Non-Standard Interaction of Solar Neutrinos in Dark Matter Detectors

Shu Liao

Texas A&M University

Collaboration with: J. Dent, B. Dutta, J. Newstead, L. Strigari and J. Walker

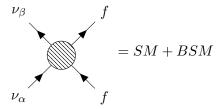
Outline

- Motivation
 - Non-standard interactions of neutrino
 - Transition probability of solar neutrino
 - Current constrains
- 2 Combination of oscillation and CEvNS
 - Expected number of events under NSI
 - Oscillation effects
- Future work and conclusion
 - Resolving degeneracies
 - Conclusion

Non-standard interactions of neutrinos

General four fermion interaction:

$$\mathcal{L}_{int} = 2\sqrt{2}G_F \bar{\nu}_{\alpha L} \gamma^{\mu} \nu_{\beta L} \left(\epsilon^{fL}_{\alpha\beta} \bar{f}_L \gamma_{\mu} f_L + \epsilon^{fR}_{\alpha\beta} \bar{f}_R \gamma_{\mu} f_R \right)$$



Differential cross section

Differential cross section of $\nu_{\beta} + f \rightarrow \nu_{\alpha} + f$ as a function of recoil energy E_r :

$$\begin{split} \frac{\mathrm{d}\sigma}{\mathrm{d}E_r} &= \frac{2}{\pi} G_F^2 m_f \times \\ & \left[\left| \epsilon_{\alpha\beta}^{fL} \right|^2 + \left| \epsilon_{\alpha\beta}^{fR} \right|^2 \left(1 - \frac{E_r}{E_\nu} \right)^2 - \frac{1}{2} \left(\epsilon_{\alpha\beta}^{fL*} \epsilon_{\alpha\beta}^{fR} + \epsilon_{\alpha\beta}^{fL} \epsilon_{\alpha\beta}^{fR*} \right) \frac{m_f E_r}{E_\nu^2} \right] \end{split}$$

Cross section on nucleus

$$\begin{split} \epsilon^L_{\alpha\alpha} &\to \frac{1}{2} Z \epsilon^{pV}_{\alpha\alpha} + \frac{1}{2} \left(Z_+ - Z_- \right) \epsilon^{pA}_{\alpha\alpha} + \frac{1}{2} N \epsilon^{nV}_{\alpha\alpha} + \frac{1}{2} \left(N_+ - N_- \right) \epsilon^{nA}_{\alpha\alpha} \\ \epsilon^R_{\alpha\alpha} &\to \frac{1}{2} Z \epsilon^{pV}_{\alpha\alpha} - \frac{1}{2} \left(Z_+ - Z_- \right) \epsilon^{pA}_{\alpha\alpha} + \frac{1}{2} N \epsilon^{nV}_{\alpha\alpha} - \frac{1}{2} \left(N_+ - N_- \right) \epsilon^{nA}_{\alpha\alpha} \\ \frac{\mathrm{d}\sigma}{\mathrm{d}E_r} &\to \frac{\mathrm{d}\sigma}{\mathrm{d}E_r} \times F^2 \left(Q^2 \right) \\ \\ \epsilon^{pV}_{\alpha\alpha} &= \frac{1}{2} - 2 \sin^2 \theta_w + 2 \epsilon^{uV}_{\alpha\alpha} + \epsilon^{dV}_{\alpha\alpha} \\ \epsilon^{pA}_{\alpha\alpha} &= \frac{1}{2} + 2 \epsilon^{uA}_{\alpha\alpha} + \epsilon^{dA}_{\alpha\alpha} \\ \\ \epsilon^{nV}_{\alpha\alpha} &= -\frac{1}{2} + \epsilon^{uV}_{\alpha\alpha} + 2 \epsilon^{dV}_{\alpha\alpha} \\ \epsilon^{pA}_{\alpha\alpha} &= -\frac{1}{2} + \epsilon^{uA}_{\alpha\alpha} + 2 \epsilon^{dA}_{\alpha\alpha} \end{split}$$

Transition probability of solar neutrino

The propagation of neutrino is described by:

$$\mathcal{H}_{\beta\alpha} = \left[U \operatorname{diag}\left(0, \frac{\Delta m_{21}^2}{2E}, \frac{\Delta m_{31}^2}{2E}\right) U^{\dagger} \right]_{\beta\alpha} + \sqrt{2}G_F \sum_f n_f \left(\delta^{ef} \delta_{e\alpha} + \epsilon_{\beta\alpha}^f\right)$$

U: mixing matrix, $\Delta m_{ij}^2 = m_i^2 - m_j^2$, n_f : number density of fermion f.

