

We then assembled the list of discrete technologies, assigned each
technology a unique identification number, and categorized them as
either prevention or collection technologies. When a technology could
be used for either prevention or collection, we categorized it as the
former since prevention is further upstream in the plastic lifecycle than
collection.

To determine if an invention targets macroplastic, microplastic, or
both, we relied on the reporting and categorizations in the literature
itself. In rare cases where the targeted plastics were not described but a
size of targeted plastics was provided, we defined microplastics as
plastics smaller than 5 mm and macroplastics as anything larger (Arthur
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et al.,, 2009). We also identified the year that the technology was in-
vented (if available), use status (i.e., in use, not in use, pilot testing, or
unknown), and geographic location where the technology was invented
(if available). If the source did not clearly identify the year that the
technology was invented, we used the year that the earliest source ar-
ticle was published as a proxy.

After assembling the Inventory, we performed a targeted, in-depth
search in Google on each technology to gather any information that was
not provided in the initial reference articles. Search terms included the
name of the technology or inventor/manufacturer and the piece of
missing data (e.g, plastic type targeted).

2.2. Review of scholarly literature

After assembling the Inventory, we applied the same search terms
(Table 1) in Google Scholar and the Duke University Library system to
cross-check the peer-reviewed literature (published prior to October 1,
2019) with technologies previously identified. We filtered search re-
sults by relevance and reviewed them to identify new technologies not
already in the Inventory or extract information on technologies already
in the Inventory.

2.3. Review of patents

We next searched the United States Patent and Trademark Office
patent database for relevant technologies patented prior to October 1,
2019. Our patent search was limited in scope and is discussed in more
detail in the Supplementary Material. Future patent research by experts
trained in the technical and engineering aspects of these issues could
allow for a more detailed analysis of the scope of the patent literature
and enhance the Inventory.”

2.4. Expert consultations

In addition to these searches, we consulted with experts to add
additional technologies to the database that we did not identify through
our review of internet sources, scholarly literature, or patents. These
expert consultations included meeting with the co-founder of Ubuntoo,
a company that compiles a variety of novel solutions to plastic pollu-
tion, and then carrying out searches for technology on Ubuntoo (see
Supplementary Material). One author (Z. Diana) served as a judge and
mentor for innovators who submitted plastic prevention and collection
technologies to the UN Reboot the Ocean Challenge “End Waste En-
tering the Ocean” session (see Supplementary Material). Additional
technologies from Ubuntoo and the UN Reboot the Ocean Challenge
were added to the Inventory for analysis.

3. Results

The Boolean search strings in Table 1 resulted in 3,910 Google news
articles for screening, from which 39 discrete technologies were iden-
tified that were designed to either 1) prevent plastic from entering
waterways or 2) collect existing marine and riverine plastic pollution.
The search of scholarly literature revealed no additional technologies,
although it did result in one additional reference. The patent search
resulted in one additional technology. Expert consultations resulted in
12 additional technologies. Among the 52 total technologies, 14 were
categorized as technologies focusing on plastic pollution prevention
and 38 were categorized as collection technologies (Table 2). Of the 52
total technologies, 39 targeted macroplastics, nine targeted

2Michael Niaounakis extensively reviews patents of this nature from around
the world in his volume Management of Marine Plastic Debris (Niaounakis,
2017). A complete review of that collection is beyond the scope of our technical
expertise but could be useful in supplementing the Inventory.
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Fig. 3. The number and type of technologies directed toward leakage prevention versus collection and the type of plastic targeted (microplastics, microplastics, or
both). In total, three plastic pollution collection technologies target microplastics, 31 target macroplastics, and four target both. Six plastic pollution prevention
technologies target microplastics, and eight target macroplastics. Technology definitions were created based on descriptions of the technologies in the Inventory.

