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CEνNS Review

• Astrophysics applications: SN dynamics and detection
• Beyond the Standard Model physics: sterile neutrinos,

neutrino magnetic moment
• Background in dark matter searches
• Many ongoing experiments working with various

materials
• First measurement by COHERENT!
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Understanding the Nucleus

• CEνNS can also be used to understand the nucleus
• Largest uncertainty in cross section comes from the

nuclear form factor
• Specifically the neutrons
• CEνNS is an alternative to other methods to measure

nuclear properties
• Look for moments of density distribution

〈Rk
n 〉 =

∫
ρnr kd3r∫
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Neutron Density in the Nucleus

• Previous work used hadronic scattering to deduce the
neutron RMS radius

• PREX at JLAB has measured the neutron radius in
208Pb [1]

• Parity violating electron
scattering

• Measure parity violating
asymmetry, which is a
measure of nuclear neutron
form factor

• Current measurement of
RMS radius has 2.5% error

30 ppm=GeV2, which would correspond to an additional
systematic uncertainty on APV of 3 ppb (0.5% of APV).

The beam polarization was continuously monitored by a
Compton polarimeter. Helicity-dependent asymmetries in
the integrated signal from backscattered Compton photons
yielded Pb ¼ ð88:2# 0:1# 1:0Þ% averaged over the du-
ration of the run. The beam polarization was stable within
systematic errors. An independent Møller polarimeter
making nine measurements at different times during the
run gave Pb ¼ ð90:3# 0:1# 1:1Þ%. We used an average
of these two measurements, Pb ¼ ð89:2# 1:0Þ% which
conservatively accounts for the correlated systematic er-
rors between the two measurements.

After all corrections,

APb
PV ¼ 656# 60ðstatÞ # 14ðsystÞ ppb;

at hQ2i ¼ 0:008 80# 0:000 11 GeV2. This result is dis-
played in Fig. 1, in which models predicting the point-
neutron radius illustrate the correlation of APb

PV and Rn [39].
Seven nonrelativistic and relativistic mean-field models

[12–15] were chosen that have charge densities and bind-
ing energies in good agreement with experiment, and that
span a large range in Rn. The weak charge density !w was
calculated from model point-proton !p and neutron !n

densities, !wðrÞ ¼ qp!chðrÞ þ qn
R
d3r0½Gp

E!n þGn
E!p',

using proton qp ¼ 0:0721 and neutron qn ¼ (0:9878
weak charges that include radiative corrections. Here Gp

E
(Gn

E) is the Fourier transform of the proton (neutron)
electric form factor. The Dirac equation was solved [9]
for an electron scattering from !w and the experimental !ch

[1], and the resulting APVð"Þ integrated over the accep-
tance, Eq. (3), to yield the open circles in Fig. 1. The
importance of Coulomb distortions is emphasized by in-

dicating results from plane-wave calculations, which are
not all contained within the vertical axis range of the figure.
A least squares fit of the model results yields Rn )
6:156þ 1:675hAi( 3:420hAi2 fm (with hAi in ppm), as
illustrated. Comparing this to the measured APb

PV implies a
value for Rn ¼ 5:78þ0:16

(0:18 fm. More details of this analysis,
along with additional information such as the weak charge
form factor and weak radius, will be presented in a future
publication [40].
Assuming a point-proton radius of 5.45 fm [41], corre-

sponding to the measured charge radius of 5.50 fm [1],
implies that the neutron distribution is 1:8# larger than that
of the protons: Rn ( Rp ¼ 0:33þ0:16

(0:18 fm [39] (see also
[42]). A future run is planned which will reduce the quoted
uncertainty by a factor of 3 [43], to discriminate between
models and allow predictions relevant for the description
of neutron stars and parity violation in atomic systems.
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FIG. 1 (color). Result of this experiment (red square) vs neu-
tron point radius Rn in 208Pb. Distorted-wave calculations for
seven mean-field neutron densities are circles while the diamond
marks the expectation for Rn ¼ Rp[39]. References: NL3m05,
NL3, and NL3p06 from [11], FSU from [12], SIII from [13],
SLY4 from [14], SI from [15]. The blue squares show plane wave
impulse approximation results.

PRL 108, 112502 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending

16 MARCH 2012

112502-5

• Is it possible to understand the structure of the nuclear
neutron distribution using neutrino scattering?

