Motivatior

Neutrino Scattering

Monte Carlo and Results

Experimenta Prospects

Discussion

CE_VNS as a Probe of Nuclear Neutron Density Distributions

Kelly M. Patton

University of Washington Institute for Nuclear Theory

> νECLIPSE 20-22 August 2017

K. M. Patton, J. Engel, G. C. McLaughlin and N. Schunck, *Phys. Rev. C* 86, 024612 (2012).
 K. M. Patton, G. C. McLaughlin and K. Scholberg, *Int. J. Mod. Phys. E* 22 1330013 (2013).

CEVNS Review

Motivation

Neutrino Scattering

Monte Carlo and Results

Experimenta Prospects

- · Astrophysics applications: SN dynamics and detection
- Beyond the Standard Model physics: sterile neutrinos, neutrino magnetic moment
- · Background in dark matter searches
- Many ongoing experiments working with various materials
- First measurement by COHERENT!

Understanding the Nucleus

CE_VNS can also be used to understand the nucleus

- Largest uncertainty in cross section comes from the nuclear form factor
- Specifically the neutrons
- CEνNS is an alternative to other methods to measure nuclear properties
- Look for moments of density distribution

Motivation

Neutrino Scatterino

Monte Carlo and Results

Experimenta Prospects

Neutron Density in the Nucleus

Motivation

Neutrino Scatterinç

Monte Carlo and Results

Experimenta Prospects

- Previous work used hadronic scattering to deduce the neutron RMS radius
- PREX at JLAB has measured the neutron radius in ²⁰⁸Pb [1]
- Parity violating electron scattering
- Measure parity violating asymmetry, which is a measure of nuclear neutron form factor
- Current measurement of RMS radius has 2.5% error
- Is it possible to understand the structure of the nuclear neutron distribution using neutrino scattering?

CE_VNS: Coherent Elastic Neutrino-Nucleus Scattering

Motivatior

Neutrino Scattering

Monte Carlo and Results

Experimental Prospects

$$\frac{d\sigma}{dT}(E,T) = \frac{G_F^2}{2\pi}M\left[2 - \frac{2T}{E} + \left(\frac{T}{E}\right)^2 - \frac{MT}{E^2}\right]\frac{Q_W^2}{4}F^2(Q^2)$$

- Neutrino scatters from nucleus as a whole, not individual nucleons
- $F(Q^2)$ is the form factor
 - Finite size correction, neutrino sees nucleus as more than a point particle

$$F(Q^2) = \frac{1}{Q_W} \int \left[\rho_n(r) - (1 - 4\sin^2{(\theta_W)}) \rho_p(r) \right] \frac{\sin{(Qr)}}{Qr} r^2 dr$$

Neutrino Scattering

Motivatior

Neutrino Scattering

Monte Carlo and Results

Experimenta Prospects

Discussion

 Consider neutrinos from a stopped pion source

- Since scattering is low energy, use a Taylor expansion for F(Q²) around Q = 0
 - After expansion:

$$F(\mathit{Q}^2) = N \bigg(1 - \frac{\mathit{Q}^2}{3!} \langle \mathit{R}_n^2 \rangle + \frac{\mathit{Q}^4}{5!} \langle \mathit{R}_n^4 \rangle - \frac{\mathit{Q}^6}{7!} \langle \mathit{R}_n^6 \rangle + \cdots \bigg)$$

Moments calculated or measured

Effective Moments

Motivatior

Neutrino Scattering

Monte Carlo and Results

Experimenta Prospects

Discussion

- Argon is almost completely ⁴⁰Ar
- Germanium and xenon both have several naturally occurring isotopes
- Define effective second and fourth moments using weighted sums

$$\langle R_n^2 \rangle_{\text{eff}}^{1/2} = \left(\frac{\sum_i N_i^2 X_i M_i \langle R^2 \rangle_{n,i}}{\sum_i N_i^2 X_i M_i} \right)^{1/2}$$

$$\langle R_n^4 \rangle_{\text{eff}}^{1/4} = \left(\frac{\sum_i N_i^2 X_i M_i^2 \langle R^4 \rangle_{n,i}}{\sum_i N_i^2 X_i M_i^2} \right)^{1/4}$$