Collection Prevention

L S

Fig. 4. The number of prevention and collection technologies that have been used, not used, pilot tested, or unknown.
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microplastics, and four targeted both categories of plastic. and laundry balls to large-scale skimmers and booms. The Inventory
Fewer technologies are aimed at preventing plastic leakage than includes “Mr. Trash Wheel” in Baltimore, Maryland, the United States,
collecting it from marine and riverine environments (Fig. 3). Ad- which collected approximately one million pounds of waste over the
ditionally, while prevention technologies focused on macroplastics and course of around 2.5 years (Campbell, 2016). This is a massive step in
microplastics almost equally, collection technologies overwhelmingly cleaning up Baltimore’s waterways, and similar technologies have been
addressed macroplastics. The category of “boats and wheels” had the used in other municipalities, such as the "Watergoat Trash Traps" in
highest number of technologies focused on plastic pollution collection, Augusta, Georgia, the United States (““Watergoat’ trash traps helping
and the category of “storm and wastewater filters” included the most curb litter in Augusta,” 2018), the "In-line Litter Separator" in Mel-
technologies targeting plastic pollution prevention (Fig. 3). The In- bourne, Victoria, Australia (Phillips, 1999), and the "Holy Turtle" in
ventory highlighted that not all of the inventions are commercialized, Roatan, Honduras (Kotecki, 2018).
and some inventions are in initial testing phases (Fig. 4). However, these technologies cannot tackle the plastic pollution

problem alone. The Inventory allows us to reflect on challenges in scale,
the plastic lifecycle stage targeted, the ubiquity of microplastics, costs
associated with technology implementation, and deployment location
for these technologies. These challenges highlight the need for colla-
borative efforts across multiple scales and implementation in key hot-
spots to combat plastic pollution.

4. Discussion

The 52 technologies in the Plastic Pollution Prevention and
Collection Technology Inventory represent important efforts in the fight
against plastic pollution (Nicholas Institute for Environmental Policy
Solutions, 2020). Fourteen technologies in the Inventory focus on
plastic pollution leakage prevention and 38 focus on plastic pollution
collection, with technologies ranging from household wastewater filters
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4.1. Scaling up localized solutions for global pollution

The enormity of the plastic pollution epidemic requires a large-
scale, global response that effectively implements and expands on
current technological solutions. For example, a simulation model by
Cordier and Uehara (2019) provides quantitative estimates of the
amount of marine plastic that could be collected based on the number
of technologies deployed, along with cost estimates to meet various
goals for stabilizing and reducing marine plastic pollution. Simulation
modeling suggests that collecting plastic from the ocean alone, without
other potential solutions (e.g., improving waste management), would
require the annual removal of about 15% of ocean plastic accumulating
between the years 2020 and 2030 (over 135 MMT removed in total) to
reduce the 2010 levels of marine plastic pollution (79.24 MMT) by
25%, for a goal of 59.43 MMT remaining (Cordier & Uehara, 2019).
Cordier and Uehara (2019) estimated that 1,924 technologies similar to
the Ocean Cleanup Project (Slat, 2014) would need to be deployed in
the open ocean to achieve the aforementioned reduction.

The Ocean Cleanup Project has been refining its design since 2012
and has recently developed “System 002,” which improves upon the
previous design (“Cleaning Up the Garbage Patches,” n.d.). Im-
plementation of this technology, which is noted to be “the first full-
scale, fully operational cleanup system” is expected in 2021 (“Cleaning
Up the Garbage Patches,” n.d.), suggesting that this new, refined design
will be in operation soon. Our Inventory provides a sample of tech-
nologies that could be used in future feasibility studies and simulation
models to determine the number of technologies that would need to be
deployed to reach various plastic cleanup goals.

4.2. The lifecycle stages of collected plastic: A focus on leakage prevention is
needed

Given the large quantities of marine debris entering the ocean, it is
imperative to slow the release of plastic to the marine environment=.
The Inventory reveals that the leakage prevention technologies can
make important contributions toward addressing this problem; how-
ever, the majority of available technologies are collection technologies
(38 inventions), with fewer technologies focused on preventing plastic
leakage (14 inventions).

Most of the technologies that prevent plastic leakage are geared
toward removing plastic from wastewater discharge. For example,
“PumpGuard” uses mesh nets to remove debris from wastewater and
stormwater systems and removes 97% of debris present (“Pumpguard,”
n.d.). While “PumpGuard” represents a substantial step forward in
preventing the release of plastic through wastewater, this is only one of
many potential inputs into the marine environment. Technology has
rarely addressed the other potential inputs, including the loss of in-
dustrial pre-production pellets during shipping, loss during use (e.g.,
catastrophic events, fishing/aquaculture, shipping, ocean science, and
other platforms), and improper waste management (Jambeck et al.,
2015; Law, 2017).