Neutrino propagates through the sun adiabatically (diagonalize $\mathcal H$ into $\tilde U diag \tilde U^\dagger$):

$$P_{\beta \rightarrow \alpha} = \left| \tilde{U} \left(t \right)_{\alpha k} \right|^2 \left| A_{jk}^1 \right|^2 \left| A_{ij}^2 \right|^2 \left| \tilde{U} \left(0 \right)_{\beta i} \right|^2$$

A: transition probability between mass eigenstate when resonance happens.

Current constraints

	One par	rameter	PRESENT (OSC+CHARM+NuTeV)	
ε_{ee}^{eL} ε_{ee}^{eR} ε_{ee}^{eL} $\varepsilon_{\mu\mu}^{eR}$ $\varepsilon_{\mu\mu}^{eL}$	(-0.021,0.052) [60] (-0.07,0.08) [122] (-0.03, 0.03) [40] (-0.03, 0.03) [40] (-0.16, 0.11) [60]	(-0.08, 0.09) [123] (-0.03, 0.03) [54] (-0.03, 0.03) [54] (-0.46, 0.24) [54]	$\epsilon_{ee}^{u,V}$ $\epsilon_{ee}^{u,V}$ $\epsilon_{\mu\mu}^{u,V}$ $\epsilon_{\tau\tau}^{u,V}$ $\epsilon_{eu}^{u,V}$	
$\varepsilon_{\tau\tau}^{eR}$ $\varepsilon_{\tau\tau}^{eL}$ $\varepsilon_{e\mu}^{eR}$ $\varepsilon_{e\mu}^{eR}$	(-0.19, 0.19) [122]	(-0.25, 0.43)[54] (-0.13, 0.13) [54] (-0.13, 0.13) [54]	$\begin{array}{c} \epsilon_{e\tau}^{u,V} \\ \epsilon_{e\tau}^{u,V} \\ \epsilon_{\mu\tau}^{u,V} \\ \hline \epsilon_{ee}^{d,V} \end{array}$	$ \begin{bmatrix} -0.15, 0.13 \\ -0.006, 0.005 \\ \hline [0.02, 0.51] $
$\varepsilon_{e\tau}^{eL}$ $\varepsilon_{e\tau}^{eR}$	(-0.4, 0.4) [40] (-0.28, -0.05) ar (-0.19, 0.19) [122]	(-0.33, 0.33) [54] ad (0.05, 0.28) [54]	$\epsilon_{\mu\mu}^{d,V} \ \epsilon_{ au au}^{d,V} \ \epsilon_{e\mu}^{d,V} \ \epsilon_{e\mu}^{d,V}$	[-0.003, 0.009] $[-0.001, 0.05]$ $[-0.05, 0.03]$
$\varepsilon^{eL}_{\mu au}$ $\varepsilon^{eR}_{\mu au}$	(-0.1, 0.1)[40] (-0.1, 0.1)[40]	(-0.1, 0.1) [54] (-0.1, 0.1) [54]	$\epsilon_{e au}^{d,V} \ \epsilon_{e au}^{d,V} \ \epsilon_{\mu au}^{d,V}$	[-0.05, 0.05] [-0.15, 0.14] [-0.007, 0.007]

(a) Gonzalez-Garcia et al, arXiv:1307.3092

(b) Coloma et al, arXiv:1701.04828

Figure: Current constraints

Electron scattering $\nu_{\beta} + e \rightarrow \nu_{\alpha} + e$

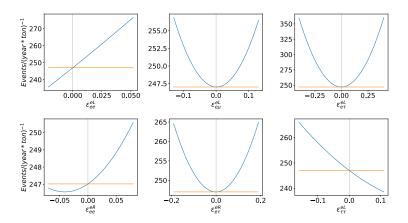


Figure: Number of events above an equivalent electron recoil energy threshold of 1 keV as each ϵ varies over its allowable range (blue curves). Orange curve: SM contribution.