 X_i is the mass fraction of the isotope with neutron number N_i and mass M_i

7

Form Factors from Moments

Motivatior

Neutrino Scattering

Monte Carlo and Results

Experimental Prospects

- · Black exact form factor
- Colors show expansion with different cutoff points
- Cutoff after \(\arraphi_n^4 \) for \(^{40} \) Ar and Ge, after \(\arraphi_n^6 \) for Xe

Typical Scattering Curve

Motivatio

Neutrino Scattering

Monte Carlo and Results

Experimenta Prospects

Discussion

• 1 tonne 40 Ar detector with flux $3 \times 10^7 \ v/(\text{cm}^2 \text{ s})$ of each flavor

2

Monte Carlo Basics

Motivatior

Neutrino Scattering

Monte Carlo and Results

Experimenta Prospects

Discussior

- Assume $L_v = 3 \times 10^7 v/(\text{cm}^2 \text{ s}) (\sim 20 \text{ m from SNS})$
- · Create database of scattering curves
 - Use range of $\langle R_n^2 \rangle^{(1/2)}$ and $\langle R_n^4 \rangle^{(1/4)}$ values
 - Allow luminosity (L_ν) to float
- Remove highest and lowest energy bins due to expected backgrounds
- Add random statistical error to a nuclear model scattering curve and compare to database
- Choose the values of $\langle R_n^2 \rangle^{(1/2)}$, $\langle R_n^4 \rangle^{(1/4)}$, and L_{ν} that give the lowest χ^2 value

Results - 3.5 tonne 40 Ar

Motivatior

Neutrino Scatterina

Monte Carlo and Results

Experimenta Prospects

Discussio

Figure from Patton et al., Phys. Rev. C 86 024612 (2012)

- Results using a 3.5 tonne detector over 1 year
- 97%, 91%, and 40% confidence levels
- Black points show Skyrme model predictions
- Colored band shows experimental result from Ozawa et al.
 [1]

[1] A. Ozawa *et al.*, Nucl. Phys. A **709**, 60

Results

Motivatio

Neutrino Scattering

Monte Carlo and Results

Experimenta Prospects

- 3.5 tonne ⁴⁰Ar detector
 - RMS radius to 5%
 - Fourth moment to 20%
- 1.5 tonne Ge detector
 - Effective RMS radius to 5%
 - Effective Fourth moment to 15%
- 300 kg Xe detector
 - Effective RMS radius to 4%
 - Effective Fourth moment to 7%
- With independent measures of L_ν, uncertainties reduced

How well do we need to understand the detector?

Motivatio

Neutrino Scattering

Monte Carlo and Results

Experimental Prospects

- Need to include uncertainties from detector response
- Assume energy shape uncertainty is the largest effect
 - Results from differences in understanding signal detection efficiency between energy bins
 - Caused by uncertainties on energy-dependent detector response, signal selection effects, and backgrounds as a function of energy
- Percent-level or better is challenging but not inconceivable
- Added as uncorrelated Gaussian fluctuations in each energy bin

Argon and Germanium

Motivatior

Neutrino Scattering

Monte Carlo and Results

Experimental Prospects

- Solid lines indicate a 2 tonne detector 20 m from the source at indicated sites for 1 year
- $\langle R_n^2 \rangle^{1/2}$ could be measured to 5% if shape uncertainty is understood to 1% level

Figures from Patton, Scholberg, and McLaughlin IJMPE (2013)

Xenon

Motivation

Neutrino Scattering

Monte Carlo and Results

Experimental Prospects

- Solid lines indicate a 500 kg detector 20 m from the source at indicated sites for 1 year
- Both $\langle R_n^2 \rangle^{1/2}$ (left) and $\langle R_n^4 \rangle^{1/4}$ (right) could be measured to 5% if shape uncertainty is understood to 1% level

Figures from Patton, Scholberg, and McLaughlin IJMPE (2013)

Conclusions

Motivation

Neutrino Scattering

Monte Carlo and Results

Experimenta Prospects

- Suggest CENNS can be used to probe the nuclear neutron form factor and the neutron density
- Characterize the form factor with effective moments $(\langle R_n^2 \rangle^{1/2} \text{ and } \langle R_n^4 \rangle^{1/4})$
- Neutron RMS radius measured to a few percent with energy shape uncertainty of 1% or better
- Provides a theoretically clean way to measure the neutron density in the nucleus