The only technology aimed specifically at preventing the leakage of
industrial waste is the “CLEVER-Volume” system, which is a monitoring
tool that measures the amount of waste on ships to identify improper
disposal (“CLEVER-Volume — 3DModelling PT,” n.d.). Because marine
sources of plastic pollution make up approximately one fifth of the total
plastic waste entering the ocean (Ritchie & Roser, 2018), the “CLEVER-
Volume” system represents a major step forward in preventing in-
dustrial waste leakage from marine sources.

Plastic lines, ropes, and fishing nets comprise more than half of the
plastic in the Great Pacific Garbage Patch (Ritchie & Roser, 2018). The
only invention that specifically targets the prevention of fishing gear
pollution is the “Stow It Don’t Throw It” — an invention aimed at
changing fishers’ behavior at a small scale by collecting fishing lines
used by recreational fishers before they enter the marine environment
as waste (“Home: The Stow It-Don’t Throw It Project,” n.d.). The “Stow
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It Don’t Throw It” campaign is led by youths in local communities
across the United States, and thus has the added benefit of training
future leaders in marine conservation (“The Project,” n.d.).

4.3. Microplastic prevention technologies: All macroplastics end up as
microplastics

Macroplastics in the environment constantly break down into mi-
croplastics (Cole et al., 2011; Jahnke et al., 2017). Six technologies in
the Inventory are focused on preventing microplastic pollution, and all
but one of these are directed toward preventing microplastics from
entering the water system through residential water. These inventions,
such as laundry balls and filtration systems, collect microplastics gen-
erated from laundering synthetic fabrics in the household. For example,
the “Cora Ball” is a ball that is placed in a laundry machine and captures
microfibers that are generated when washing synthetic clothing items
(“Cora Ball,” n.d.). The “Lint LUV-R” is a filter that is installed outside
of the washing machine that captures synthetic microfibers in waste-
water discharge (“Lint LUV-R washing machine discharge filter,” n.d.).
A study on the effectiveness of the “Cora Ball” and “Lint LUV-R” found
that these technologies significantly reduced the number of microfibers
in washing machine effluent after washing a fleece blanket, by 26% and
87% respectively (Mcllwraith et al., 2019). Each of these technologies
resulted in a significant decrease in microfibers in wastewater, which is
promising; however, these technologies require consumers to purchase
the systems so usage may not be widespread. Scholars have noted that
market-friendly solutions overestimate the value of consumer respon-
sibility and cannot keep pace with the rising environmental costs of the
plastic pollution problem (Dauvergne, 2018b).

Importantly, residential solutions cannot combat the microplastic
problem alone; industrial leakage from processing plants is an im-
portant source of microplastic pollution (Lechner & Ramler, 2015). For
example, while water treatment systems that remove microplastics are
currently marketed toward consumers for residential use (e.g, the
“Showerloop,” which filters water for reuse and removes microplastics
simultaneously; How it works. (n.d.), government institutions could
enact policies to encourage their adoption in an industrial setting. In
addition, governments may consider evaluating wastewater emissions
standards to determine the legal plastic wastewater discharge amounts
permitted (Lechner & Ramler, 2015). For example, in Austria, the
equivalent of approximately 2.7 million PET bottles by weight were
discharged annually into aquatic environments through industrial mi-
croplastics in wastewater emissions (Lechner & Ramler, 2015). Garcia
et al. (2019) note that governments could provide subsidies or tax in-
centives to companies that institute new technology or practices to
reduce plastic consumption. These financial incentives could be used to
promote the installation and adoption of these technologies or to scale-
up these efforts into larger systems that could be adopted for industrial
use.

Given the constant generation of microplastics from macroplastics
in the environment (Cole et al., 2011; Jahnke et al., 2017), microplastic
prevention and collection technologies need to be paired with macro-
plastic prevention and collection technologies in the environment and
in industrial wastewater systems. Ten Brink and colleagues (2018) have
specifically noted that plastic clean-up and collection efforts are limited
by the generation and dispersal of microplastics.