[1] S. Abrahamyan et al. (PREX Collaboration), Phys. Rev. Lett. 108, 112502 (2012)
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CEνNS: Coherent Elastic Neutrino-Nucleus
Scattering

dσ
dT

(E ,T ) =
G2

F

2π
M

2 − 2T
E

+

(
T
E

)2

−
MT
E2

 Q2
W

4
F 2(Q2)

• Neutrino scatters from nucleus as a whole, not
individual nucleons

• F (Q2) is the form factor
• Finite size correction, neutrino sees nucleus as more

than a point particle

F (Q2) =
1

QW

∫ [
ρn(r) − (1 − 4 sin2 (θW ))ρp(r)

] sin (Qr)
Qr

r2dr
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Neutrino Scattering

• Consider neutrinos from
a stopped pion source

• Since scattering is low
energy, use a Taylor
expansion for F(Q2)
around Q = 0 0.000
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• After expansion:

F (Q2) = N
(
1 −

Q2

3!
〈R2

n〉+
Q4

5!
〈R4

n〉 −
Q6

7!
〈R6

n〉+ · · ·

)
• Moments calculated or measured
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Effective Moments

• Argon is almost completely 40Ar
• Germanium and xenon both have several naturally

occurring isotopes
• Define effective second and fourth moments using

weighted sums

〈R2
n〉

1/2
eff =

∑i N2
i XiMi〈R2〉n,i∑
i N2

i XiMi

1/2

〈R4
n〉

1/4
eff =

∑i N2
i XiM2

i 〈R
4〉n,i∑

i N2
i XiM2

i

1/4

• Xi is the mass fraction of the isotope with neutron
number Ni and mass Mi
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Form Factors from Moments

• Black - exact form factor
• Colors show expansion

with different cutoff points
• Cutoff after 〈R4

n〉 for 40Ar
and Ge, after 〈R6

n〉 for Xe 0.5
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Typical Scattering Curve

dN
dT

(T ) = NtC
∫ mµ/2

Emin(T )
f (E)

dσ
dT

(E ,T )dE
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• 1 tonne 40Ar detector with flux 3 × 107 ν/(cm2 s) of each
flavor
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Monte Carlo Basics

• Assume Lν = 3 × 107ν/(cm2 s) (∼ 20 m from SNS)
• Create database of scattering curves

• Use range of 〈R2
n〉

(1/2) and 〈R4
n〉

(1/4) values
• Allow luminosity (Lν) to float

• Remove highest and lowest energy bins due to
expected backgrounds

• Add random statistical error to a nuclear model
scattering curve and compare to database

• Choose the values of 〈R2
n〉

(1/2), 〈R4
n〉

(1/4), and Lν that
give the lowest χ2 value
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Results - 3.5 tonne 40Ar
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Figure from Patton et al., Phys. Rev. C 86 024612 (2012)

• Results using a 3.5
tonne detector over
1 year

• 97%, 91%, and
40% confidence
levels

• Black points show
Skyrme model
predictions

• Colored band
shows
experimental result
from Ozawa et al.
[1]

[1] A. Ozawa et al., Nucl. Phys. A 709, 60
(2002)11
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Results

• 3.5 tonne 40Ar detector
• RMS radius to 5%
• Fourth moment to 20%

• 1.5 tonne Ge detector
• Effective RMS radius to 5%
• Effective Fourth moment to 15%

• 300 kg Xe detector
• Effective RMS radius to 4%
• Effective Fourth moment to 7%

• With independent measures of Lν, uncertainties
reduced
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How well do we need to understand the
detector?

• Need to include uncertainties from detector response
• Assume energy shape uncertainty is the largest effect

• Results from differences in understanding signal
detection efficiency between energy bins

• Caused by uncertainties on energy-dependent detector
response, signal selection effects, and backgrounds as
a function of energy

• Percent-level or better is challenging but not
inconceivable

• Added as uncorrelated Gaussian fluctuations in each
energy bin
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Argon and Germanium

• Solid lines indicate a 2 tonne detector 20 m from the
source at indicated sites for 1 year

• 〈R2
n〉

1/2 could be measured to 5% if shape uncertainty
is understood to 1% level
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Figures from Patton, Scholberg, and McLaughlin IJMPE (2013)
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Xenon

• Solid lines indicate a 500 kg detector 20 m from the
source at indicated sites for 1 year

• Both 〈R2
n〉

1/2 (left) and 〈R4
n〉

1/4 (right) could be
measured to 5% if shape uncertainty is understood to
1% level
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Figures from Patton, Scholberg, and McLaughlin IJMPE (2013)
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Conclusions

• Suggest CENNS can be used to probe the nuclear
neutron form factor and the neutron density

• Characterize the form factor with effective moments
(〈R2

n〉
1/2 and 〈R4

n〉
1/4)

• Neutron RMS radius measured to a few percent with
energy shape uncertainty of 1% or better

• Provides a theoretically clean way to measure the
neutron density in the nucleus
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