Nucleus scattering $\nu_{\beta} + N \rightarrow \nu_{\alpha} + N$

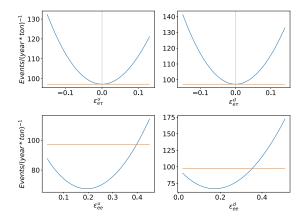


Figure: Number of events above an equivalent nucleus recoil energy threshold of 1 keV as each ϵ varies over its allowable range (blue curves). Orange curve: SM contribution.

LMA-Dark solution

$$\theta_{12} \rightarrow \frac{\pi}{2} - \theta_{12}$$

$$\theta_{13} \rightarrow \pi - \theta_{13}$$

$$\delta \rightarrow \pi - \delta$$

$$\Delta m_{31}^2 \rightarrow -\Delta m_{32}^2$$

$$\epsilon \rightarrow -\epsilon^*$$

$$H \rightarrow -H^*$$

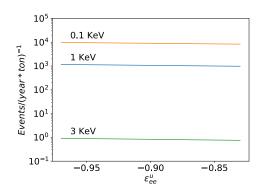


Figure: Number of events for LMA-d solution with different threshold energies.

Threshold

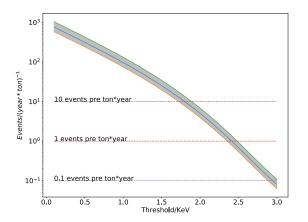


Figure: Number of events with different threshold energies.

Oscillation vs. no oscillation

	$\epsilon_{ee}^{eL} = 0.052$	$\epsilon^u_{ee} = 0.2$	$\epsilon_{ee}^d = 0.17$
$U\Delta mU^{\dagger} + \sqrt{2}G_f \operatorname{diag}(1,0,0) + \sqrt{2}G_f \epsilon$	1.10	0.69	0.69
$U\Delta mU^{\dagger} + \sqrt{2}G_f \operatorname{diag}\left(1,0,0\right) + \sqrt{2}G_f \epsilon$	1.12	0.67	0.67
$U\Delta mU^{\dagger} + \sqrt{2}G_f \operatorname{diag}\left(1,0,0\right) + \sqrt{2}G_f\epsilon$	1.13	0.44	0.44
$U\Delta mU^{\dagger} + \sqrt{2}G_f {\sf diag}\left(1,0,0 ight) + \sqrt{2}G_f \epsilon$	1.72	3.88×10^{-5}	1.18×10^{-3}

Table: Ratio to only SM prediction N/N_{SM}

Survival probability due to NSI

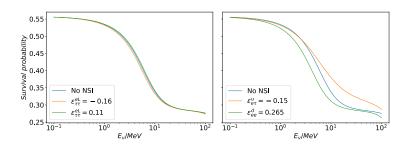


Figure: Electron neutrino survival probability for the SM (blue) compared to cases in of NSI.

Oscillations

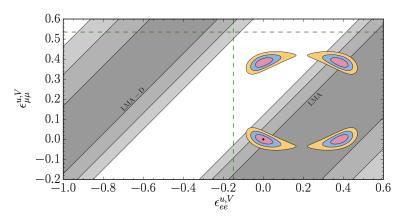
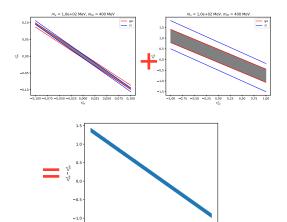


Figure: Oscillation experiment can only detect $\epsilon_{ee}-\epsilon_{\mu\mu}$, Coloma et al. 2017

Complementarity of various experiments

Reactor + SNS + Solar-DM = constraints on $\epsilon_{ee} - \epsilon_{\mu\mu}$? u and d degeneracy?



 $\varepsilon_{0}^{0} - \varepsilon_{0}^{0}$

-1.0 -0.5

0.5

Conclusion

- Direct dark matter searches are able to probe NSI parameter space that cannot be probed by current neutrino experiments.
 - A low threshold detector is more likely to be able to observe significant number of events
 - Oue to interference between SM and BSM, number of observed events can be lower than SM expectations.
- Uncertainties of additional NSI parameters will not only affect the detection side, but also affect the solar neutrino flux.