4.4. Capital is required for successful implementation and support of
technology

Widespread implementation of technology to combat plastic pollu-
tion may face financial barriers (Gold et al., 2013). It is apparent from
Fig. 4 that many inventions (approximately 36% of prevention tech-
nologies and 29% of collection technologies) are still in the pilot phase,
not currently in use, or their use status is unknown. Governments and
other stakeholders implementing plastic prevention and collection
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technologies may face cost barriers, especially for technologies that
capture river pollution (The Benioff Ocean Initiative, 2019). Although
examining the financial feasibility and costs was beyond the scope of
this study, such a massive global problem cannot adequately be ad-
dressed without viable, consistent sources of funding (Gold et al.,
2013).

Cleanup efforts, such as beach clean-ups, have been criticized for
their high costs relative to their effectiveness, due to the widespread
dispersal of marine litter and microplastics generated (ten Brink et al.,
2018). However, technologies like those listed in the Inventory can help
to increase the efficiency of beach clean-up efforts by groups of people
or individuals (e.g., litter surveys), suggesting that investment into these
technologies may be worthwhile for program managers tasked with
combating marine litter (Gold et al., 2013). For example, the robot
“Malolo I” aids in the manual collection of macroplastics through de-
tection of plastic for later collection (Mayer, n.d.). Global positioning
system (GPS) devices track ghost nets for later collection and have
helped the Oceans Voyages Institute collect 40 tons of plastic from the
Great Pacific Garbage Patch (“Ocean Voyages Institute,” n.d.; SMART,
2019). Furthermore, a feasibility study and detailed financial analysis
of the Ocean Cleanup Project indicated that its technology is between
seven to 33 times cheaper than conventional methods (i.e., net collec-
tion from a ship) and similar in cost to beach cleanups by people, based
on the costs per kilogram of plastic collected (Slat, 2014). These tech-
nologies may help to immediately remedy marine plastic pollution,
especially in areas where it does social and economic harm (e.g., tourist
beaches) (ten Brink et al., 2018).

Costs will likely vary for each technology in the Inventory. The costs
to implement the Ocean Cleanup Project include capital expenditure,
operating costs, equipment replacements, and decommissioning costs
(Cordier & Uehara, 2019; Slat, 2014). At a global scale, Cordier and
Uehara (2019) found that the cost to reduce marine plastic pollution by
25% (as compared to 2010 levels) in one decade and using only tech-
nology (i.e., the Ocean Cleanup Project) is between 0.7 and 1.0% of the
global Gross Domestic Product in 2017 (492-708 billion Euros). Op-
tions for potential funding sources to further the implementation and
deployment of these technologies may include fees and taxes on plastic
products (Gold et al., 2013) or research and development investments
by industry (Garcia et al., 2019). For example, the Coca-Cola Founda-
tion and Benioff Ocean Initiative have pledged $11 million to create a
network of individuals targeting river plastic pollution (Benioff Ocean
Initiative, n.d.). Feasibility studies on the technologies in this Inventory
could help to provide cost estimates that may allow governments and
investors to evaluate the financial viability of implementing and in-
vesting in technologies.

Of the top 20 countries with the greatest amounts of mismanaged
waste, 12 countries are classified as low or lower-middle income
(Jambeck et al., 2015) and may be less likely to have the resources for
public investments to deploy these technologies on a large scale. Seven
other countries with the greatest amounts of mismanaged waste are
upper-middle income countries (Jambeck et al., 2015), where resources
may still be relatively limited. One of the top 20 countries with the
greatest amounts of mismanaged waste is a high-income country, the
United States (Jambeck et al., 2015), where the government may be the
most likely, as compared to others on the list, to have the resources to
deploy these technologies. The infrastructure costs associated with
implementing microplastic collection technologies are rarely econom-
ically feasible, even in wealthier countries (Lau et al., 2020). Global
trade patterns have indicated that a large amount of plastic pollution
generated in high-income countries (70% of worldwide plastic imports
in 2016) is shipped to lower-income countries in East Asia and the
Pacific for disposal (Brooks et al., 2018). Thus, limited resources in
lower-income countries may hinder the investment in plastic preven-
tion and collection technologies.
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4.5. Location, location, location

Plastic pollution distribution is not uniform. Different countries
have disproportionate inputs into the ocean (Jambeck et al., 2015) and
once plastic enters the ocean, it is transported by waves and currents to
various depths and ocean ecosystems. The top five countries in mis-
managed plastic waste are China, Indonesia, the Philippines, Vietnam,
and Sri Lanka (Jambeck et al., 2015). Additionally, Asian rivers have
been estimated to represent 86% of the total plastic releases into rivers
globally, making China, India, Bangladesh, and Indonesia locations of
particular concern (Lebreton et al., 2017).

Given the scope and cross-boundary nature of the problem, these
solutions will need to involve international actors acting across multiple
scales. Nations will need to work together to address the problems of
plastic in areas beyond national jurisdiction. The utility of technologies
in the Inventory could be enhanced if policymakers and other stake-
holders work together across jurisdictions to ensure technologies are
deployed in areas where they could do the most good (Rochman, 2016;
Sherman & van Sebille, 2016). For example, modeling by Sherman and
van Sebille (2016) found that microplastic cleanup efforts should target
coastal surface waters (before the plastic is ingested by marine ani-
mals), specifically in China and Indonesia, due to high amounts of
plastic leakage into the ocean in these locations (Jambeck et al., 2015;
Rochman, 2016; Sherman & van Sebille, 2016).

The Inventory identifies several exemplary technologies that may
aid in targeting microplastic pollution. One of the three technologies
specifically targeting microplastic collection is currently in use — the
“Marine Microplastic Removal Tool” (Fisher, 2018; Ward, 2015). This
tool is a sand filter that can directly collect microplastics (Fisher, 2018;
Ward, 2015). In addition, the “Hoola One” is currently in use and can
collect microplastics by vacuuming about three gallons of sand per
minute and separating out macroplastics and microplastics by buoy-
ancy (Peters, 2019). StormTrap’s “TrashTrap” may be helpful for col-
lecting macroplastics (which ultimately generate microplastics; Cole
et al., 2011; Jahnke et al., 2017) because it has a 97% debris removal
efficiency (“TrashTrap: Capture floatables with innovative netting sys-
tems,” n.d.). However, as discussed in Section 4.4, costs may be a
limiting factor for local governments because 12 of the top 20 countries
with the greatest amounts of mismanaged waste are considered low and
lower-middle income countries (Jambeck et al., 2015). Global resources
could be wisely used by targeting the potential “hotspots” of marine
plastic pollution to amplify potential impact (Rochman, 2016; Sherman
& van Sebille, 2016).

Finally, while large-scale implementation of these technologies can
aid in plastic cleanup efforts in the environment, the widespread dis-
persal of marine plastic pollution, especially microplastics, creates
challenges for collection technologies, which often target the surface of
the ocean (ten Brink et al., 2018). For example, none of the inventions
are geared toward removing plastics from benthic habitats or deep
seabeds where microplastic hotspots have been recently discovered
(Brandon et al., 2019; Fischer et al., 2015; Kane et al., 2020; Van
Cauwenberghe et al., 2015). This is particularly problematic in light of
the fact that plastic is highly persistent on the seafloor because of the
slow kinetics of biodegradation and the limited oxygen supply
(Andrady, 2015). Thus, analysis of the Inventory highlights the need for
stakeholders in various sectors to identify both policies and technolo-
gies that can reduce plastic pollution in these geographic and oceanic
locations.

4.6. The solution: Collaboration

With an ever-expanding toolkit of policy responses that aim to re-
duce plastic pollution (Karasik et al., 2020), technologies in this In-
ventory can help to provide immediate cleanup responses, especially in
areas where plastic pollution can cause social and economic harm (ten
Brink et al., 2018). Technology is an important facet in decreasing our
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reliance on any one solution to marine plastic pollution (Cordier &
Uehara, 2019; Worm et al., 2017), and it can serve as one piece of an
“all hands on deck” response (Garcia et al., 2019), in which multiple
levels of governments and stakeholders (including industry) target
multiple types and lifecycle stages of plastic pollution (Garcia et al.,
2019; Worm et al., 2017). By designing plastic waste out of the system
in a circular economy, we may eventually be able to decrease our re-
liance on these technologies (Gallo et al., 2018; ten Brink et al., 2018).
However, given that the amount of plastic pollution entering the ocean
is expected to increase by an order of magnitude, as compared to the
baseline in year 2010 (Jambeck et al., 2015), both cleanup technologies
and upstream responses have an important role to play in helping to
clean up the oceans (Gallo et al., 2018; Rochman, 2016; Sherman & van
Sebille, 2016; ten Brink et al., 2018; Worm et al., 2017).

Importantly, plastic cleanup technologies should be used in tandem
with other preventative solutions, such as sustainable, biodegradable
material to replace plastic or improved waste management systems.
Cordier and Uehara (2019) modeled the use of plastic collection tech-
nologies in tandem with improvements in waste management. These
models found that in countries with high levels of mismanaged waste,
improvements in waste management could help to decrease the amount
of plastic that cleanup technologies would need to capture to meet
marine plastic pollution reduction goals. Case studies in Indonesia and
China have found that municipalities can engage in more creative
government responses to plastic pollution at the local level than at the
national level, especially through public-private partnerships (Garcia
et al., 2019). Local municipalities may partner with private entities to
implement plastic pollution leakage prevention or collection technolo-
gies in hotspots of marine plastic pollution, while policy responses can
help to prevent this scenario from occurring in the future. Multi-
pronged efforts that incorporate both technology and policy responses,
such as improved waste management, would help to take the pressure
off of any one entity in reducing plastic pollution (Cordier & Uehara,
2019; Worm et al., 2017), potentially increasing the feasibility of var-
ious solutions. Further research is needed on the feasibility, costs, and
effectiveness of deploying various cleanup and prevention technologies
with improvements in waste management and other plastics policies
(e.g., Karasik et al., 2020; Worm et al., 2017; Xanthos & Walker, 2017).
This would help stakeholders identify the most cost-effective solutions
to help guide both public and private investment in efforts to scale up
promising technologies. In addition, future research is needed to ex-
amine existing plastic pollution policies (e.g, in the Plastics Pollution
Policy Inventory; Karasik et al., 2020) to determine if governments are
enacting policies that incentivize or disincentivize the research, devel-
opment, and use of prevention and collection technologies.

As an example of where technology and policy could serve as useful
complements, Gold and colleagues (2013) suggest scaling up fees and
taxes on plastic products (e.g., carrier bags, cutlery, packaging), which
have been successfully used to fund localized cleanup efforts in some
cities in the United States (e.g., Oakland, California and Washington,
District of Columbia). New microplastic prevention technologies may
also work in concert with policy efforts to establish inventories de-
tailing microplastic release into the environment and efforts to decrease
the use of harmful chemicals in microplastics, especially microfibers
from synthetic clothing items (Browne, 2015). Microplastic prevention
technologies include general wastewater removal technologies like the
“GolJelly Project,” which uses jellyfish mucus to capture microplastics
(“GoJelly,” n.d.), laundry balls that capture synthetic fibers in the
washing machine like the “Cora Ball” and “Fibre Free” (“Cora Ball,”
n.d.; Chou, 2018), or residential water systems that filter out micro-
plastics or microfibers like the “Lint LUV-R” and “Showerloop” (“Lint
LUV-R washing machine discharge filter,” n.d.; “How it works,” n.d.).

Upstream solutions that help to reduce plastic waste at the source
(e.g., Gallo et al., 2018; Rochman, 2016; Sherman & van Sebille, 2016;
ten Brink et al., 2018) and thus microplastic generation (e.g., Cole et al.,
2011; Jahnke et al., 2017) will be particularly helpful in long-term
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microplastic solutions. In combination with efforts to reduce the source
of plastic waste and subsequent microplastic generation (Rochman,
2016), policymakers could create incentives for expanding and im-
plementing these technologies in areas that are hotspots of marine
plastic pollution. Incentives and regulations could be implemented to
increase the number of systems put in place, and certain technologies
could be adapted to other contexts (e.g., scaling up microplastic filters
for use in preventing industrial leakage).

Marine plastic pollution is a complex and extensive problem, and
there are no simple solutions. Technological developments cannot be
separated from policy, which likewise cannot be separated from in-
dividual and industry efforts. Only through continued combined efforts
to find creative solutions across technology, policy, and advocacy can
we stop plastic leakage into the oceans and mitigate its effects. Until
then, we hope that this Inventory serves as a tool that stakeholders can
use to learn about the options available to prevent plastic leakage into
waterways and clean up plastic pollution.
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